1
|
Li X, Black TA, Zha T, Jassal RS, Nesic Z, Lee SC, Bourque CPA, Hao S, Jin C, Liu P, Jia X, Tian Y. Long-term trend and interannual variation in evapotranspiration of a young temperate Douglas-fir stand over 2002-2022 reveals the impacts of climate change. PLANT, CELL & ENVIRONMENT 2024; 47:3966-3978. [PMID: 38863246 DOI: 10.1111/pce.15000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 05/27/2024] [Accepted: 05/31/2024] [Indexed: 06/13/2024]
Abstract
The shortage of decades-long continuous measurements of ecosystem processes limits our understanding of how changing climate impacts forest ecosystems. We used continuous eddy-covariance and hydrometeorological data over 2002-2022 from a young Douglas-fir stand on Vancouver Island, Canada to assess the long-term trend and interannual variability in evapotranspiration (ET) and transpiration (T). Collectively, annual T displayed a decreasing trend over the 21 years with a rate of 1% yr-1, which is attributed to the stomatal downregulation induced by rising atmospheric CO2 concentration. Similarly, annual ET also showed a decreasing trend since evaporation stayed relatively constant. Variability in detrended annual ET was mostly controlled by the average soil water storage during the growing season (May-October). Though the duration and intensity of the drought did not increase, the drought-induced decreases in T and ET showed an increasing trend. This pattern may reflect the changes in forest structure, related to the decline in the deciduous understory cover during the stand development. These results suggest that the water-saving effect of stomatal regulation and water-related factors mostly determined the trend and variability in ET, respectively. This may also imply an increase in the limitation of water availability on ET in young forests, associated with the structural and compositional changes related to forest growth.
Collapse
Affiliation(s)
- Xinhao Li
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Forestry University, Beijing, China
- School of Soil and Water Conservation, Beijing Forestry University, Beijing, China
- Beijing Engineering Research Center of Soil and Water Conservation, Beijing Forestry University, Beijing, China
| | - T Andrew Black
- Biometeorology and Soil Physics Group, University of British Columbia, Vancouver, British Columbia, Canada
| | - Tianshan Zha
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Forestry University, Beijing, China
- School of Soil and Water Conservation, Beijing Forestry University, Beijing, China
- Beijing Engineering Research Center of Soil and Water Conservation, Beijing Forestry University, Beijing, China
| | - Rachhpal S Jassal
- Biometeorology and Soil Physics Group, University of British Columbia, Vancouver, British Columbia, Canada
| | - Zoran Nesic
- Biometeorology and Soil Physics Group, University of British Columbia, Vancouver, British Columbia, Canada
| | - Sung-Ching Lee
- Department of Biogeochemical Integration, Max Planck Institute for Biogeochemistry, Jena, Germany
| | - Charles P-A Bourque
- Faculty of Forestry and Environmental Management, University of New Brunswick, Fredericton, New Brunswick, Canada
| | - Shaorong Hao
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Forestry University, Beijing, China
- School of Soil and Water Conservation, Beijing Forestry University, Beijing, China
- Beijing Engineering Research Center of Soil and Water Conservation, Beijing Forestry University, Beijing, China
| | - Chuan Jin
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Hainan University, Haikou, China
| | - Peng Liu
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Forestry University, Beijing, China
- School of Soil and Water Conservation, Beijing Forestry University, Beijing, China
- Beijing Engineering Research Center of Soil and Water Conservation, Beijing Forestry University, Beijing, China
| | - Xin Jia
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Forestry University, Beijing, China
- School of Soil and Water Conservation, Beijing Forestry University, Beijing, China
- Beijing Engineering Research Center of Soil and Water Conservation, Beijing Forestry University, Beijing, China
| | - Yun Tian
- School of Soil and Water Conservation, Beijing Forestry University, Beijing, China
- Beijing Engineering Research Center of Soil and Water Conservation, Beijing Forestry University, Beijing, China
| |
Collapse
|
2
|
Zhao D, Bi H, Wang N, Liu Z, Hou G, Huang J, Song Y. Does increasing forest age lead to greater trade-offs in ecosystem services? A study of a Robinia pseudoacacia artificial forest on the Loess Plateau, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 926:171737. [PMID: 38508272 DOI: 10.1016/j.scitotenv.2024.171737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 03/13/2024] [Accepted: 03/13/2024] [Indexed: 03/22/2024]
Abstract
Artificial forest ecosystems offer various ecosystem services (ES) and help mitigate climate change effects. Trade-offs or synergies exist among ES in artificial forests. Although forest age influences ES and ecosystem processes, the long-term dynamics of trade-offs among ES in artificial forests and during vegetation restorations remain unclear, complicating vegetation and sustainable management. We studied a Robinia pseudoacacia plantation on the Loess Plateau, China, with a restoration time of 10-44 years. The entropy weight method was used to assess five ES (carbon sequestration, water conservation, soil conservation, understory plant diversity, and runoff and sediment reduction) and investigate how ES change with forest age. The root mean square deviation (RMSD) was used to quantify the trade-offs among ES, and redundancy analysis (RDA) analysis was used to identify the key factors influencing the ES and trade-offs. The results showed that (1) as forest age increased, ES scores initially increased and then decreased. The optimal range for ES values was observed during the middle-aged to mature stages of the forest. (2) Before reaching maturity, the planted forests primarily delivered services related to water conservation and runoff and sediment reduction. (3) In young forests, ES showed a synergistic relationship (RMSD = 0.06), whereas trade-offs occurred in forests at other ages. The largest trade-off was observed in middle-aged forests. (4) The ES pairs with the dominant trade-offs in planted forests differed at different forest age stages. The largest trade-off occurred between carbon sequestration and water conservation (RMSD = 0.28). RDA analysis showed that understory vegetation coverage had a positive correlation with all ES. The ES indicators that significantly (P < 0.001) affected the water‑carbon trade-off were tree carbon storage, soil organic carbon storage, soil total nitrogen, and soil total phosphorus. Thus, the water and carbon relationship must be balanced, and the key factors affecting ES trade-offs in forest management must be regulated to support ES multifunctionality.
Collapse
Affiliation(s)
- Danyang Zhao
- Beijing Forestry University, Beijing 100083, China
| | - Huaxing Bi
- Beijing Forestry University, Beijing 100083, China; State Key Laboratory of Efficient Production of Forest Resources, Beijing 100083, China; Ji County Station, Chinese National Ecosystem Research Network (CNERN), Beijing 100083, China; Key Laboratory of National Forestry and Grassland Administration on Soil and Water Conservation, Beijing Engineering Research Centre of Soil and Water Conservation, Engineering Research Center of Forestry Ecological Engineering, Ministry of Education (Beijing Forestry University), Beijing 100083, China.
| | - Ning Wang
- Beijing Forestry University, Beijing 100083, China
| | - Zehui Liu
- Beijing Forestry University, Beijing 100083, China
| | - Guirong Hou
- College of Forestry, Sichuan Agricultural University, Chengdu 611130, China
| | - Jinghan Huang
- Southwest Survey and Planning Institute of National Forestry and Grassland Administration, Kunming 650031, China
| | - Yilin Song
- Beijing Forestry University, Beijing 100083, China
| |
Collapse
|
3
|
Yang S, Yi L, Wang J, Li X, Xu B, Liu M. Nitrogen addition affected the root competition in Cunninghamia lanceolata-Phoebe chekiangensis mixed plantation. PHYSIOLOGIA PLANTARUM 2024; 176:e14268. [PMID: 38528287 DOI: 10.1111/ppl.14268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 03/02/2024] [Accepted: 03/11/2024] [Indexed: 03/27/2024]
Abstract
Little is known about below-ground competition in mixed-species plantations under increasing nitrogen (N) deposition. This study aims to determine the effects of N addition on root competition in coniferous and broad-leaved species mixed plantations. A pot experiment was conducted using the coniferous species Cunninghamia lanceolata and the broad-leaved species Phoebe chekiangensis planted in mixed plantations with different competition intensities under N addition (0 or 45 kg N ha-1 yr-1). Biomass allocation, root morphology, root growth level, and competitive ability were determined after five months of treatment. Our findings indicated that root interactions in mixed plantations did not influence biomass allocation in either C. lanceolata or P. chekiangensis but promoted growth in C. lanceolata when no N was added. However, N addition decreased biomass accumulation in both species in the mixed plantation and had a negative effect on the root growth of C. lanceolata due to intensified competition. Addition of N increased the relative importance of root predatory competition in P. chekiangensis, and increased the allelopathic competitive advantage in C. lanceolata. This suggests that N addition causes a shift in the root competitive strategy from tolerance to competition. Overall, these findings highlight the significant impact that the addition of N can have on plant interactions in mixed plantations. Our results provide implications for the mechanisms of root competition in response to increasing atmospheric N deposition in mixed plantations.
Collapse
Affiliation(s)
- Shuya Yang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China
| | - Lita Yi
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China
| | - Jingru Wang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China
| | - Xiaoyun Li
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China
| | - Bin Xu
- School of Landscape Architecture, Zhejiang A&F University, Hangzhou, China
| | - Meihua Liu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China
| |
Collapse
|
4
|
Sun L, Li G, Zhao J, Zhang T, Liu J, Zhang J. Core microbiota drive multi-functionality of the soil microbiome in the Cinnamomum camphora coppice planting. BMC Microbiol 2024; 24:18. [PMID: 38200417 PMCID: PMC10777636 DOI: 10.1186/s12866-023-03170-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 12/22/2023] [Indexed: 01/12/2024] Open
Abstract
BACKGROUND Cinnamomum camphora (L.) Presl (C. camphora) is an evergreen broad-leaved tree cultivated in subtropical China. The use of C. camphora as clonal cuttings for coppice management has become popular recently. However, little is known about the relationship between soil core microbiota and ecosystem multi-functionality under tree planting. Particularly, the effects of soil core microbiota on maintaining ecosystem multi-functionality under C. camphora coppice planting remained unclear. MATERIALS AND METHODS In this study, we collected soil samples from three points (i.e., the abandoned land, the root zone, and the transition zone) in the C. camphora coppice planting to investigate whether core microbiota influences ecosystem multi-functions. RESULTS The result showed a significant difference in soil core microbiota community between the abandoned land (AL), root zone (RZ), and transition zone (TZ), and soil ecosystem multi-functionality of core microbiota in RZ had increased significantly (by 230.8%) compared to the AL. Soil core microbiota played a more significant influence on ecosystem multi-functionality than the non-core microbiota. Moreover, the co-occurrence network demonstrated that the soil ecosystem network consisted of five major ecological clusters. Soil core microbiota within cluster 1 were significantly higher than in cluster 4, and there is also a higher Copiotrophs/Oligotrophs ratio in cluster 1. Our results corroborated that soil core microbiota is crucial for maintaining ecosystem multi-functionality. Especially, the core taxa within the clusters of networks under tree planting, with the same ecological preferences, had a significant contribution to ecosystem multi-functionality. CONCLUSION Overall, our results provide further insight into the linkage between core taxa and ecosystem multi-functionality. This enables us to predict how ecosystem functions respond to the environmental changes in areas under the C. camphora coppice planting. Thus, conserving the soil microbiota, especially the core taxa, is essential to maintaining the multiple ecosystem functions under the C. camphora coppice planting.
Collapse
Affiliation(s)
- Luyuan Sun
- Jiangxi Provincial Engineering Research Center for Seed- breeding and Utilization of Camphor Trees, Nanchang Institute of Technology, Nanchang, 330099, China
- Soil and Fertilizer & Resources and Environment Institute, Jiangxi Academy of Agricultural Sciences, Nanchang, 330200, China
| | - Guilong Li
- Soil and Fertilizer & Resources and Environment Institute, Jiangxi Academy of Agricultural Sciences, Nanchang, 330200, China
| | - Jiao Zhao
- Jiangxi Provincial Engineering Research Center for Seed- breeding and Utilization of Camphor Trees, Nanchang Institute of Technology, Nanchang, 330099, China
| | - Ting Zhang
- Jiangxi Academy of Forestry, Nanchang, 330032, China
| | - Jia Liu
- Soil and Fertilizer & Resources and Environment Institute, Jiangxi Academy of Agricultural Sciences, Nanchang, 330200, China
| | - Jie Zhang
- Jiangxi Provincial Engineering Research Center for Seed- breeding and Utilization of Camphor Trees, Nanchang Institute of Technology, Nanchang, 330099, China.
| |
Collapse
|
5
|
Huang L, Zeng Y, Yang S, Zhou H, Xu J, Zhou Y, Wang G. Transcriptome analysis of gene expression profiles reveals wood formation mechanisms in Chinese fir at different stand ages. Heliyon 2023; 9:e14861. [PMID: 37025845 PMCID: PMC10070095 DOI: 10.1016/j.heliyon.2023.e14861] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 03/19/2023] [Accepted: 03/20/2023] [Indexed: 03/31/2023] Open
Abstract
Forests are crucial sustainable sources of natural ecosystems and contribute to human welfare. Cunninghamia lanceolata (Chinese fir) is an economically important conifer and occupies the largest area in China that produces global wood resources. Although Chinese fir has high economic value in China, little information is known regarding its mechanisms of wood formation. Therefore, transcriptome analysis was conducted to study the gene expression patterns and associated timber formation mechanisms in Chinese fir at different stand ages. In the present study, a total of 837,156 unigenes were identified in 84 samples from Chinese fir (pith and root) at different stand ages via RNA-Seq. Among them, most of the differentially expressed genes (DEGs) were significantly enrichment in plant hormone signal transduction, flavonoid metabolism pathway, starch and sucrose metabolism, and MAPK signal transduction pathway, which might be associated with the diameter formation in Chinese fir. The DEGs in these pathways were analyzed in Chinese fir and were related to lignin synthesis, cell wall formation and cell wall reinforcement/thickening. These genes might play an important role in regulating timber formation/growth in Chinese fir. In addition, certain transcriptome factors (TFs) related to Chinese fir timber formation were identified, including WRKY33, WRKY22, PYR/PYL, and MYC2. Weighted co-expression network analysis (WGCNA) showed that glucan endo-1,3-beta-d-glucosidase was a hub gene significantly correlated with the growth-related genes in Chinese fir. Sixteen key genes that related to diameter regulation in Chinese fir were verified by qRT-PCR analysis. These key genes might have a fine regulatory role in timber formation in Chinese fir. Our results pave the way for research on the regulatory mechanisms of wood formation, and provide an insight for improving the quality production of Chinese fir.
Collapse
Affiliation(s)
- Lei Huang
- Research Center of Forest Resources and Environment of Guizhou, Guizhou University, Guiyang, 550025, China
- Guizhou Academy of Forestry, Guiyang, 550005, China
| | - Yajun Zeng
- Research Center of Forest Resources and Environment of Guizhou, Guizhou University, Guiyang, 550025, China
- Guizhou Academy of Forestry, Guiyang, 550005, China
| | - Shikai Yang
- Research Center of Forest Resources and Environment of Guizhou, Guizhou University, Guiyang, 550025, China
- College of Forestry, Guizhou University, Guiyang, 550025, China
| | - Hua Zhou
- Guizhou Academy of Forestry, Guiyang, 550005, China
| | - Jiajuan Xu
- Guizhou Academy of Forestry, Guiyang, 550005, China
| | - Yunchao Zhou
- Research Center of Forest Resources and Environment of Guizhou, Guizhou University, Guiyang, 550025, China
- College of Forestry, Guizhou University, Guiyang, 550025, China
- Corresponding author. Research Center of Forest Resources and Environment of Guizhou, Guizhou University, Guiyang, 550025, China.
| | - Gang Wang
- Guizhou Academy of Forestry, Guiyang, 550005, China
- Corresponding author. Guizhou Academy of Forestry, Guiyang, 550005, China.
| |
Collapse
|
6
|
Microbial Residue Distribution in Microaggregates Decreases with Stand Age in Subtropical Plantations. FORESTS 2022. [DOI: 10.3390/f13071145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Soil microbial residues contribute to the majority of stable soil organic carbon (SOC) pools, and their distribution among aggregate fractions determines long-term soil carbon (C) stability and, consequently, soil productivity. However, how microbial residue accumulation and distribution respond to stand age remains unexplored. To fill this knowledge gap, we investigated microbial residues in bulk soil and soil aggregate fractions under a chronosequence of Chinese fir (Cunninghamia lanceolata [Lamb.] Hook) plantations with stands aged 3, 17, 27, and 36 years. The results showed that microbial residues in topsoil did not change across the different stand ages, but the residues in the subsoil increased from 3 to 17 years of age and then remained constant. Moreover, microbial residue distribution in microaggregates decreased with stand age, and the residue distribution in small macroaggregates was lower at age 17 years than at other stand ages. The effect of stand age on microbial residue distribution was due to the fact of their effect on aggregate distribution but not microbial residue concentrations in aggregate fractions. Collectively, our results indicate that microbial residue stability decreased with stand age, which has significant implications for the management of SOC in subtropical plantations.
Collapse
|
7
|
Spatial Distribution of Precise Suitability of Plantation: A Case Study of Main Coniferous Forests in Hubei Province, China. LAND 2022. [DOI: 10.3390/land11050690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Abstract
(1) Background. Conifers are the main plantation species in southern China, including Masson Pine (MP), Chinese fir (CF) and Chinese thuja (CT). Clarifying the suitable site conditions for these conifers is helpful for large-area afforestation, so as to manage forests to provide a higher level of ecosystem services. To achieve the research goals, we take the conifers in Hubei Province of southern China as a case study. (2) Methods. The situations of conifers, as well as environmental conditions of 448 sampling plots, were then investigated. The suitable growth environment of conifers in the studied area was determined by the maximum entropy algorithm, and the suitability spatial distribution of coniferous forests at the provincial level was also analyzed. (3) Results. The effect of the conifers suitability prediction model reached an accurate level, where AUC values of MP, CF and CT training set were 0.828, 0.856 and 0.970, respectively. Among multiple environmental factors, such as geography and climate, altitude is the most important factor affecting conifer growth. The contribution of altitude to the growth suitability of MP, CF and CT was 38.1%, 36.2% and 36.1%, respectively. Suitable areas of MP, CF and CT were 97,400 ha, 74,300 ha and 39,900 ha, accounting for 52.45%, 39.97% and 21.46% of the studied area, respectively. We concluded that the suitable site conditions of conifer plantations were 2800-5600 oC annual accumulated temperature, 40-1680 m a.s.l., and < 40° slopes. (4) Conclusions. The study suggests that accurate spatial suitability evaluation should be carried out to provide sufficient support for the large-area afforestation in southern China. However, due to our data and study area limitations, further studies are needed to explore the above findings for a full set of plantation species in an extensive area of southern China.
Collapse
|