1
|
Wang Z, Qin H, Dong X, Zhang W. Classification of additives and their influence mechanisms in improving the performance of biologically induced carbonate precipitation. ENVIRONMENTAL RESEARCH 2025; 275:121376. [PMID: 40081647 DOI: 10.1016/j.envres.2025.121376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 02/09/2025] [Accepted: 03/10/2025] [Indexed: 03/16/2025]
Abstract
Microbial/enzyme induced carbonate precipitation (MICP/EICP) is one of the hot topics in the field of civil engineering, environmental engineering in recent years, primarily attributed to its environmental friendliness and low energy consumption. However, how to enhance its economic and technical feasibility to ensure its stable and high-performance is still a significant challenge. This paper systematically explores the strategic incorporation of additives as a promising approach to enhance the efficiency and controllability of MICP/EICP process. An overview of MICP and EICP, including a comparison between them, is first compiled. According to the characteristics of various additives and the regulatory requirements, they are classified into the following categories: organic macromolecular additives, inorganic additives, biological additives and others. It then highlights the potential of additives to impact the mineralization dynamic process and the underlying mechanisms of their involvement in the reaction, such as providing nucleation sites, enhancing bioactivity, altering the properties of the calcium carbonate product, and reducing by-products. Whereas these additives either possess outstanding biocompatibility, specific functional groups, or particular viscosity, can work synergistically with MICP/EICP, they still have some intrinsic limits that need to be addressed. Therefore, future perspectives in additive-modified MICP/EICP systems are discussed in-depth. These insights establish a theoretical framework for additive selection tailored to specific MICP/EICP applications, making the incorporation of additives a powerful tool in the future to improve mineralization outcomes in different application scenarios.
Collapse
Affiliation(s)
- Zixiao Wang
- School of Chemistry and Life Sciences, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Haichen Qin
- School of Chemistry and Life Sciences, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Xue Dong
- School of Chemistry and Life Sciences, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Wenchao Zhang
- School of Chemistry and Life Sciences, Suzhou University of Science and Technology, Suzhou, 215009, China.
| |
Collapse
|
2
|
Deng S, An Q, Song J, Yang Y, Huang Z, Feng S, Tang C, Zhao B. Enhancement of Mn 2+, Fe 2+ and NH 4+-N removal by biochar synergistic strains combined with activated sludge in real wastewater treatment. CHEMOSPHERE 2024; 359:142271. [PMID: 38734248 DOI: 10.1016/j.chemosphere.2024.142271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 04/11/2024] [Accepted: 05/05/2024] [Indexed: 05/13/2024]
Abstract
Acinetobacter sp. AL-6 combining with biochar was adapted in activated sludge (AS & co-system) to decontaminate Mn2+, Fe2+ and NH4+-N, and treat activated sludge (AS) for its activity and settling performance improvement. Specifically, the co-system promoted the growth of bacteria in the activated sludge, thus increasing its ability to nitrify and adsorb Mn2+ and Fe2+, resulting in the removal of high concentrations of NH4+-N, Mn2+, Fe2+ and COD in the reactor by 100%, 100%, 100%, and 96.8%, respectively. And the pH of wastewater was increased from 4 to 8.5 by co-system also facilitated the precipitation of Mn2+ and Fe2+. The MLVSS/MLSS ratio increased from 0.64 to 0.95 and SVI30 decreased from 92.54 to 1.54 after the addition of co-system, which indicated that biochar helped to improve the activity and settling performance of activated sludge and prevented it from being damaged by the compound Mn2+ and Fe2+. In addition, biochar promoted the increase of the tyrosine-like protein substance and humic acid-like organic matter in the sludge EPS, thus enhanced the ability of sludge to adsorb Mn2+ and Fe2+. Concretely, compared with AS group, the proteins content and polysaccharides content of the AS & co-system group were increased by 13.14 times and 6.30 times respectively. Further, microbial diversity analysis showed that more resistant bacteria and dominant bacteria Acinetobacter sp. AL-6 in sludge enhanced the nitrification and adsorption of manganese and iron under the promotion of biochar. Pre-eminently, the more effective AS & co-system were applied to the removal of actual electrolytic manganese slag leachate taken from the contaminated site, and the removal of NH4+-N, Mn2+, Fe2+ and COD remained high at 100%, 100%, 71.82% and 94.72%, respectively, revealing advanced value for high engineering applications of AS & co-system.
Collapse
Affiliation(s)
- Shuman Deng
- College of Environment and Ecology, Chongqing University, Chongqing, 400045, PR China.
| | - Qiang An
- College of Environment and Ecology, Chongqing University, Chongqing, 400045, PR China; The Key Laboratory of Eco-Environment in Three Gorges Reservoir Region, Chongqing University, Chongqing, 400045, PR China.
| | - Jiali Song
- College of Environment and Ecology, Chongqing University, Chongqing, 400045, PR China.
| | - Yichen Yang
- College of Environment and Ecology, Chongqing University, Chongqing, 400045, PR China.
| | - Zhiruo Huang
- College of Environment and Ecology, Chongqing University, Chongqing, 400045, PR China.
| | - Shuyun Feng
- College of Environment and Ecology, Chongqing University, Chongqing, 400045, PR China.
| | - Chuanzhu Tang
- College of Environment and Ecology, Chongqing University, Chongqing, 400045, PR China.
| | - Bin Zhao
- College of Environment and Ecology, Chongqing University, Chongqing, 400045, PR China; The Key Laboratory of Eco-Environment in Three Gorges Reservoir Region, Chongqing University, Chongqing, 400045, PR China.
| |
Collapse
|
3
|
Chen GY, Chai TQ, Zhang H, Yang FQ. Applications of mild-condition synthesized metal complexes with enzyme-like activity in the colorimetric and fluorescence analysis. Coord Chem Rev 2024; 508:215761. [DOI: 10.1016/j.ccr.2024.215761] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
|
4
|
Hou D, Zhang L, Li C, Chen L, Zou J. Enhancing the Mn-Removal Efficiency of Acid-Mine Bacterial Consortium: Performance Optimization and Mechanism Study. Microorganisms 2023; 11:2185. [PMID: 37764029 PMCID: PMC10535970 DOI: 10.3390/microorganisms11092185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 08/21/2023] [Accepted: 08/28/2023] [Indexed: 09/29/2023] Open
Abstract
In this study, an acclimated manganese-oxidizing bacteria (MnOB) consortium, QBS-1, was enriched in an acid mine area; then, it was used to eliminate Mn(Ⅱ) in different types of wastewater. QBS-1 presented excellent Mn removal performance between pH 4.0 and 8.0, and the best Mn-removal efficiency was up to 99.86% after response surface methodology optimization. Unlike other MnOB consortia, the core bacteria of QBS-1 were Stenotrophomonas and Achromobacter, which might play vital roles in Mn removal. Besides that, adsorption, co-precipitation and electrostatic binding by biological manganese oxides could further promote Mn elimination. Finally, the performance of the Mn biofilter demonstrated that QBS-1 was an excellent inoculant, which indicates good potential for removing Mn contamination steadily and efficiently.
Collapse
Affiliation(s)
- Dongmei Hou
- National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource Utilization, Nanchang Hangkong University, Nanchang 330063, China; (L.Z.); (C.L.); (L.C.)
| | | | | | | | - Jianping Zou
- National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource Utilization, Nanchang Hangkong University, Nanchang 330063, China; (L.Z.); (C.L.); (L.C.)
| |
Collapse
|
5
|
Huang J, Tan X, Ali I, Duan Z, Naz I, Cao J, Ruan Y, Wang Y. More effective application of biochar-based immobilization technology in the environment: Understanding the role of biochar. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 872:162021. [PMID: 36775150 DOI: 10.1016/j.scitotenv.2023.162021] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 01/12/2023] [Accepted: 01/31/2023] [Indexed: 06/18/2023]
Abstract
In recent years, biochar-based immobilization technology (BIT) has been widely used to treat different environmental issues because of its cost-effectiveness and high removal performance. However, the complexity of the real environment is always ignored, which hinders the transfer of the BIT from lab-scale to commercial applications. Therefore, in this review, the analysis is performed separately on the internal side of the BIT (microbial fixation and growth) and on the external side of the BIT (function) to achieve effective BIT performance. Importantly, the internal two stages of BIT have been discussed concisely. Further, the usage of BIT in different areas is summarized precisely. Notably, the key impacts were systemically analyzed during BIT applications including environmental conditions and biochar types. Finally, the suggestions and perspectives are elucidated to solve current issues regarding BIT.
Collapse
Affiliation(s)
- Jiang Huang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Xiao Tan
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China.
| | - Imran Ali
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Zhipeng Duan
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China; College of Hydrology and Water Resources, Hohai University, Nanjing 210098, China
| | - Iffat Naz
- Department of Biology, Deanship of Educational Services, Qassim University, Buraidah 51452, Kingdom of Saudi Arabia
| | - Jun Cao
- National Engineering Research Center of Water Resources Efficient Utilization and Engineering Safety, Hohai University, Nanjing 210098, China
| | - Yinlan Ruan
- Institute for Photonics and Advanced Sensing, The University of Adelaide, SA 5005, Australia
| | - Yimin Wang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| |
Collapse
|
6
|
Wu R, Yao F, Li X, Shi C, Zang X, Shu X, Liu H, Zhang W. Manganese Pollution and Its Remediation: A Review of Biological Removal and Promising Combination Strategies. Microorganisms 2022; 10:2411. [PMID: 36557664 PMCID: PMC9781601 DOI: 10.3390/microorganisms10122411] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 11/30/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022] Open
Abstract
Manganese (Mn), as a cofactor of multiple enzymes, exhibits great significance to the human body, plants and animals. It is also a critical raw material and alloying element. However, extensive employment for industrial purposes leads to its excessive emission into the environment and turns into a significant threat to the ecosystem and public health. This review firstly introduces the essentiality, toxicity and regulation of Mn. Several traditional physicochemical methods and their problems are briefly discussed as well. Biological remediation, especially microorganism-mediated strategies, is a potential alternative for remediating Mn-polluted environments in a cost-efficient and eco-friendly manner. Among them, microbially induced carbonate precipitation (MICP), biosorption, bioaccumulation, bio-oxidation are discussed in detail, including their mechanisms, pivotal influencing factors along with strengths and limitations. In order to promote bioremediation efficiency, the combination of different techniques is preferable, and their research progress is also summarized. Finally, we propose the future directions of Mn bioremediation by microbes. Conclusively, this review provides a scientific basis for the microbial remediation performance for Mn pollution and guides the development of a comprehensive competent strategy towards practical Mn remediation.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Hengwei Liu
- School of Chemistry and Life Sciences, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Wenchao Zhang
- School of Chemistry and Life Sciences, Suzhou University of Science and Technology, Suzhou 215009, China
| |
Collapse
|
7
|
Xue Y, Cheng W, Cao M, Gao J, Chen J, Gui Y, Zhu W, Ma F. Development of nitric acid-modified activated carbon electrode for removal of Co 2+/Mn 2+/Ni 2+ by electrosorption. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:77536-77552. [PMID: 35680747 DOI: 10.1007/s11356-022-21272-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 05/31/2022] [Indexed: 06/15/2023]
Abstract
In this paper, nitric acid-modified activated carbon was used as an electrode in the electrosorption process for the removal of Co2+, Mn2+, and Ni2+ from wastewater. The effects of applied voltage, initial pH, and coexisting ions on removal efficiency were investigated. The adsorption process was evaluated by adsorption isotherm models. The results indicated that the electrosorption process was consistent with the Langmuir model, proving that the electrosorption process was a monolayer adsorption process. The maximum adsorption capacities of Co2+, Mn2+, and Ni2+ were 131.58 mg/g, 102.04 mg/g, and 103.09 mg/g. Electrochemical tests revealed that the specific capacitance of AC-HNO3 was 54.11 F/g when the scanning rate was 5 mV/s, while the specific capacitance of AC was 36.51 F/g. The Fourier transform infrared spectroscopy (FT-IR) and X-ray photoelectron spectroscopy (XPS) confirmed that the content of oxygen groups on the surface of activated carbon increased after modification, which provided more adsorption sites for electrosorption. When the selected concentration of HCl was used as the eluent, the elution efficiency of Co2+, Mn2+, and Ni2+ could reach 94.23%, 93.65%, and 90.61%. The removal efficiency could reach more than 95% after three cycles. The results of the study can be used as a reference significance for the removal of cobalt, manganese, and nickel ions from heavy metal wastewater by electrosorption.
Collapse
Affiliation(s)
- Yun Xue
- Yantai Research Institute, Harbin Engineering University, Yantai, 264006, Shandong, People's Republic of China
- College of Nuclear Science and Technology, Harbin Engineering University, Harbin, 150001, People's Republic of China
| | - Wanting Cheng
- Yantai Research Institute, Harbin Engineering University, Yantai, 264006, Shandong, People's Republic of China
- College of Nuclear Science and Technology, Harbin Engineering University, Harbin, 150001, People's Republic of China
| | - Meng Cao
- Yantai Research Institute, Harbin Engineering University, Yantai, 264006, Shandong, People's Republic of China
- College of Nuclear Science and Technology, Harbin Engineering University, Harbin, 150001, People's Republic of China
| | - Jianzhang Gao
- Yantai Research Institute, Harbin Engineering University, Yantai, 264006, Shandong, People's Republic of China
- College of Nuclear Science and Technology, Harbin Engineering University, Harbin, 150001, People's Republic of China
| | - Jiaqi Chen
- Yantai Research Institute, Harbin Engineering University, Yantai, 264006, Shandong, People's Republic of China
- College of Nuclear Science and Technology, Harbin Engineering University, Harbin, 150001, People's Republic of China
| | - Yunyang Gui
- Yantai Research Institute, Harbin Engineering University, Yantai, 264006, Shandong, People's Republic of China
- College of Nuclear Science and Technology, Harbin Engineering University, Harbin, 150001, People's Republic of China
| | - Wenmin Zhu
- Yantai Research Institute, Harbin Engineering University, Yantai, 264006, Shandong, People's Republic of China
- College of Nuclear Science and Technology, Harbin Engineering University, Harbin, 150001, People's Republic of China
| | - Fuqiu Ma
- Yantai Research Institute, Harbin Engineering University, Yantai, 264006, Shandong, People's Republic of China.
- College of Nuclear Science and Technology, Harbin Engineering University, Harbin, 150001, People's Republic of China.
| |
Collapse
|
8
|
Zhao J, Ye ZL, Pan X, Cai G, Wang J. Screening the functions of modified rice straw biochar for adsorbing manganese from drinking water. RSC Adv 2022; 12:15222-15230. [PMID: 35702442 PMCID: PMC9115647 DOI: 10.1039/d2ra01720b] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 05/01/2022] [Indexed: 11/21/2022] Open
Abstract
The seasonal out-of-limit of manganese ions (Mn2+) in the drinking water reservoirs is an intractable problem to water supply, which can pose a threat to the human health. In this study, the removal of Mn2+ by using pristine (BC), pre-alkali (Pre-BC) and post-alkali (Post-BC) modified biochar originating from rice straw was investigated. The maximum adsorption capacities obtained for BC, Pre-BC, and Post-BC were 20.59, 28.37, and 8.06 mg g−1, respectively. The Langmuir isotherm model and the pseudo-second-order kinetic model were suitable fitting models to describe the adsorption process. The investigation of adsorption functions was carried out that revealed that the predominant forces were precipitation and cation exchange with the proportions of 43.38–69.15% and 38.05–55.79%, respectively. With regard to precipitation, Mn(ii) particles (Al–Si–O–Mn and MnCO3) and insignificantly oxidized insoluble Mn(iv) particles (MnO2) were formed on the biochar surface. Alkali and alkaline earth metals facilitated the behavior of cation exchange, where the primary contributing ions for cation exchange were Na+, Mg2+ and Ca2+ during the adsorption process. These outcomes suggest that alkali pre-treated modification of biochar is practical for the application of manganese pollution control in lakes and reservoirs. Modified biochar was used to remove Mn2+ from water with principal adsorption functions of precipitation and cation exchange. The MnCO3 and Al–Si–O–Mn mainly driven precipitation and Na+, Mg2+ and Ca2+ primarily contributed to the cation exchange.![]()
Collapse
Affiliation(s)
- Jie Zhao
- Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences No. 1799 Jimei Road Xiamen City Fujian 361021 China .,College of Life Sciences, Fujian Agriculture and Forestry University Fuzhou 350002 China
| | - Zhi-Long Ye
- Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences No. 1799 Jimei Road Xiamen City Fujian 361021 China
| | - Xiaofang Pan
- Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences No. 1799 Jimei Road Xiamen City Fujian 361021 China
| | - Guangjing Cai
- Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences No. 1799 Jimei Road Xiamen City Fujian 361021 China
| | - Jiani Wang
- Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences No. 1799 Jimei Road Xiamen City Fujian 361021 China
| |
Collapse
|