1
|
Dong L, He Z, Wu J, Zhang K, Zhang D, Pan X. Remediation of uranium-contaminated alkaline soil by rational application of phosphorus fertilizers: Effect and mechanism. ENVIRONMENTAL RESEARCH 2023; 220:115172. [PMID: 36584849 DOI: 10.1016/j.envres.2022.115172] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 12/07/2022] [Accepted: 12/26/2022] [Indexed: 06/17/2023]
Abstract
In alkaline soil, abundant carbonates will mobilize uranium (U) and increase its ecotoxicity, which is a serious threat to crop growth. However, the knowledge of U remediation in alkaline soils remains very limited. In this study, U-contaminated alkaline soil (tillage layer) was collected from the Ili mining area of Xinjiang, the soil remediation was carried out by using phosphorus (P) fertilizers of different solubility (including KH2PO4, Ca(H2PO4)2, CaHPO4, and Ca3(PO4)2), and the pathways and mechanisms of U passivation in the alkaline soil were revealed. The results showed that water-soluble P fertilizers, KH2PO4 and Ca(H2PO4)2, were highly effective at immobilizing U, and significantly reduced the bioavailability of soil U. The exchangeable U was reduced by 70.5 ± 0.1% (KH2PO4) and 68.2 ± 1.9% (Ca(H2PO4)2), which was converted into the Fe-Mn oxide-bound and residual phases. Pot experiments showed that soil remediation by KH2PO4 significantly promoted crop growth, especially for roots, and reduced U uptake in crops by 94.5 ± 1.0%. The immobilization of U by KH2PO4 could be attributed to the release of phosphate anions, which react with the uranyl ion (UO22+) forming a stable mineral of meta-ankoleite and enhancing the binding of UO22+ to the soil Fe-Mn oxides. In addition, KH2PO4 dissolution produces acidity and P fertilizer, which can reduce soil alkalinity and improve crop growth. The findings in this work demonstrate that a rational application of P fertilizer can effectively, conveniently, and cheaply remediate U contamination and improve crop yield and safety on alkaline farmland.
Collapse
Affiliation(s)
- Lingfeng Dong
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, China
| | - Zhanfei He
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, China.
| | - Jingyi Wu
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, China
| | - Keqing Zhang
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, China
| | - Daoyong Zhang
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, China; Xinjiang Key Laboratory of Environmental Pollution and Bioremediation, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China.
| | - Xiangliang Pan
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, China; Xinjiang Key Laboratory of Environmental Pollution and Bioremediation, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
| |
Collapse
|
2
|
Nath S, Kirschke S. Groundwater Monitoring through Citizen Science: A Review of Project Designs and Results. GROUND WATER 2023. [PMID: 36786423 DOI: 10.1111/gwat.13298] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 01/18/2023] [Accepted: 02/10/2023] [Indexed: 06/18/2023]
Abstract
Citizen science is increasingly prominent in the field of freshwater monitoring. Although there is a large body of literature related to surface water monitoring, less experience exists regarding citizen-based monitoring of groundwater resources. This calls for a better understanding of the actual experiences of citizen science in the field of groundwater monitoring, including specific project designs and results. Based on a systematic review of 33 citizen-based groundwater monitoring activities, we analyze (1) the design of citizen science projects, including their general project characteristics, institutional characteristics, citizen characteristics, and forms of interactions, as well as (2) their results, including their data outputs, outcomes on citizens, and impacts on problem-solving. Results show that projects mainly have positive results on data quantity and quality and partly influence the citizens themselves and their contributions to groundwater-related problem-solving. Information on project design characteristics is scarce and mostly hints at the relevance of specific process mechanisms such as training and feedback. Based on these results, we suggest groundwater-related projects to consider involving citizen scientists in monitoring activities in order to benefit research and citizens alike. Such involvement needs, however, careful design including relevant training to unfold its full potential for both sides. Researchers are advised here to rigorously report on both design and results to further improve citizen science practice in the future.
Collapse
Affiliation(s)
| | - Sabrina Kirschke
- United Nations University-Institute for Integrated Management of Material Fluxes and of Resources (UNU-FLORES), Ammonstrasse 74, Dresden, 01067, Germany
- Museum für Naturkunde-Leibniz Institute for Evolution and Biodiversity Science, Berlin, Germany
| |
Collapse
|
3
|
Nalbandian MJ, Kim S, Gonzalez-Ribot HE, Myung NV, Cwiertny DM. Recent advances and remaining barriers to the development of electrospun nanofiber and nanofiber composites for point-of-use and point-of-entry water treatment systems. JOURNAL OF HAZARDOUS MATERIALS ADVANCES 2022; 8:100204. [PMID: 37025391 PMCID: PMC10074328 DOI: 10.1016/j.hazadv.2022.100204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this review, we focus on electrospun nanofibers as a promising material alternative for the niche application of decentralized, point-of-use (POU) and point-of-entry (POE) water treatment systems. We focus our review on prior work with various formulations of electrospun materials, including nanofibers of carbon, pure metal oxides, functionalized polymers, and polymer-metal oxide composites, that exhibit analogous performance to media (e.g., activated carbon, ion exchange resins) commonly used in commercially available, certified POU/POE devices for contaminants including organic pollutants, metals (e.g., lead) and persistent oxyanions (e.g., nitrate). We then analyze the relevant strengths and remaining research and development opportunities of the relevant literature based on an evaluation framework that considers (i) performance comparison to commercial analogs; (ii) appropriate pollutant targets for POU/POE applications; (iii) testing in flow-through systems consistent with POU/POE applications; (iv) consideration of water quality effects; and (v) evaluation of material strength and longevity. We also identify several emerging issues in decentralized water treatment where nanofiber-based POU/POE devices could help meet existing needs including their use for treatment of uranium, disinfection, and in electrochemical treatment systems. To date, research has demonstrated promising material performance toward relevant targets for POU/POE applications, using appropriate aquatic matrices and considering material stability. To fully realize their promise as an emerging treatment technology, our analysis of the available literature reveals the need for more work that benchmarks nanofiber performance against established commercial analogs, as well as fabrication and performance validation at scales and under conditions simulating POU/POE water treatment.
Collapse
Affiliation(s)
- Michael J. Nalbandian
- Department of Civil Engineering and Construction Management, California Baptist University, 8432 Magnolia Avenue, Riverside, CA 92504
| | - Sewoon Kim
- Department of Civil and Environmental Engineering, University of Iowa, 4105 Seamans Center, Iowa City, IA 52242
| | - Humberto E. Gonzalez-Ribot
- Department of Civil and Environmental Engineering, University of Iowa, 4105 Seamans Center, Iowa City, IA 52242
| | - Nosang V. Myung
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, 250 Nieuwland Hall, Notre Dame, IN 46556
| | - David M. Cwiertny
- Department of Civil and Environmental Engineering, University of Iowa, 4105 Seamans Center, Iowa City, IA 52242
| |
Collapse
|
4
|
Lv Y, Tang C, Liu X, Chen B, Zhang M, Yan X, Hu X, Chen S, Zhu X. Stabilization and mechanism of uranium sequestration by a mixed culture consortia of sulfate-reducing and phosphate-solubilizing bacteria. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 827:154216. [PMID: 35247412 DOI: 10.1016/j.scitotenv.2022.154216] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 02/24/2022] [Accepted: 02/25/2022] [Indexed: 06/14/2023]
Abstract
In this study, a highly efficient phosphate-solubilizing bacteria (PSB) (Pantoea sp. grinm-12) was screened out from uranium (U) tailings, and the carbon and nitrogen sources of mixed culture with sulfate-reducing bacteria (SRB) were optimized. Results showed that the functional expression of SRB-PSB could be promoted effectively when glucose + sodium lactate was used as carbon source and ammonium nitrate + ammonium sulfate as nitrogen source. The concentration of PO43- in the culture system could reach 107.27 mg·L-1, and the sulfate reduction rate was 81.72%. In the process of biological stabilization of U tailings by mixed SRB-PSB culture system, the chemical form of U in the remediation group was found to transfer to stable state with the extension of remediation time, which revealed the effectiveness of bioremediation on the harmless treatment of U tailings. XRD, FT-IR, SEM-EDS, high-throughput sequencing, and metagenomics were also used to assist in revealing the microstructure and composition changes during the biological stabilization process, and explore the microbial community/functional gene response. Finally, the stabilization mechanism of U was proposed. In conclusion, the stabilization of U in U tailings was realized through the synergistic effect of bio-reduction, bio-precipitation, and bio-adsorption.
Collapse
Affiliation(s)
- Ying Lv
- National Engineering Research Center for Environment-friendly Metallurgy in Producing Premium Non-ferrous Metals, GRINM Group Co., Ltd., Beijing 101407, China; School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing 100083, China; GRINM Resources and Environment Tech. Co., Ltd., Beijing 101407, China; General Research Institute for Nonferrous Metals, Beijing 100088, China
| | - Chuiyun Tang
- National Engineering Research Center for Environment-friendly Metallurgy in Producing Premium Non-ferrous Metals, GRINM Group Co., Ltd., Beijing 101407, China; GRINM Resources and Environment Tech. Co., Ltd., Beijing 101407, China; General Research Institute for Nonferrous Metals, Beijing 100088, China
| | - Xingyu Liu
- National Engineering Research Center for Environment-friendly Metallurgy in Producing Premium Non-ferrous Metals, GRINM Group Co., Ltd., Beijing 101407, China; GRINM Resources and Environment Tech. Co., Ltd., Beijing 101407, China; GRIMAT Engineering Institute Co., Ltd., Beijing 101407, China.
| | - Bowei Chen
- National Engineering Research Center for Environment-friendly Metallurgy in Producing Premium Non-ferrous Metals, GRINM Group Co., Ltd., Beijing 101407, China; GRINM Resources and Environment Tech. Co., Ltd., Beijing 101407, China; GRIMAT Engineering Institute Co., Ltd., Beijing 101407, China
| | - Mingjiang Zhang
- National Engineering Research Center for Environment-friendly Metallurgy in Producing Premium Non-ferrous Metals, GRINM Group Co., Ltd., Beijing 101407, China; GRINM Resources and Environment Tech. Co., Ltd., Beijing 101407, China; GRIMAT Engineering Institute Co., Ltd., Beijing 101407, China
| | - Xiao Yan
- National Engineering Research Center for Environment-friendly Metallurgy in Producing Premium Non-ferrous Metals, GRINM Group Co., Ltd., Beijing 101407, China; GRINM Resources and Environment Tech. Co., Ltd., Beijing 101407, China; General Research Institute for Nonferrous Metals, Beijing 100088, China
| | - Xuewu Hu
- National Engineering Research Center for Environment-friendly Metallurgy in Producing Premium Non-ferrous Metals, GRINM Group Co., Ltd., Beijing 101407, China; School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing 100083, China; GRINM Resources and Environment Tech. Co., Ltd., Beijing 101407, China; General Research Institute for Nonferrous Metals, Beijing 100088, China
| | - Susu Chen
- National Engineering Research Center for Environment-friendly Metallurgy in Producing Premium Non-ferrous Metals, GRINM Group Co., Ltd., Beijing 101407, China; GRINM Resources and Environment Tech. Co., Ltd., Beijing 101407, China; General Research Institute for Nonferrous Metals, Beijing 100088, China
| | - Xuezhe Zhu
- National Engineering Research Center for Environment-friendly Metallurgy in Producing Premium Non-ferrous Metals, GRINM Group Co., Ltd., Beijing 101407, China; GRINM Resources and Environment Tech. Co., Ltd., Beijing 101407, China; General Research Institute for Nonferrous Metals, Beijing 100088, China
| |
Collapse
|
5
|
Frei RJ, Lawson GM, Norris AJ, Cano G, Vargas MC, Kujanpää E, Hopkins A, Brown B, Sabo R, Brahney J, Abbott BW. Limited progress in nutrient pollution in the U.S. caused by spatially persistent nutrient sources. PLoS One 2021; 16:e0258952. [PMID: 34843503 PMCID: PMC8629290 DOI: 10.1371/journal.pone.0258952] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 10/10/2021] [Indexed: 01/01/2023] Open
Abstract
Human agriculture, wastewater, and use of fossil fuels have saturated ecosystems with nitrogen and phosphorus, threatening biodiversity and human water security at a global scale. Despite efforts to reduce nutrient pollution, carbon and nutrient concentrations have increased or remained high in many regions. Here, we applied a new ecohydrological framework to ~12,000 water samples collected by the U.S. Environmental Protection Agency from streams and lakes across the contiguous U.S. to identify spatial and temporal patterns in nutrient concentrations and leverage (an indicator of flux). For the contiguous U.S. and within ecoregions, we quantified trends for sites sampled repeatedly from 2000 to 2019, the persistence of spatial patterns over that period, and the patch size of nutrient sources and sinks. While we observed various temporal trends across ecoregions, the spatial patterns of nutrient and carbon concentrations in streams were persistent across and within ecoregions, potentially because of historical nutrient legacies, consistent nutrient sources, and inherent differences in nutrient removal capacity for various ecosystems. Watersheds showed strong critical source area dynamics in that 2-8% of the land area accounted for 75% of the estimated flux. Variability in nutrient contribution was greatest in catchments smaller than 250 km2 for most parameters. An ensemble of four machine learning models confirmed previously observed relationships between nutrient concentrations and a combination of land use and land cover, demonstrating how human activity and inherent nutrient removal capacity interactively determine nutrient balance. These findings suggest that targeted nutrient interventions in a small portion of the landscape could substantially improve water quality at continental scales. We recommend a dual approach of first prioritizing the reduction of nutrient inputs in catchments that exert disproportionate influence on downstream water chemistry, and second, enhancing nutrient removal capacity by restoring hydrological connectivity both laterally and vertically in stream networks.
Collapse
Affiliation(s)
- Rebecca J. Frei
- Department of Plant and Wildlife Sciences, Brigham Young University, Provo, Utah, United States of America
- Department of Renewable Resources, University of Alberta, Edmonton, Alberta, Canada
| | - Gabriella M. Lawson
- Department of Plant and Wildlife Sciences, Brigham Young University, Provo, Utah, United States of America
| | - Adam J. Norris
- Department of Plant and Wildlife Sciences, Brigham Young University, Provo, Utah, United States of America
| | - Gabriel Cano
- Department of Plant and Wildlife Sciences, Brigham Young University, Provo, Utah, United States of America
| | - Maria Camila Vargas
- Department of Plant and Wildlife Sciences, Brigham Young University, Provo, Utah, United States of America
| | - Elizabeth Kujanpää
- Department of Plant and Wildlife Sciences, Brigham Young University, Provo, Utah, United States of America
| | - Austin Hopkins
- Department of Plant and Wildlife Sciences, Brigham Young University, Provo, Utah, United States of America
| | - Brian Brown
- Department of Plant and Wildlife Sciences, Brigham Young University, Provo, Utah, United States of America
| | - Robert Sabo
- United States Environmental Protection Agency, Washington, D. C., United States of America
| | - Janice Brahney
- Department of Watershed Sciences and Ecology Center, Utah State University, Logan, Utah, United States of America
| | - Benjamin W. Abbott
- Department of Plant and Wildlife Sciences, Brigham Young University, Provo, Utah, United States of America
| |
Collapse
|