1
|
Xue G, Tian L, Zhao J. Effects of simulated warming and litter removal on structure and function of semi-humid alpine grassland in the Qinghai-Tibet Plateau. FRONTIERS IN PLANT SCIENCE 2025; 16:1567414. [PMID: 40443436 PMCID: PMC12119568 DOI: 10.3389/fpls.2025.1567414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Accepted: 04/22/2025] [Indexed: 06/02/2025]
Abstract
Climate warming and human activities are modifying plant litter inputs in alpine grasslands, which is predicted to affect ecosystem structure and function. However, the effects of plant litter removal and warming as well as the combined impacts on the ecological functions of alpine grasslands are not well understood. A field experiment was conducted to investigate the effects of experimental warming, litter removal, and their interaction on ecosystem multifunctionality (EMF) of alpine grasslands. Our results demonstrated a significant decrease in plant diversity (p < 0.05) and vegetation cover (p < 0.01) under experimental warming treatment, whereas the richness index (R) and belowground biomass (BGB) significantly increased under litter removal treatment (p < 0.05). The interaction effect of experimental warming and litter removal results in a neutralizing effect on the ecological functions in alpine grasslands. Meanwhile, the EMF tended to increase under all treatments of experimental warming, litter removal, and experimental warming-litter removal. However, there are differences in the response of aboveground and belowground multifunctionality to experimental warming and litter removal. The aboveground ecosystem multifunctionality (AEMF) showed a decreasing trend, while belowground ecosystem multifunctionality (BEMF) increased significantly (p < 0.01) under the experimental warming treatment. In contrast, AEMF and BEMF showed an increasing trend in litter removal treatment. In addition, the study found that litter removal could alleviate the negative effect of experimental warming on multiple ecological functions. These research findings can serve as a reference for maintaining ecosystem functions in alpine grasslands under climate change conditions and provide effective measures to enhance the capacity of grassland ecosystems to respond to climate change. The application of appropriate litter management measures and other nature-based solutions (NbS) to improve ecosystem functions, aiming to adopt sustainable approaches to address environmental challenges, holds significant importance for ecological conservation.
Collapse
Affiliation(s)
- Guomin Xue
- Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, and College of Grassland Resources, Southwest Minzu University, Chengdu, China
| | - Lihua Tian
- Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, and College of Grassland Resources, Southwest Minzu University, Chengdu, China
| | - Jingxue Zhao
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, and College of Ecology, Lanzhou University, Lanzhou, China
| |
Collapse
|
2
|
Praeg N, Steinwandter M, Urbach D, Snethlage MA, Alves RP, Apple ME, Bilovitz P, Britton AJ, Bruni EP, Chen TW, Dumack K, Fernandez-Mendoza F, Freppaz M, Frey B, Fromin N, Geisen S, Grube M, Guariento E, Guisan A, Ji QQ, Jiménez JJ, Maier S, Malard LA, Minor MA, Mc Lean CC, Mitchell EAD, Peham T, Pizzolotto R, Taylor AFS, Vernon P, van Tol JJ, Wu D, Wu Y, Xie Z, Weber B, Illmer P, Seeber J. Biodiversity in mountain soils above the treeline. Biol Rev Camb Philos Soc 2025. [PMID: 40369817 DOI: 10.1111/brv.70028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 04/04/2025] [Accepted: 04/17/2025] [Indexed: 05/16/2025]
Abstract
Biological diversity in mountain ecosystems has been increasingly studied over the last decade. This is also the case for mountain soils, but no study to date has provided an overall synthesis of the current state of knowledge. Here we fill this gap with a first global analysis of published research on cryptogams, microorganisms, and fauna in mountain soils above the treeline, and a structured synthesis of current knowledge. Based on a corpus of almost 1400 publications and the expertise of 37 mountain soil scientists worldwide, we summarise what is known about the diversity and distribution patterns of each of these organismal groups, specifically along elevation, and provide an overview of available knowledge on the drivers explaining these patterns and their changes. In particular, we document an elevation-dependent decrease in faunal diversity above the treeline, while for cryptogams there is an initial increase above the treeline, followed by a decrease towards the nival belt. Thus, our data confirm the key role that elevation plays in shaping the biodiversity and distribution of these organisms in mountain soils. The response of prokaryote diversity to elevation, in turn, was more diverse, whereas fungal diversity appeared to be substantially influenced by plants. As far as available, we describe key characteristics, adaptations, and functions of mountain soil species, and despite a lack of ecological information about the uncultivated majority of prokaryotes, fungi, and protists, we illustrate the remarkable and unique diversity of life forms and life histories encountered in alpine mountain soils. By applying rule- as well as pattern-based literature-mining approaches and semi-quantitative analyses, we identified hotspots of mountain soil research in the European Alps and Central Asia and revealed significant gaps in taxonomic coverage, particularly among biocrusts, soil protists, and soil fauna. We further report thematic priorities for research on mountain soil biodiversity above the treeline and identify unanswered research questions. Building upon the outcomes of this synthesis, we conclude with a set of research opportunities for mountain soil biodiversity research worldwide. Soils in mountain ecosystems above the treeline fulfil critical functions and make essential contributions to life on land. Accordingly, seizing these opportunities and closing knowledge gaps appears crucial to enable science-based decision making in mountain regions and formulating laws and guidelines in support of mountain soil biodiversity conservation targets.
Collapse
Affiliation(s)
- Nadine Praeg
- Department of Microbiology, Universität Innsbruck, Technikerstrasse 25d, Innsbruck, 6020, Austria
| | - Michael Steinwandter
- Institute for Alpine Environment, Eurac Research, Viale Druso 1, Bozen/Bolzano, 39100, Italy
| | - Davnah Urbach
- Global Mountain Biodiversity Assessment (GMBA), University of Bern, Altenbergrain 21, Bern, 3013, Switzerland
- Institute of Plant Sciences, University of Bern, Altenbergrain 21, Bern, 3013, Switzerland
- Centre Interdisciplinaire de Recherche sur la Montagne, University of Lausanne, Ch. de l'Institut 18, Bramois/Sion, 1967, Switzerland
| | - Mark A Snethlage
- Global Mountain Biodiversity Assessment (GMBA), University of Bern, Altenbergrain 21, Bern, 3013, Switzerland
- Institute of Plant Sciences, University of Bern, Altenbergrain 21, Bern, 3013, Switzerland
- Centre Interdisciplinaire de Recherche sur la Montagne, University of Lausanne, Ch. de l'Institut 18, Bramois/Sion, 1967, Switzerland
| | - Rodrigo P Alves
- Institute of Biology, Division of Plant Sciences, University of Graz, Holteigasse 6, Graz, 8010, Austria
| | - Martha E Apple
- Department of Biological Sciences, Montana Technological University, Butte, 59701, MT, USA
| | - Peter Bilovitz
- Institute of Biology, Division of Plant Sciences, University of Graz, Holteigasse 6, Graz, 8010, Austria
| | - Andrea J Britton
- Ecological Sciences, The James Hutton Institute, Craigiebuckler, Aberdeen, AB15 8QH, Scotland, UK
| | - Estelle P Bruni
- Laboratory of Soil Biodiversity, University of Neuchâtel, Rue Emile-Argand 11, Neuchâtel, 2000, Switzerland
| | - Ting-Wen Chen
- Biology Centre of the Czech Academy of Sciences, Institute of Soil Biology and Biogeochemistry, Na Sádkách 702/7, České Budějovice, 37005, Czech Republic
- J.F. Blumenbach Institute of Zoology and Anthropology, University of Göttingen, Untere Karspüle 2, Göttingen, 37073, Germany
| | - Kenneth Dumack
- Terrestrial Ecology, Cologne Biocenter, University of Cologne, Zülpicher Strasse 47b, Cologne, 50674, Germany
| | - Fernando Fernandez-Mendoza
- Institute of Biology, Division of Plant Sciences, University of Graz, Holteigasse 6, Graz, 8010, Austria
| | - Michele Freppaz
- Department of Agricultural, Forest and Food Sciences, University of Turin, Largo Paolo Braccini 2, Grugliasco, 10095, Italy
- Research Center on Natural Risks in Mountain and Hilly Environments, University of Turin, Largo Paolo Braccini 2, Grugliasco, 10095, Italy
| | - Beat Frey
- Forest Soils and Biogeochemistry, Swiss Federal Research Institute WSL, Birmensdorf, 8903, Switzerland
| | - Nathalie Fromin
- CEFE, Univ Montpellier, CNRS, EPHE, IRD, Univ Paul Valéry Montpellier 3, Route de Mende 34199, Montpellier Cedex 5, France
| | - Stefan Geisen
- Laboratory of Nematology, Wageningen University and Research, Droevendaalsesteeg 1, Wageningen 6708PB, The Netherlands
| | - Martin Grube
- Institute of Biology, Division of Plant Sciences, University of Graz, Holteigasse 6, Graz, 8010, Austria
| | - Elia Guariento
- Institute for Alpine Environment, Eurac Research, Viale Druso 1, Bozen/Bolzano, 39100, Italy
| | - Antoine Guisan
- Department of Ecology and Evolution (DEE), University of Lausanne, Biophore, Lausanne, 1015, Switzerland
- Institute of Earth Surface Dynamics (IDYST), University of Lausanne, Géopolis, Lausanne, 1015, Switzerland
| | - Qiao-Qiao Ji
- Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, 4888 Shengbei Street, Changchun, 130102, China
| | - Juan J Jiménez
- Instituto Pirenaico de Ecología (IPE), Consejo Superior de Investigaciones Cientificas (CSIC), Avda. Ntra. Sra. de la Victoria 16, Jaca, 22700, Huesca, Spain
| | - Stefanie Maier
- Institute of Biology, Division of Plant Sciences, University of Graz, Holteigasse 6, Graz, 8010, Austria
| | - Lucie A Malard
- Department of Ecology and Evolution (DEE), University of Lausanne, Biophore, Lausanne, 1015, Switzerland
| | - Maria A Minor
- School of Food Technology and Natural Sciences, Massey University, Riddett Road, Palmerston North, 4410, New Zealand
| | - Cowan C Mc Lean
- Department of Soil, Crop and Climate Sciences, University of the Free State, 205 Nelson Mandela Drive, Bloemfontein, 9300, South Africa
| | - Edward A D Mitchell
- Laboratory of Soil Biodiversity, University of Neuchâtel, Rue Emile-Argand 11, Neuchâtel, 2000, Switzerland
| | - Thomas Peham
- Department of Ecology, Universität Innsbruck, Technikerstrasse 25, Innsbruck, 6020, Austria
| | - Roberto Pizzolotto
- Dipartimento di Biologia, Ecologia e Scienze della Terra, University of Calabria, Ponte Pietro Bucci 4b, Rende, 87036, Italy
| | - Andy F S Taylor
- Ecological Sciences, The James Hutton Institute, Craigiebuckler, Aberdeen, AB15 8QH, Scotland, UK
| | - Philippe Vernon
- UMR 6553 EcoBio CNRS, University of Rennes, Biological Station, Paimpont, 35380, France
| | - Johan J van Tol
- Department of Soil, Crop and Climate Sciences, University of the Free State, 205 Nelson Mandela Drive, Bloemfontein, 9300, South Africa
| | - Donghui Wu
- Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, 4888 Shengbei Street, Changchun, 130102, China
- Key Laboratory of Vegetation Ecology, Ministry of Education, Northeast Normal University, 2555 Jingyue Street, Changchun, 130117, China
| | - Yunga Wu
- Key Laboratory of Vegetation Ecology, Ministry of Education, Northeast Normal University, 2555 Jingyue Street, Changchun, 130117, China
| | - Zhijing Xie
- Key Laboratory of Vegetation Ecology, Ministry of Education, Northeast Normal University, 2555 Jingyue Street, Changchun, 130117, China
| | - Bettina Weber
- Institute of Biology, Division of Plant Sciences, University of Graz, Holteigasse 6, Graz, 8010, Austria
| | - Paul Illmer
- Department of Microbiology, Universität Innsbruck, Technikerstrasse 25d, Innsbruck, 6020, Austria
| | - Julia Seeber
- Institute for Alpine Environment, Eurac Research, Viale Druso 1, Bozen/Bolzano, 39100, Italy
- Department of Ecology, Universität Innsbruck, Technikerstrasse 25, Innsbruck, 6020, Austria
| |
Collapse
|
3
|
Zhang N, Zhou Z, Wang Y, Zhou S, Ma J, Sun J, Chen K. Vertical Stratification Reduces Microbial Network Complexity and Disrupts Nitrogen Balance in Seasonally Frozen Ground at Qinghai Lake in Tibet. Microorganisms 2025; 13:459. [PMID: 40005823 PMCID: PMC11858239 DOI: 10.3390/microorganisms13020459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 02/18/2025] [Accepted: 02/18/2025] [Indexed: 02/27/2025] Open
Abstract
Global climate change has accelerated the reduction of permafrost regions across different altitude gradients, shortening the duration of the freezing period to varying extents. However, the response of the soil microorganisms of frozen soils along altitude gradients remains unclear. In this study, we employed 16S rRNA sequencing and LC-MS metabolomics to investigate the response of soil microbial communities and soil metabolites to vertical stratification in the permafrost soils of the Qinghai Lake region. The results indicated that Proteobacteria, Firmicutes, and Actinobacteria were key soil bacterial phyla in the permafrost soils of Qinghai Lake during the freezing period, with Proteobacteria and Firmicutes showing significant sensitivity to vertical stratification (p < 0.05). The majority of the physicochemical factors exhibited a trend of initially increasing and then decreasing with increasing altitude, whereas pH showed the opposite trend. pH and moisture content were identified as the most important environmental factors influencing soil bacterial community structure. Deterministic processes dominated the assembly of bacterial communities of frozen soils in the Qinghai Lake basin. Co-occurrence network analysis showed that increasing altitude gradients led to a higher average degree of the bacterial network, while reducing network complexity and inter-species connectivity. Soil metabolomics analysis revealed that vertical stratification altered the metabolic profiles of 27 metabolites, with the significantly changed metabolites primarily associated with carbohydrate and amino acid metabolism. In conclusion, the characteristics of the Qinghai Lake permafrost were regulated by regional vertical stratification, which further influenced microbial community structure and soil metabolic characteristics, thereby altering carbon and nitrogen stocks. Specifically, higher altitudes were more favorable for the retention of the carbon and nitrogen stocks of frozen soils in the Qinghai Lake basin.
Collapse
Affiliation(s)
- Ni Zhang
- Qinghai Province Key Laboratory of Physical Geography and Environmental Process, College of Geographical Science, Qinghai Normal University, Xining 810008, China; (N.Z.); (Y.W.); (S.Z.); (J.M.)
- Key Laboratory of Tibetan Plateau Land Surface Processes and Ecological Conservation, Ministry of Education, Qinghai Normal University, Xining 810008, China;
- National Positioning Observation and Research Station of Qinghai Lake Wetland Ecosystem in Qinghai, National Forestry and Grassland Administration, Haibei 812300, China
| | - Zhiyun Zhou
- Key Laboratory of Tibetan Plateau Land Surface Processes and Ecological Conservation, Ministry of Education, Qinghai Normal University, Xining 810008, China;
- National Positioning Observation and Research Station of Qinghai Lake Wetland Ecosystem in Qinghai, National Forestry and Grassland Administration, Haibei 812300, China
| | - Yijun Wang
- Qinghai Province Key Laboratory of Physical Geography and Environmental Process, College of Geographical Science, Qinghai Normal University, Xining 810008, China; (N.Z.); (Y.W.); (S.Z.); (J.M.)
- Key Laboratory of Tibetan Plateau Land Surface Processes and Ecological Conservation, Ministry of Education, Qinghai Normal University, Xining 810008, China;
- National Positioning Observation and Research Station of Qinghai Lake Wetland Ecosystem in Qinghai, National Forestry and Grassland Administration, Haibei 812300, China
| | - Shijia Zhou
- Qinghai Province Key Laboratory of Physical Geography and Environmental Process, College of Geographical Science, Qinghai Normal University, Xining 810008, China; (N.Z.); (Y.W.); (S.Z.); (J.M.)
- Key Laboratory of Tibetan Plateau Land Surface Processes and Ecological Conservation, Ministry of Education, Qinghai Normal University, Xining 810008, China;
- National Positioning Observation and Research Station of Qinghai Lake Wetland Ecosystem in Qinghai, National Forestry and Grassland Administration, Haibei 812300, China
| | - Jing Ma
- Qinghai Province Key Laboratory of Physical Geography and Environmental Process, College of Geographical Science, Qinghai Normal University, Xining 810008, China; (N.Z.); (Y.W.); (S.Z.); (J.M.)
- Key Laboratory of Tibetan Plateau Land Surface Processes and Ecological Conservation, Ministry of Education, Qinghai Normal University, Xining 810008, China;
- National Positioning Observation and Research Station of Qinghai Lake Wetland Ecosystem in Qinghai, National Forestry and Grassland Administration, Haibei 812300, China
| | - Jianqing Sun
- Qinghai Lake National Nature Reserve Administration, Xining 810008, China;
| | - Kelong Chen
- Qinghai Province Key Laboratory of Physical Geography and Environmental Process, College of Geographical Science, Qinghai Normal University, Xining 810008, China; (N.Z.); (Y.W.); (S.Z.); (J.M.)
- Key Laboratory of Tibetan Plateau Land Surface Processes and Ecological Conservation, Ministry of Education, Qinghai Normal University, Xining 810008, China;
- National Positioning Observation and Research Station of Qinghai Lake Wetland Ecosystem in Qinghai, National Forestry and Grassland Administration, Haibei 812300, China
| |
Collapse
|
4
|
Wu M, Chen L, Chen S, Chen Y, Ma J, Zhang Y, Pang D, Li X. Soil microbial carbon and nitrogen limitation constraints soil organic carbon stability in arid and semi-arid grasslands. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 373:123675. [PMID: 39673853 DOI: 10.1016/j.jenvman.2024.123675] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Revised: 11/14/2024] [Accepted: 12/07/2024] [Indexed: 12/16/2024]
Abstract
Microorganisms play dual roles in soil organic carbon (SOC) decomposition and accumulation. Despite advancing insights into their involvement in the carbon cycle, understanding the impact of microbial community structure and physiological traits on SOC stabilization in arid and semi-arid grasslands remains elusive. Here, we analyzed arid and semi-arid grasslands SOC stability by comparing the ratio of mineral-associated organic carbon (MAOC) to particulate organic carbon (POC) across a grassland transect in north-south Ningxia, encompassing various grassland types and a broad climatic gradient (ΔMAP = 450 mm). By combining phospholipid fatty acid (PLFA) analysis, enzyme activity vector models and stoichiometric theory, the influence of soil microbial community compositions, metabolic constraints, and carbon use efficiency (CUE) on SOC stability were explored. Results showed that SOC stability was the lowest in desert areas and decreased with increasing mean annual precipitation (MAP) in other grasslands. Microbial physiological traits, including microbial carbon (C) limitation, nitrogen (N) limitation, CUE, and lignocellulose index (LCI) varied among grasslands, with significantly higher LCI and CUE and lower C and N limitation in steppe desert. The variation of microbial physiological characteristics accounted for 53.28% of the variation in SOC stability. Distinct microbial metabolic limitations were evident in these grasslands, with N and C limitation prevailing and exerting strong negative impacts on CUE. Decreased fungal/bacterial (F/B) ratios also reduced microbial CUE and indirectly diminished SOC stability. In addition, clay content emerges as a major factor influencing the stabilization of SOC across environmental gradients. Collectively, our work suggests that mitigating microbial C and N limitation and enhancing microbial CUE under the influence of MAP and clay content are the key mechanisms governing SOC stabilization in regional grasslands. These findings bear significant implications for understanding microbial-mediated carbon cycling processes in arid and semi-arid grasslands.
Collapse
Affiliation(s)
- Mengyao Wu
- College of Forestry and Prataculture, Ningxia University, Yinchuan, 750021, China; Breeding Base for State Key Laboratory of Land Degradation and Ecological Restoration in Northwest China, Ningxia University, Yinchuan, 750021, China; Ministry of Education Key Laboratory for Restoration and Reconstruction of Degraded Ecosystem in Northwest China, Ningxia University, Yinchuan, 750021, China
| | - Lin Chen
- Breeding Base for State Key Laboratory of Land Degradation and Ecological Restoration in Northwest China, Ningxia University, Yinchuan, 750021, China; Ministry of Education Key Laboratory for Restoration and Reconstruction of Degraded Ecosystem in Northwest China, Ningxia University, Yinchuan, 750021, China
| | - Shenggang Chen
- School of Soil and Water Conservation, Beijing Forestry University, Beijing, 100083, China
| | - Yinglong Chen
- The University of Western Australia, Perth, WA, 6009, Australia
| | - Jinpeng Ma
- College of Forestry and Prataculture, Ningxia University, Yinchuan, 750021, China; Breeding Base for State Key Laboratory of Land Degradation and Ecological Restoration in Northwest China, Ningxia University, Yinchuan, 750021, China; Ministry of Education Key Laboratory for Restoration and Reconstruction of Degraded Ecosystem in Northwest China, Ningxia University, Yinchuan, 750021, China
| | - Yaqi Zhang
- College of Forestry and Prataculture, Ningxia University, Yinchuan, 750021, China; Breeding Base for State Key Laboratory of Land Degradation and Ecological Restoration in Northwest China, Ningxia University, Yinchuan, 750021, China; Ministry of Education Key Laboratory for Restoration and Reconstruction of Degraded Ecosystem in Northwest China, Ningxia University, Yinchuan, 750021, China
| | - Danbo Pang
- Breeding Base for State Key Laboratory of Land Degradation and Ecological Restoration in Northwest China, Ningxia University, Yinchuan, 750021, China; Ministry of Education Key Laboratory for Restoration and Reconstruction of Degraded Ecosystem in Northwest China, Ningxia University, Yinchuan, 750021, China
| | - Xuebin Li
- Breeding Base for State Key Laboratory of Land Degradation and Ecological Restoration in Northwest China, Ningxia University, Yinchuan, 750021, China; Ministry of Education Key Laboratory for Restoration and Reconstruction of Degraded Ecosystem in Northwest China, Ningxia University, Yinchuan, 750021, China.
| |
Collapse
|
5
|
Han Y, Qu C, Hu X, Sun P, Kang J, Cai P, Rong X, Chen W, Huang Q. Responses of various organic carbon pools to elevated temperatures in soils. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 955:176836. [PMID: 39419229 DOI: 10.1016/j.scitotenv.2024.176836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 09/18/2024] [Accepted: 10/07/2024] [Indexed: 10/19/2024]
Abstract
Soil organic carbon (SOC) and its composition may be vulnerable to the effects of microbial degradation and various environmental stresses. Hitherto, the responses of various SOC pools to warming have rarely been explored. In this study, an incubation experiment was performed with top soils (0-20 cm) from Alfisol and Ultisol at three temperatures (15, 30 and 45 °C). Warming significantly decreased the contents of SOC, particulate organic carbon (POC), mineral associated organic carbon (MAOC) and iron bound organic carbon (Fe-OC) to different degrees. However, the proportion of MAOC and Fe-OC to SOC increased by 3.6-13.3 % and 3.8-7.3 %, respectively, with rising temperature, suggesting that the temperature response of MAOC and especially Fe-OC mineralization is lower than other SOC pools. From the analysis of the Fe-OC structure by various spectroscopic techniques, it was found that elevated temperature increased the proportion of aromatic C but decreased that of aliphatic C to Fe-OC. Soil pH, identified as the most important environmental variable for controlling Fe-OC chemical structure by Mantel test, exhibited a significant negative correlation with aliphatic Fe-OC and positive correlation with aromatic Fe-OC. Synchrotron radiation-based Fourier transform infrared (SR-FTIR) spectroscopy affirmed the higher binding strength of aromatic C with Fe oxides than aliphatic C in both soils. In addition, elevated temperature induced the increase and decrease of K-strategy bacteria and r-strategy bacteria, respectively, indicating warming slowed the bacterial growth, which could produce less necromass carbon for the association of Fe oxides and caused the decrease in Fe-OC. In summary, warming-induced changes in pH and microbial community structure can lead to a decrease in Fe-OC content, whereas the increased proportions confirmed that Fe-OC remains the most stable OC pool facing with short-term soil warming. These findings are helpful for better understanding the importance of soil minerals, especially Fe oxides, in the regulation of soil C sequestration under the context of climate change.
Collapse
Affiliation(s)
- Yafeng Han
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; Hubei Key Laboratory of Soil Environment and Pollution Remediation, Huazhong Agricultural University, Wuhan 430070, China
| | - Chenchen Qu
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; Hubei Key Laboratory of Soil Environment and Pollution Remediation, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiping Hu
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; Hubei Key Laboratory of Soil Environment and Pollution Remediation, Huazhong Agricultural University, Wuhan 430070, China
| | - Pan Sun
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; Hubei Key Laboratory of Soil Environment and Pollution Remediation, Huazhong Agricultural University, Wuhan 430070, China
| | - Jie Kang
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; Hubei Key Laboratory of Soil Environment and Pollution Remediation, Huazhong Agricultural University, Wuhan 430070, China
| | - Peng Cai
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; Hubei Key Laboratory of Soil Environment and Pollution Remediation, Huazhong Agricultural University, Wuhan 430070, China
| | - Xingmin Rong
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; Hubei Key Laboratory of Soil Environment and Pollution Remediation, Huazhong Agricultural University, Wuhan 430070, China
| | - Wenli Chen
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
| | - Qiaoyun Huang
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; Hubei Key Laboratory of Soil Environment and Pollution Remediation, Huazhong Agricultural University, Wuhan 430070, China; State Environmental Protection Key Laboratory of Soil Health and Green Remediation, Wuhan 430070, China.
| |
Collapse
|
6
|
Yang H, Duan YY, Guo ZG, Pang XP. Foraging tunnel disturbances created by small subterranean herbivores enhance soil organic carbon stability but reduce carbon sequestration in different alpine grassland types. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 955:176785. [PMID: 39396782 DOI: 10.1016/j.scitotenv.2024.176785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 09/24/2024] [Accepted: 10/05/2024] [Indexed: 10/15/2024]
Abstract
Foraging tunnel disturbances by small subterranean herbivores can alter soil properties and nutrient dynamics in grasslands, potentially altering soil organic carbon (SOC). Examining the impact of foraging tunnel disturbances on mineral-associated organic carbon (MAOC) and particulate organic carbon (POC) is crucial for understanding SOC changes and its stability. However, the effects of these disturbances on POC and MAOC are not well documented. This study uses the plateau zokor (Eospalax baileyi) as a focal subterranean herbivore to investigate the effects of foraging tunnel disturbances on POC and MAOC in alpine steppes, alpine meadows, and alpine meadow steppes. Ninety paired quadrats were used for soil and plant sampling across three alpine grassland types. Results show that foraging tunnel disturbances consistently reduced POC concentrations across all grassland types, with reductions of 44.01 % in alpine steppes, 20.86 % in alpine meadows, and 29.58 % in alpine meadow steppes. MAOC concentrations decreased by 16.49 % in alpine steppes, while no significant changes in MAOC were observed in alpine meadows and alpine meadow steppes. The reduction in the POC to MAOC ratio indicates increased SOC stability. However, despite this increased stability, the change may lead to a decrease in overall carbon sequestration potential, as the total SOC in the soil declines. The main factors influencing POC and MAOC were soil moisture, belowground biomass, and microbial biomass carbon, with their influences varying by grassland type. The findings demonstrate that foraging tunnel disturbances by plateau zokors can lead to substantial modifications in SOC composition, influencing both its stability and sequestration potential. The disturbances necessitate tailored management strategies to mitigate their impacts, considering the unique characteristics of each grassland type to preserve carbon sequestration potential. This study contributes to a deeper understanding of the ecological role of small subterranean herbivores in the carbon cycle of alpine grassland ecosystems.
Collapse
Affiliation(s)
- Huan Yang
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Lanzhou University, Lanzhou 730020, PR China; College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, PR China.
| | - Yuan Yuan Duan
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Lanzhou University, Lanzhou 730020, PR China; College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, PR China.
| | - Zheng Gang Guo
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Lanzhou University, Lanzhou 730020, PR China; College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, PR China.
| | - Xiao Pan Pang
- Engineering Research Center of Grassland Industry, Ministry of Education, Lanzhou University, Lanzhou 730020, PR China; College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, PR China.
| |
Collapse
|
7
|
Shang Q, Zuo J, Liu Y. Frass deposition from pest outbreaks affects soil organic carbon and its relationship with environmental factors in a deciduous broad-leaved forest. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 949:175103. [PMID: 39074752 DOI: 10.1016/j.scitotenv.2024.175103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 07/25/2024] [Accepted: 07/26/2024] [Indexed: 07/31/2024]
Abstract
Forest defoliators are one of the major biological disturbances to forest ecosystems. As one of the abnormal nutrient input paths into forest ecosystems, frass deposition from the pest outbreak plays a critical role in regulating soil organic carbon (SOC) in forest ecosystems. However, how frass deposition affects SOC and its fractions in forests remains unclear. Based on a severe outbreak of defoliator in an oak-sweetgum mixed forest in Jigong Mountain in 2014, we compared the difference in SOC between plots with and without frass deposition for 4 consecutive years. The results showed that frass deposition led to a significant increase of 25.1 % in soil microbial biomass C (MBC) and 32.0 % in dissolved organic C (DOC) in 2014, which further escalated to 50.4 % and 50.6 % in the subsequent year (2015), respectively. The response of SOC to frass deposition lagged behind MBC and DOC. Specifically, there was no change in SOC in 2014, but a significant increase (50.9 %) was observed in the subsequent 2-3 years. The positive dependences of MBC and DOC upon fine root biomass were negated under frass deposition, while the relationship between SOC and fine root biomass remained unaffected. Soil organic carbon and DOC showed non-linear responses to frass amount and the changed soil nitrogen content. Our finding that the response of SOC to frass deposition lagged behind soil labile C indicates that SOC exhibits a certain resilience towards forest disturbance. The findings also imply that investigating the long-term impacts of frass deposition on SOC in forests would contribute to the scientific assessment of forest C cycling under disturbance.
Collapse
Affiliation(s)
- Qing Shang
- Yellow River Conservancy Technical Institute, Kaifeng 475004, China
| | - Jingjing Zuo
- Yellow River Conservancy Technical Institute, Kaifeng 475004, China
| | - Yanchun Liu
- International Joint Research Laboratory for Global Change Biology Ecology, School of Life Science, Henan University, Kaifeng 475004, China.
| |
Collapse
|
8
|
Zhang W, Xin H, Li Z, Cui Q, Xu B, Tang B, Wang Y, Xu C, Xue J. Responses of CO 2 and CH 4 in the alpine wetlands of the Tibetan Plateau to warming and nitrogen and phosphorus additions. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2024; 26:1516-1525. [PMID: 39037733 DOI: 10.1039/d4em00174e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
Abstract
Wetland ecosystems store large amounts of carbon, and CO2 and CH4 fluxes from this ecosystem receive the double impact of climate change and human activities. Nonetheless, research on how multi-gradient warming and nitrogen and phosphorus additions affect these wetland greenhouse gas emissions is still limited, particularly in alpine wetland ecosystems. Therefore, we conducted a field experiment on the Tibetan Plateau wetlands, investigating the effects of warming and nitrogen and phosphorus additions on the CO2 and CH4 fluxes in alpine wetlands. Results indicated that warming enhanced the CO2 absorption and CH4 emission in the alpine meadow ecosystem, possibly related to changes in plant growth and microbial activity induced by warming, while we noticed that the promotion of CO2 uptake weakened with the increase in the magnitude of warming, suggesting that there may be a temperature threshold beyond which the ecosystem's capacity for carbon sequestration may be reduced. Nitrogen addition increased CH4 emission, with the effect on CO2 absorption shifting from inhibition to enhancement as the amount of applied nitrogen or phosphorus increased. The interaction between warming and nitrogen and phosphorus additions further influenced CH4 emission, exhibiting a synergistic enhancement effect. This study deepens our understanding of the greenhouse gas responses of alpine wetland ecosystems to warming and nitrogen and phosphorus additions, which is significant for predicting and managing ecosystem carbon balance under global change.
Collapse
Affiliation(s)
- Wenbao Zhang
- School of Environment and Municipal Engineering, Lanzhou Jiao Tong University, Lanzhou 730070, Gansu, China.
| | - Huijuan Xin
- School of Environment and Municipal Engineering, Lanzhou Jiao Tong University, Lanzhou 730070, Gansu, China.
| | - Zongxing Li
- Observation and Research Station of Eco-Hydrology and National Park by Stable Isotope Tracing in Qilian Mountains, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
- College of Geography and Environmental Science, Northwest Normal University, Lanzhou 730070, China
| | - Qiao Cui
- Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Bin Xu
- College of Energy and Power Engineering, Lanzhou University of Technology, Lanzhou 730050, China
| | - Biao Tang
- School of Environment and Municipal Engineering, Lanzhou Jiao Tong University, Lanzhou 730070, Gansu, China.
| | - Yaning Wang
- College of Geography and Environmental Science, Northwest Normal University, Lanzhou 730070, China
| | - Chong Xu
- School of Environment and Municipal Engineering, Lanzhou Jiao Tong University, Lanzhou 730070, Gansu, China.
| | - Jian Xue
- Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
| |
Collapse
|
9
|
Wang X, Guo H, Wang J, He P, Kuzyakov Y, Ma M, Ling N. Microbial phosphorus-cycling genes in soil under global change. GLOBAL CHANGE BIOLOGY 2024; 30:e17281. [PMID: 38619550 DOI: 10.1111/gcb.17281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 03/28/2024] [Accepted: 03/29/2024] [Indexed: 04/16/2024]
Abstract
The ongoing climate change on the Tibetan Plateau, leading to warming and precipitation anomalies, modifies phosphorus (P) cycling in alpine meadow soils. However, the interactions and cascading effects of warming and precipitation changes on the key "extracellular" and "intracellular" P cycling genes (PCGs) of bacteria are largely unknown for these P-limited ecosystems. We used metagenomics to analyze the individual and combined effects of warming and altered precipitation on soil PCGs and P transformation in a manipulation experiment. Warming and increased precipitation raised Olsen-P (bioavailable P, AP) by 13% and 20%, respectively, mainly caused by augmented hydrolysis of organic P compounds (NaOH-Po). The decreased precipitation reduced soil AP by 5.3%. The richness and abundance of the PCGs' community in soils on the cold Tibetan plateau were more sensitive to warming than altered precipitation. The abundance of PCGs and P cycling processes decreased under the influence of individual climate change factors (i.e., warming and altered precipitation alone), except for the warming combined with increased precipitation. Pyruvate metabolism, phosphotransferase system, oxidative phosphorylation, and purine metabolism (all "intracellular" PCG) were closely correlated with P pools under climate change conditions. Specifically, warming recruited bacteria with the phoD and phoX genes, which encode enzymes responsible for phosphoester hydrolysis (extracellular P cycling), strongly accelerated organic P mineralization and so, directly impacted P bioavailability in alpine soil. The interactions between warming and altered precipitation profoundly influenced the PCGs' community and facilitated microbial adaptation to these environmental changes. Warming combined with increased precipitation compensated for the detrimental impacts of the individual climate change factors on PCGs. In conclusion, warming combined with rising precipitation has boosting effect on most P-related functions, leading to the acceleration of P cycling within microbial cells and extracellularly, including mineralization and more available P release for microorganisms and plants in alpine soils.
Collapse
Affiliation(s)
- Xuewei Wang
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, Centre for Grassland Microbiome, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, Gansu, China
| | - Hui Guo
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| | - Jianing Wang
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, Centre for Grassland Microbiome, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, Gansu, China
| | - Peng He
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, Centre for Grassland Microbiome, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, Gansu, China
| | - Yakov Kuzyakov
- Department of Soil Science of Temperate Ecosystems, Department of Agricultural Soil Science, University of Goettingen, Göttingen, Germany
| | - Miaojun Ma
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, College of Ecology, Lanzhou University, Lanzhou, Gansu Province, P.R. China
- Gansu Gannan Grassland Ecosystem National Observation and Research Station, Maqu, Gansu Province, P.R. China
| | - Ning Ling
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, Centre for Grassland Microbiome, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, Gansu, China
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
10
|
Zeng K, Huang X, Dai C, He C, Chen H, Guo J, Xin G. Bacterial community regulation of soil organic matter molecular structure in heavy metal-rich mangrove sediments. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133086. [PMID: 38035526 DOI: 10.1016/j.jhazmat.2023.133086] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/30/2023] [Accepted: 11/22/2023] [Indexed: 12/02/2023]
Abstract
Heavy metals (HMs) profoundly impact soil carbon storage potential primarily through soil carbon structure. The association between HM content and soil carbon structure in mangrove sediments remains unclear, likely due to the involvement of microorganisms. In this study, surface sediments in the Futian National Mangrove Nature Reserve were sampled to investigate the chemical structure of soil organic carbon (SOC), the molecular composition of dissolved organic matter (DOM), and potential interactions with microorganisms. HMs, except for Ni, were positively correlated with soil carbon. HMs significantly reduced the alkyl C/O-alkyl C ratio, aromaticity index, and aromatic C values, but increased the labile carboxy/amide C and carbonyl C ratio in SOC. HMs also increased DOM stability, as reflected by the reduced abundance of labile DOM (lipids and proteins) and increased proportion of stable DOM (tannins and condensed aromatics). Bacteria increased the decomposition of labile DOM components (unsaturated hydrocarbons) and the accumulation of stable DOM components (lignins) under HM enrichment. In addition, the association between the bacterial groups and DOM molecules was more robust than that with fungal groups, indicating bacteria had a more significant impact on DOM molecular composition. These findings help in understanding the molecular mechanisms of soil carbon storage in HM-rich mangroves.
Collapse
Affiliation(s)
- Kai Zeng
- State Key Lab of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Agriculture, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| | - Xiaochen Huang
- State Key Lab of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Agriculture, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China.
| | - Chuanshun Dai
- State Key Lab of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Agriculture, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| | - Chuntao He
- State Key Lab of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Agriculture, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| | - Hao Chen
- State Key Lab of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Agriculture, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| | - Junjie Guo
- State Key Lab of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Agriculture, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| | - Guorong Xin
- State Key Lab of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Agriculture, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China.
| |
Collapse
|
11
|
Zhao J, Xie X, Jiang Y, Li J, Fu Q, Qiu Y, Fu X, Yao Z, Dai Z, Qiu Y, Chen H. Effects of simulated warming on soil microbial community diversity and composition across diverse ecosystems. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 911:168793. [PMID: 37996030 DOI: 10.1016/j.scitotenv.2023.168793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/20/2023] [Accepted: 11/20/2023] [Indexed: 11/25/2023]
Abstract
Soil warming can directly affect the microbial community, or indirectly affect the microbial community by affecting soil moisture, nutrient availability, vegetation growth, etc. However, the response of microorganisms to soil warming is complex, and there is no uniform conclusion on the impact and mechanism of warming on microbial diversity. As the global climate gradually warms, a comprehensive assessment of warming on soil microbial community changes is essential to understand and predict the response of microbial geochemical processes to soil warming. Here, we perform a meta-analysis of studies to investigate changes in soil microbial communities along soil warming gradients and the response of soil microbes to elevated temperature in different ecosystems. We found that the α diversity index of soil microorganisms decreased significantly with the increase in temperature, and the β diversity altered with the increase in soil temperature and the shifts in ecosystem. Most bacteria only alter when the temperature rises higher. Compared to the non-warming condition, the relative abundance of Acidobacteria, Proteobacteria, Bacteroidetes, Planctomycetes and Verrucomicrobia decreased by 19 %, 11 %, 19 %, 8 % and 6 %, respectively, and the relative abundance of Firmicutes increased by 34 %. Compared to farmland, forest, grassland and tundra ecosystems, soil microorganisms in wetland ecosystems were more sensitive to temperature increase, and the changes in bacteria were consistent with the overall alterations. This meta-analysis revealed significant changes in the composition of microbial communities on soil warming. With the decrease in biodiversity under increasing temperature conditions, these dominant microbiomes, which can grow well under high-temperature conditions, will play a stronger role in regulating nutrient and energy flow. Our analysis adds a global perspective to the temperature response of soil microbes, which is critical to improving our understanding of the mechanisms of how soil microbes change in response to climate warming.
Collapse
Affiliation(s)
- Jiayi Zhao
- State Key Laboratory of Biocontrol, School of Ecology, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong 518107, China
| | - Xuan Xie
- State Key Laboratory of Biocontrol, School of Ecology, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong 518107, China
| | - Yuying Jiang
- State Key Laboratory of Biocontrol, School of Ecology, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong 518107, China
| | - Jiaxin Li
- State Key Laboratory of Biocontrol, School of Ecology, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong 518107, China
| | - Qi Fu
- State Key Laboratory of Biocontrol, School of Ecology, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong 518107, China
| | - Yingbo Qiu
- State Key Laboratory of Biocontrol, School of Ecology, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong 518107, China
| | - Xianheng Fu
- State Key Laboratory of Biocontrol, School of Ecology, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong 518107, China
| | - Zhiyuan Yao
- School of Civil and Environmental Engineering, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Zhongmin Dai
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Yunpeng Qiu
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Huaihai Chen
- State Key Laboratory of Biocontrol, School of Ecology, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong 518107, China.
| |
Collapse
|
12
|
Bai T, Wang P, Qiu Y, Zhang Y, Hu S. Nitrogen availability mediates soil carbon cycling response to climate warming: A meta-analysis. GLOBAL CHANGE BIOLOGY 2023; 29:2608-2626. [PMID: 36744998 DOI: 10.1111/gcb.16627] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Accepted: 01/10/2023] [Indexed: 05/31/2023]
Abstract
Global climate warming may induce a positive feedback through increasing soil carbon (C) release to the atmosphere. Although warming can affect both C input to and output from soil, direct and convincing evidence illustrating that warming induces a net change in soil C is still lacking. We synthesized the results from field warming experiments at 165 sites across the globe and found that climate warming had no significant effect on soil C stock. On average, warming significantly increased root biomass and soil respiration, but warming effects on root biomass and soil respiration strongly depended on soil nitrogen (N) availability. Under high N availability (soil C:N ratio < 15), warming had no significant effect on root biomass, but promoted the coupling between effect sizes of root biomass and soil C stock. Under relative N limitation (soil C:N ratio > 15), warming significantly enhanced root biomass. However, the enhancement of root biomass did not induce a corresponding C accumulation in soil, possibly because warming promoted microbial CO2 release that offset the increased root C input. Also, reactive N input alleviated warming-induced C loss from soil, but elevated atmospheric CO2 or precipitation increase/reduction did not. Together, our findings indicate that the relative availability of soil C to N (i.e., soil C:N ratio) critically mediates warming effects on soil C dynamics, suggesting that its incorporation into C-climate models may improve the prediction of soil C cycling under future global warming scenarios.
Collapse
Affiliation(s)
- Tongshuo Bai
- Ecosystem Ecology Laboratory, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| | - Peng Wang
- Ecosystem Ecology Laboratory, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| | - Yunpeng Qiu
- Ecosystem Ecology Laboratory, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| | - Yi Zhang
- Ecosystem Ecology Laboratory, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| | - Shuijin Hu
- Ecosystem Ecology Laboratory, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, North Carolina, USA
| |
Collapse
|
13
|
Driving Climatic Factors at Critical Plant Developmental Stages for Qinghai–Tibet Plateau Alpine Grassland Productivity. REMOTE SENSING 2022. [DOI: 10.3390/rs14071564] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Determining the driving climatic factors at critical periods and potential legacy effects is crucial for grassland productivity predictions on the Qinghai–Tibet Plateau (QTP). However, studies with limited and ex situ ground samples from highly heterogeneous alpine meadows brought great uncertainties. This study determined the key climatic factors at critical plant developmental stages and the impact of previous plant growth status for interannual aboveground net primary productivity (ANPP) variations in different QTP grassland types. We hypothesize that the impact of climatic factors on grassland productivity varies in different periods and different vegetation types, while its legacy effects are not great. Pixel-based partial least squares regression was used to associate interannual ANPP with precipitation and air temperature at different developmental stages and prior-year ANPP from 2000 to 2019 using remote sensing techniques. Results indicated different findings from previous studies. Precipitation at the reproductive stage (July–August) was the most prominent controlling factor for ANPP which was also significantly affected by precipitation and temperature at the withering (September–October) and dormant stage (November–February), respectively. The influence of precipitation was more significant in alpine meadows than in alpine steppes, while the differentiated responses to climatic factors were attributed to differences in water consumption at different developmental stages induced by leaf area changes, bud sprouting, growth, and protection from frost damage. The prior-year ANPP showed a non-significant impact on ANPP of current year, except for alpine steppes, and this impact was much less than that of current-year climatic factors, which may be attributed to the reduced annual ANPP variations related to the inter-annual carbon circulation of alpine perennial herbaceous plants and diverse root/shoot ratios in different vegetation types. These findings can assist in improving the interannual ANPP predictions on the QTP under global climate change.
Collapse
|
14
|
Chen Y, Han M, Yuan X, Hou Y, Qin W, Zhou H, Zhao X, Klein JA, Zhu B. Warming has a minor effect on surface soil organic carbon in alpine meadow ecosystems on the Qinghai-Tibetan Plateau. GLOBAL CHANGE BIOLOGY 2022; 28:1618-1629. [PMID: 34755425 DOI: 10.1111/gcb.15984] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 11/01/2021] [Indexed: 06/13/2023]
Abstract
The alpine meadow ecosystem on the Qinghai-Tibetan Plateau (QTP) is very sensitive to warming and plays a key role in regulating global carbon (C) cycling. However, how warming affects the soil organic carbon (SOC) pool and related C inputs and outputs in alpine meadow ecosystems on the QTP remains unclear. Here, we combined two field experiments and a meta-analysis on field experiments to synthesize the responses of the SOC pool and related C cycling processes to warming in alpine meadow ecosystems on the QTP. We found that the SOC content of surface soil (0-10 cm) showed a minor response to warming, but plant respiration was accelerated by warming. In addition, the warming effect on SOC was not correlated with experimental and environmental variables, such as the method, magnitude and duration of warming, initial SOC content, mean annual temperature, and mean annual precipitation. We conclude that the surface SOC content is resistant to climate warming in alpine meadow ecosystems on the QTP.
Collapse
Affiliation(s)
- Ying Chen
- Institute of Ecology, College of Urban and Environmental Sciences, and Key Laboratory for Earth Surface Processes of the Ministry of Education, Peking University, Beijing, China
| | - Mengguang Han
- Institute of Ecology, College of Urban and Environmental Sciences, and Key Laboratory for Earth Surface Processes of the Ministry of Education, Peking University, Beijing, China
| | - Xia Yuan
- Institute of Ecology, College of Urban and Environmental Sciences, and Key Laboratory for Earth Surface Processes of the Ministry of Education, Peking University, Beijing, China
| | - Yanhui Hou
- Institute of Ecology, College of Urban and Environmental Sciences, and Key Laboratory for Earth Surface Processes of the Ministry of Education, Peking University, Beijing, China
| | - Wenkuan Qin
- Institute of Ecology, College of Urban and Environmental Sciences, and Key Laboratory for Earth Surface Processes of the Ministry of Education, Peking University, Beijing, China
| | - Huakun Zhou
- Qinghai Provincial Key Laboratory of Restoration Ecology of Cold Area, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
| | - Xinquan Zhao
- Qinghai Provincial Key Laboratory of Restoration Ecology of Cold Area, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
| | - Julia A Klein
- Department of Ecosystem Science & Sustainability, Colorado State University, Fort Collins, CO, USA
| | - Biao Zhu
- Institute of Ecology, College of Urban and Environmental Sciences, and Key Laboratory for Earth Surface Processes of the Ministry of Education, Peking University, Beijing, China
| |
Collapse
|