1
|
Zhang M, Wang D, Ma H, Wei H, Wang G. Oxygen vacancy based WO 3/SnO 2-x promote electrochemical H 2O 2 accumulation by two-electron water oxidation reaction and toxic uniform dimethylhydrazine degradation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 924:171383. [PMID: 38462003 DOI: 10.1016/j.scitotenv.2024.171383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 02/22/2024] [Accepted: 02/28/2024] [Indexed: 03/12/2024]
Abstract
The key to constructing an anodic electro-Fenton system hinges on two pivotal criteria: enhancing the catalyst activity and selectivity in water oxidation reaction (WOR), while simultaneously inhibiting the decomposition of hydrogen peroxide (H2O2) which is on-site electrosynthesized at the anode. To address the issues, we synthesized novel WO3/SnO2-x electrocatalysts, enriched with oxygen vacancies, capitalize on the combined activity and selectivity advantages of both WO3 and SnO2-x for the two-electron pathway electrocatalytic production of H2O2. Moreover, the introduction of oxygen vacancies plays a critical role in impeding the decomposition of H2O2. This innovative design ensures that the Faraday efficiency and yield of H2O2 are maintained at over 80 %, with a noteworthy production rate of 0.2 mmol h-1 cm-2. We constructed a novel electro-Fenton system that operates using only H2O as its feedstock and applied it to treat highly toxic uniform dimethylhydrazine (UDMH) from rocket launch effluent. Our experiments revealed a substantial total organic carbon (TOC) removal, achieving approximately 90 % after 120 mins of treatment. Additionally, the toxicity of N-nitrosodimethylamine (NDMA), a byproduct of great concern, was shown to be effectively mitigated, as evidenced by acute toxicity evaluations using zebrafish embryos. The degradation mechanism of UDMH is predominantly characterized by the advanced oxidative action of H2O2 and hydroxyl radicals, as well as by complex electron transfer processes that warrant further investigation.
Collapse
Affiliation(s)
- Mengqiong Zhang
- School of Light Industry and Chemical Engineering, Dalian Polytechnic University, No. 1 Qinggongyuan, Ganjinzi District, Dalian 116034, PR China
| | - Dong Wang
- College of Marine Science-Technology and Environment, Dalian Ocean University, No. 52 Heishijiao, Shahekou District, Dalian 116023, PR China
| | - Hongchao Ma
- School of Light Industry and Chemical Engineering, Dalian Polytechnic University, No. 1 Qinggongyuan, Ganjinzi District, Dalian 116034, PR China
| | - Huangzhao Wei
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, PR China.
| | - Guowen Wang
- School of Light Industry and Chemical Engineering, Dalian Polytechnic University, No. 1 Qinggongyuan, Ganjinzi District, Dalian 116034, PR China.
| |
Collapse
|
2
|
Sun M, Shen W, Guo X, Liao Y, Huang Y, Hu M, Ye P, Liu R. A critical review of advances in tumor metabolism abnormalities induced by nitrosamine disinfection by-products in drinking water. Toxicol Sci 2024; 199:12-28. [PMID: 38291902 DOI: 10.1093/toxsci/kfae012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2024] Open
Abstract
Intensified sanitation practices amid the recent severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) outbreak might result in the increased release of chloramine disinfectants into surface water, significantly promoting the formation of nitrosamine disinfection by-products (DBPs) in drinking water. Unfortunately, these nitrosamine DBPs exhibit significant genotoxic, carcinogenic, and mutagenic properties, whereas chlorinating disinfectants remain in global practice. The current review provides valuable insights into the occurrence, identification, contamination status, exposure limits, and toxicity of the new unregulated disinfection by-products (nitrosamine DBPs) in drinking water. As a result, concentrations of nitrosamine DBPs far exceed allowable limits in drinking water, and prolonged exposure has the potential to cause metabolic disorders, a critical step in tumor initiation and progression. Importantly, based on recent research, we have concluded the role of nitrosamines DBPs in different metabolic pathways. Remarkably, nitrosamine DBPs can induce chronic inflammation and initiate tumors by activating sphingolipid and polyunsaturated fatty acid metabolism. Regarding amino acid and nucleotide metabolism, nitrosamine DBPs can inhibit tryptophan metabolism and de novo nucleotide synthesis. Moreover, inhibition of de novo nucleotide synthesis fails to repair DNA damage induced by nitrosamines. Additionally, the accumulation of lactate induced by nitrosamine DBPs may act as a pivotal signaling molecule in communication within the tumor microenvironment. However, with the advancement of tumor metabolomics, understanding the role of nitrosamine DBPs in causing cancer by inducing metabolic abnormalities significantly lags behind, and specific mechanisms of toxic effects are not clearly defined. Urgently, further studies exploring this promising area are needed.
Collapse
Affiliation(s)
- Mingjun Sun
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, P. R. China
| | - Weitao Shen
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, P. R. China
| | - Xinxin Guo
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, P. R. China
| | - Yinghao Liao
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, P. R. China
| | - Yang Huang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, P. R. China
| | - Mohan Hu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, P. R. China
| | - Ping Ye
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, P. R. China
| | - Ran Liu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, P. R. China
| |
Collapse
|
3
|
Zhang H, He Y, Liao X, Tang X, Li Q, Zou J, Jiang Z, Zhuang M, Yang Z. Feasibility of NDEA formation control from DEDTC in chlorination/chloramination by pre-ozonation: Mechanisms and influencing factors. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169054. [PMID: 38052386 DOI: 10.1016/j.scitotenv.2023.169054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/27/2023] [Accepted: 11/30/2023] [Indexed: 12/07/2023]
Abstract
N-nitrosodiethylamine (NDEA), which is the most toxic nitrosamine among the 9 detected species, has been widely detected in drinking water. Amines containing diethylamine (DEA) groups in the structure would generate NDEA during the disinfection processes. The aim of this study was to evaluate the feasibility of reducing NDEA formation from a commonly used dithiocarbamate pesticide sodium diethyldithiocarbamate (DEDTC) in subsequent chlorination and chloramination by pre-ozonation. The results demonstrated that NDEA could be generated directly during ozonation, its amounts increased from 0 to 14.34 μg/L with increasing ozone dosages (0-4 mg/L), which was higher than that chlorination (2.68 μg/L) and chloramination (4.91 μg/L) when the initial concentration of DEDTC was 20 μM. Pre-ozonation significantly raised NDEA formation from 2.68 to15.32 μg/L in subsequent chlorination; and that from 4.91 to 9.54 μg/L during subsequent chloramination processes. The addition of •OH scavenger tert-butanol (tBA) increased the production of NDEA from 8.14 to 20.80 μg/L during ozonation, and that from 6.76 to17.98 μg/L in O3/HClO process, 8.74 to 17.33 μg/L in O3/NH2Cl process. Except for NO3- and CO32-, most of the co-existing substances promoted NDEA generation from DEDTC under disinfection conditions. Based on the results of Gaussian theory calculations, GC/MS and UPLC-Q-TOFMS analysis, the influencing mechanisms of pre-ozonation on NDEA generation in the subsequent disinfection process were proposed. In addition, not only acute/chronic toxicity calculation but also luminescent bacteria test was performed to assess the possibility of pre-ozonation on the risk control of DEDTC. The research results fill a gap in the control of NDEA pollution and help to develop a safer ozone oxidation technology.
Collapse
Affiliation(s)
- Huayu Zhang
- Institute of Municipal and Environmental Engineering, College of Civil Engineering, Huaqiao University, Fujian 361021, China
| | - Yueyun He
- Xiamen Institute of Environmental Science, Xiamen 361021, China
| | - Xiaobin Liao
- Institute of Municipal and Environmental Engineering, College of Civil Engineering, Huaqiao University, Fujian 361021, China.
| | - Xueping Tang
- Xiamen Institute of Environmental Science, Xiamen 361021, China
| | - Qingsong Li
- College of Environmental Sciences and Engineering, Xiamen University of Technology, Xiamen, China
| | - Jing Zou
- Institute of Municipal and Environmental Engineering, College of Civil Engineering, Huaqiao University, Fujian 361021, China
| | - Zhibing Jiang
- Institute of Municipal and Environmental Engineering, College of Civil Engineering, Huaqiao University, Fujian 361021, China
| | - Mazhan Zhuang
- Xiamen Institute of Environmental Science, Xiamen 361021, China
| | - Zhimin Yang
- Institute of analysis center, Huaqiao University, Fujian 361021, China
| |
Collapse
|
4
|
Song Y, Peng J, Li K, Feng S, Qin W, Jiang J, Ma J. Control of N-nitrosodimethylamine (NDMA) formation from N,N-dimethylhydrazine compounds by ozone-based advanced oxidation processes. JOURNAL OF HAZARDOUS MATERIALS 2023; 452:131374. [PMID: 37030232 DOI: 10.1016/j.jhazmat.2023.131374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 03/26/2023] [Accepted: 04/04/2023] [Indexed: 06/19/2023]
Abstract
N-nitrosodimethylamine (NDMA) is formed during ozonation of model compounds with dimethylhydrazine groups, such as daminozide (DMZ) and 2-furaldehyde 2,2-dimethylhydrazone (2-F-DMH) at pH 7 with yields of 100 % and 87 %, respectively. In this study, ozone/hydrogen peroxide (O3/H2O2) and ozone/peroxymonosulfate (O3/PMS) were investigated to control NDMA formation, and O3/PMS (50-65 %) was more effective than O3/H2O2 (10-25 %) with a ratio of H2O2 or PMS to O3 of 8:1. The reaction of PMS or H2O2 to decompose ozone could not compete with the ozonation of model compound because of the high second-order rate constants of the ozonation of DMZ (5 ×105 M-1 s-1) or 2-F-DMH (1.6 ×107 M-1 s-1). The Rct value of the sulfate radical (SO4•-) showed a linear relationship with NDMA formation, indicating that SO4•- significantly contributed to its control. NDMA formation could be further controlled by injecting small quantities of ozone numerous times to minimize the dissolved ozone concentration. The effects of tannic acid, bromide and bicarbonate on NDMA formation were also investigated during ozonation, O3/H2O2, and O3/PMS processes. Bromate formation was more pronounced in the O3/PMS process than in the O3/H2O2 process. Therefore, in practical applications of O3/H2O2 or O3/PMS processes, the generation of NDMA and bromate should be detected.
Collapse
Affiliation(s)
- Yang Song
- School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou 510006, Guangdong, China
| | - Jianshan Peng
- School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou 510006, Guangdong, China
| | - Kai Li
- School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou 510006, Guangdong, China
| | - Sha Feng
- School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou 510006, Guangdong, China
| | - Wen Qin
- School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou 510006, Guangdong, China.
| | - Jin Jiang
- Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou, Guangdong 510006, China.
| | - Jun Ma
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| |
Collapse
|
5
|
Liu T, Liao X, Lin X, Yu J, Qi H, Jiang Z, Zou J, Li Q. Influencing pathways and toxicity changes of pre-ozonation on carcinogenic NDEA formation from greenhouse gas adsorbent DEAPA in subsequent disinfection processes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 873:162355. [PMID: 36822419 DOI: 10.1016/j.scitotenv.2023.162355] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 02/13/2023] [Accepted: 02/16/2023] [Indexed: 06/18/2023]
Abstract
This study was to evaluate the feasibility of controlling carcinogenic nitrosodiethylamine (NDEA) formation from greenhouse gas adsorbent 3-diethylaminopropylamine (DEAPA) by pre-O3 in subsequent chlorination/chloramination processes. The result indicated that the NDEA yields (0.4 %) during chlorination was 1.3 times of that during chloramination (0.3 %); pre-oxidation with 4 mg/L O3 significantly cut down its formation; the reduction rates were up to 67.5 and 48.5 %, respectively. OH scavenger greatly augmented the final NDEA amount from 1.86 to 5.05 μg/L during ozonation, while its roles on subsequent processes differed with disinfection methods as well as O3(g) dosages. Most of co-existed substances inhibited NDEA generation, except NO2-, CO32- and SO42-, which slightly promoted during ozonation. Basing on Gaussian calculation, GC/MS and UPLC-Q-TOF-MS analysis, the influencing mechanisms of pre-O3 on NDEA formation in subsequent disinfection processes were proposed. In addition, the calculated toxicity analysis as well as the whole toxicity was applied to evaluate the possibility of pre-O3 on risk control.
Collapse
Affiliation(s)
- Tianze Liu
- Institute of Municipal and Environmental Engineering, College of Civil Engineering, Huaqiao University, Fujian 361021, China
| | - Xiaobin Liao
- Institute of Municipal and Environmental Engineering, College of Civil Engineering, Huaqiao University, Fujian 361021, China.
| | - Xinna Lin
- Institute of Municipal and Environmental Engineering, College of Civil Engineering, Huaqiao University, Fujian 361021, China
| | - Jing Yu
- Institute of Municipal and Environmental Engineering, College of Civil Engineering, Huaqiao University, Fujian 361021, China
| | - Huan Qi
- College of Textiles and Appearl, Quanzhou Normal University, Fujian 362002, China
| | - Zhibin Jiang
- Institute of Municipal and Environmental Engineering, College of Civil Engineering, Huaqiao University, Fujian 361021, China
| | - Jing Zou
- Institute of Municipal and Environmental Engineering, College of Civil Engineering, Huaqiao University, Fujian 361021, China
| | - Qingsong Li
- Water Resources and Environmental Institute, Xiamen University of Technology, Xiamen, Fujian 361005, China
| |
Collapse
|
6
|
Gao M, Liao X, Yu J, Lin X, Qi H, Shen L, Liu S, Yang Z. Exploring Br -'s roles on non-brominated NDMA formation during ozonation: Reactive oxygen species contribution and brominated intermediate path validation. JOURNAL OF HAZARDOUS MATERIALS 2023; 444:130205. [PMID: 36399819 DOI: 10.1016/j.jhazmat.2022.130205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 10/11/2022] [Accepted: 10/15/2022] [Indexed: 06/16/2023]
Abstract
Bromide ions (Br-) affected non-brominated nitroso-dimethylamine (NDMA) formation during ozonation, but the mechanism is still unclear. 1,1,1',1'-tetramethyl-4,4'-(methylene-di-p-phenylene) di-semicarbazide (TMDS) was chosen to further probe this problem. The results indicated that low levels of Br- (≤20 μM) enhanced NDMA from 3.27 to 7.56 μg/L, while its amount slightly dropped to 6.22 μg/L raising Br- to 100 μM. It was experimentally verified that intermediates 1,1-dimethylsemicarbazide (DMSC) and 1,1-dimethylhydrazine (UDMH) played important roles on promoting NDMA generation, whose contribution rates were 40.2% and 32.2%, respectively. The brominated substances with higher NDMA molar yields were detected. ∙OH reduced NDMA formation without Br-, while it played promotion role with Br-; the corresponding contribution rates were - 26.9% and 29.2%, respectively. No matter with or without Br-, both ∙O2- and lO2 brought a boost to NDMA formation, their contribution ratios were 34.9% and 58.1% without Br-, while raised significantly to 64.6% and 81.5% when Br- existed. Br- not only facilitated NDMA formation, but also benefited the degradation of TMDS. Based on the calculation results and intermediates detected, the influence mechanisms of Br- were proposed. The results would provide theoretical basis and technical guarantee for treating NDMA precursors and bromide co-existing water in the future.
Collapse
Affiliation(s)
- Menglan Gao
- Institute of Municipal and Environmental Engineering, College of Civil Engineering,Huaqiao University, Fujian 361021, China
| | - Xiaobin Liao
- Institute of Municipal and Environmental Engineering, College of Civil Engineering,Huaqiao University, Fujian 361021, China.
| | - Jing Yu
- Institute of Municipal and Environmental Engineering, College of Civil Engineering,Huaqiao University, Fujian 361021, China
| | - Xinna Lin
- Institute of Municipal and Environmental Engineering, College of Civil Engineering,Huaqiao University, Fujian 361021, China
| | - Huan Qi
- College of Textiles and Appearl, Quanzhou Normal University, Fujian 362002, China
| | - Linlu Shen
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 195000, China
| | - Shupo Liu
- Institute of Municipal and Environmental Engineering, College of Civil Engineering,Huaqiao University, Fujian 361021, China
| | - Zhimin Yang
- Institute of analysis center, Huaqiao University, Fujian 361021, China
| |
Collapse
|
7
|
Song Y, Feng S, Qin W, Li J, Guan C, Zhou Y, Gao Y, Zhang Z, Jiang J. Formation mechanism and control strategies of N-nitrosodimethylamine (NDMA) formation during ozonation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 823:153679. [PMID: 35131246 DOI: 10.1016/j.scitotenv.2022.153679] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 01/06/2022] [Accepted: 01/31/2022] [Indexed: 06/14/2023]
Abstract
This review summarizes major findings over the last decade related to N-nitrosodimethylamine (NDMA) formed upon ozonation, which was regarded as highly toxic and carcinogenic disinfection by-products. The reaction kinetics, chemical yields and mechanisms were assessed for the ozonation of potential precursors including dimethylamine (DMA), N,N-dimethylsulfamide, hydrazines, N-containing water and wastewater polymers, dyes containing a dimethylamino function, N-functionalized carbon nanotubes, guanidine, and phenylurea. The effects of bromide on the NDMA formation during ozonation of different types of precursors were also discussed. The mechanism for NDMA formation during ozonation of DMA was re-summarized and new perspectives were proposed to assess on this mechanism. Effect of hydroxyl radicals (•OH) on NDMA formation during ozonation was also discussed due to the noticeable oxidation of NDMA by •OH. Surrogate parameters including nitrate formation and UV254 after ozonation may be useful parameters to estimate NDMA formation for practical application. The strategies for NDMA formation control were proposed through improving the ozonation process such as ozone/hydrogen peroxide, ozone/peroxymonosulfate and catalytic ozonation process based on membrane pores aeration (MEMBRO3X).
Collapse
Affiliation(s)
- Yang Song
- School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou 510006, Guangdong, China
| | - Sha Feng
- School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou 510006, Guangdong, China
| | - Wen Qin
- School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou 510006, Guangdong, China
| | - Juan Li
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
| | - Chaoting Guan
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
| | - Yang Zhou
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
| | - Yuan Gao
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
| | - Zhong Zhang
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
| | - Jin Jiang
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China.
| |
Collapse
|