1
|
Zhang S, Hu P, Xu X, Guo J, Wang Y, Huang Y, Yu H, Hou G, Liu D, Zhao Y, Cao Z. Mechanisms of haze influencing phase distribution and human exposure to airborne flame retardants with different uses: Emission, partition, and dry deposition. JOURNAL OF HAZARDOUS MATERIALS 2025; 489:137491. [PMID: 39933458 DOI: 10.1016/j.jhazmat.2025.137491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 01/18/2025] [Accepted: 02/02/2025] [Indexed: 02/13/2025]
Abstract
This study elucidated the mechanisms governing variations in the occurrence and human exposure to flame retardants (FRs) with diverse applications on haze days. The high atmospheric stability on haze days converts the atmospheric environment into a closed system, where local emissions (LM), gas-to-particle transport (GPT), and dry deposition of particles (DP) determine the fate and destination of FRs. When LM < GPT and DP, FRs are removed by DP, thereby decreasing human exposure. Conversely, when LM ≈ GPT and DP, the increase in airborne particles on haze days only affects occurrences and human exposure to FRs with gas-particle partitioning quotient (log KP) ranging from -3.95 to -1.45. We also analysed three types of FRs in 198 size-segregated particulate samples and 22 gaseous samples collected on non-haze and haze days in a Chinese city where haze frequently occurs. This study validated the aforementioned mechanisms and fundamentally accounted for the decreased levels of polybrominated diphenyl ethers (PBDEs) in skin-wipe samples on haze days in other published studies. These results suggest that haze has diverse influences on human exposure to FRs and provide a new basis for a comprehensive understanding of the health effects of haze.
Collapse
Affiliation(s)
- Shuaifeng Zhang
- School of Environment, Key Laboratory of Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang 453007, China
| | - Pengtuan Hu
- School of Environment, Key Laboratory of Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang 453007, China; Huanghuai Laboratory, Zhengzhou, Henan 450003, China
| | - Xiaopeng Xu
- School of Environment, Key Laboratory of Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang 453007, China
| | - Jin Guo
- School of Environment, Key Laboratory of Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang 453007, China
| | - Yilin Wang
- School of Environment, Key Laboratory of Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang 453007, China
| | - Yilan Huang
- School of Environment, Key Laboratory of Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang 453007, China
| | - Hao Yu
- School of Environment, Key Laboratory of Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang 453007, China; Huanghuai Laboratory, Zhengzhou, Henan 450003, China
| | - Guodong Hou
- School of Environment, Key Laboratory of Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang 453007, China
| | - Donghai Liu
- School of Environment, Key Laboratory of Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang 453007, China
| | - Youhua Zhao
- School of Environment, Key Laboratory of Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang 453007, China
| | - Zhiguo Cao
- School of Environment, Key Laboratory of Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang 453007, China; Huanghuai Laboratory, Zhengzhou, Henan 450003, China.
| |
Collapse
|
2
|
Yang Y, Wei L, Wang R, Zhao G, Yang S, Cheng H, Wu H, Huang Q. Uncovering the partitioning, transport flux and socioeconomic factors of organophosphate esters in an urban estuary of eastern China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 373:126132. [PMID: 40157482 DOI: 10.1016/j.envpol.2025.126132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 03/12/2025] [Accepted: 03/25/2025] [Indexed: 04/01/2025]
Abstract
The Yangtze River Estuary is considered as a critical transition zone for terrestrial organophosphate esters (OPEs) transported to the open sea, yet their environmental behavior and influencing drivers remain inadequately investigated. Here, we examine the occurrence of eleven OPEs across water, suspended particulate matter (SPM), and sediment, which reveals moderate pollution levels compared to other Chinese estuaries. The OPE partitioning processes are dependent on compound-specific partition coefficients (log Kd), hydraulic factors, and terrestrial input. Compounds with lower log Kow remain mostly dissolved or particulate-bound, whereas higher log Kow OPEs tend to be deposited in sediment. Riverine input and output emerge as the dominant transport pathways for OPEs within the YRE, with an annual input flux of 677 tons. Modeling reveals that tris(1-chloro-2-propyl) phosphate (TCIPP), tris(2-chloroethyl) phosphate (TCEP), and triethyl phosphate (TEP) face significant resuspension risks, indicating their increased transport into the open sea, while tris(2-ethylhexyl) phosphate (TEHP) presents a remarkable sedimentary risk due to its high hydrophobicity. The results suggest that the YRE functions as a source for resuspension-prone compounds and a sink for sediment-bound OPEs, demonstrating their distinct environmental fates. Additionally, aggravating pollution of OPEs has been observed in the Pearl River, Yellow River, and Yangtze River Estuaries with sustained wastewater discharge and rapid urbanization. This study provides an overview of the partitioning processes, transport mechanisms, and anthropogenic threats, thus underlining the need for effective pollution mitigation to protect estuarine ecosystems and promote sustainable water management.
Collapse
Affiliation(s)
- Ya Yang
- Key Laboratory of Yangtze River Water Environment of the Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Lai Wei
- Key Laboratory of Yangtze River Water Environment of the Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Rui Wang
- Key Laboratory of Yangtze River Water Environment of the Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Guohua Zhao
- School of Chemical Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Shouye Yang
- School of Ocean and Earth Science, Tongji University, Shanghai, 200092, China
| | - Haifeng Cheng
- Key Laboratory of Estuarine and Coastal Project, Ministry of Transport, Shanghai Estuarine and Coastal Science Research Center, Shanghai, 201201, China
| | - Hualin Wu
- Key Laboratory of Estuarine and Coastal Project, Ministry of Transport, Shanghai Estuarine and Coastal Science Research Center, Shanghai, 201201, China
| | - Qinghui Huang
- Key Laboratory of Yangtze River Water Environment of the Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China; International Joint Research Center for Sustainable Urban Water System, Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China.
| |
Collapse
|
3
|
Iakovides M, Bhowmick S, Stavroulas I, Iakovides G, Pikridas M, Biskos G, Mihalopoulos N, Sciare J. Thermal processes and secondary recycling regulate the atmospheric levels of the highly toxic polychlorinated naphthalenes in the urban environment of Eastern Mediterranean and Middle East. JOURNAL OF HAZARDOUS MATERIALS 2025; 494:138573. [PMID: 40393291 DOI: 10.1016/j.jhazmat.2025.138573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2025] [Revised: 05/08/2025] [Accepted: 05/08/2025] [Indexed: 05/22/2025]
Abstract
Although production of legacy industrial-grade persistent organic pollutants has been prohibited since the early 2000's, residues persist across all environmental compartments, with unintentional releases still documented globally. The present work explores comprehensively the atmospheric occurrence and fate of the scarcely monitored polychlorinated naphthalenes (PCNs), along with polybrominated diphenyl ethers (PBDEs), in the urban environment of Eastern Mediterranean and Middle East. Gaseous and particulate phase concentrations of PCNs and PBDEs (fifty-six and twelve congeners) were comparable to urban locations in the broader region. For PCNs, regressions of partial pressure against ambient temperature revealed secondary recycling from local contaminated surfaces. Enthalpies of surface-air exchange (∆HSA) were significantly correlated to vaporization enthalpies (∆HV), corroborating short-range revolatilization processes. Molecular concentration ratios suggested inputs from thermal processes, whereas potential evaporation from Aroclor-contaminated surfaces cannot be excluded. An inverse pattern for PBDEs was observed. The regression slopes were shallow, implying advective inflows of urban air, whereas ∆HSA were insignificantly correlated with ∆HV, suggesting that, unlike PCNs, volatilization sources for PBDEs were of minor importance. Gas/particle partitioning was also evaluated by utilizing a wide range of traditional and novel models. Additionally, temperature-dependent quantitative structure-property relationship (QSPR) models were constructed separately for PCNs and PBDEs. Mixed sorptive and absorptive models yielded adequate predictions for PCNs, while steady-state models performed better for PBDEs. Both QSPR models demonstrated robust predictive capabilities across the congener groups and could serve as reference for studies under similar temperature ranges worldwide.
Collapse
Affiliation(s)
- Minas Iakovides
- Climate and Atmosphere Research Center (CARE-C), The Cyprus Institute, 20 Konstantinou Kavafi Street, Aglantzia 2121, Cyprus.
| | - Somnath Bhowmick
- Climate and Atmosphere Research Center (CARE-C), The Cyprus Institute, 20 Konstantinou Kavafi Street, Aglantzia 2121, Cyprus
| | - Iasonas Stavroulas
- Climate and Atmosphere Research Center (CARE-C), The Cyprus Institute, 20 Konstantinou Kavafi Street, Aglantzia 2121, Cyprus; Center for Atmospheric Research, University of Nova Gorica, Ajdovščina 5270, Slovenia; Institute for Environmental Research and Sustainable Development, National Observatory of Athens, Palaia Penteli, Athens 15236, Greece
| | - Giannis Iakovides
- Chemical Processes and Energy Resources Institute (CPERI), Centre for Research and Technology Hellas (CERTH), Egialeias 52, Maroussi, Athens, Greece
| | - Michael Pikridas
- Climate and Atmosphere Research Center (CARE-C), The Cyprus Institute, 20 Konstantinou Kavafi Street, Aglantzia 2121, Cyprus
| | - George Biskos
- Climate and Atmosphere Research Center (CARE-C), The Cyprus Institute, 20 Konstantinou Kavafi Street, Aglantzia 2121, Cyprus
| | - Nikos Mihalopoulos
- Climate and Atmosphere Research Center (CARE-C), The Cyprus Institute, 20 Konstantinou Kavafi Street, Aglantzia 2121, Cyprus; Institute for Environmental Research and Sustainable Development, National Observatory of Athens, Palaia Penteli, Athens 15236, Greece; Chemistry Department, University of Crete, Heraklion Crete 71003, Greece
| | - Jean Sciare
- Climate and Atmosphere Research Center (CARE-C), The Cyprus Institute, 20 Konstantinou Kavafi Street, Aglantzia 2121, Cyprus
| |
Collapse
|
4
|
Yin S, Cseresznye A, Schönleben AM, Bosschaerts S, Rajaei F, Dahmardeh Behrooz R, Poma G, Liu X, Covaci A. Cumulative exposure assessment to polychlorinated alkanes (C 8-36) to indoor dust from Iranian kindergartens: Occurrence and health risk. JOURNAL OF HAZARDOUS MATERIALS 2025; 493:138305. [PMID: 40253788 DOI: 10.1016/j.jhazmat.2025.138305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2025] [Revised: 03/08/2025] [Accepted: 04/14/2025] [Indexed: 04/22/2025]
Abstract
The environmental and public health concerns associated with chlorinated paraffins (CPs) are significant, given their widespread use, long-lasting persistence, and potential adverse health effects. The objective of this study was to assess the contamination of polychlorinated alkanes (PCAs-C8-36), the major contaminants in the CP technical mixtures, in kindergartens in Tehran, Iran, and to evaluate the cumulative exposure risks through various routes, including ingestion, dermal contact, and inhalation of dust. The results revealed a pervasive contamination with PCAs. The sum of PCAs-C10-20 across all samples was found to be 1370 ng/g dw, with median values of 500 ng/g dw for ∑PCAs-C10-13, 620 ng/g dw for ∑PCAs-C14-17, and 280 ng/g dw for ∑PCAs-C18-20. These levels did not correlate with outdoor environmental factors or indoor characteristics. Dermal contact constituted 64-84 % of total exposure, with toddlers showing higher intake than caretakers. A cumulative exposure assessment was conducted to calculate the hazard quotient (HQ). The highest HQ value was observed for girls in the case of ∑PCAs-C10-13 (6.2 × 10-5), and the HQ for all groups remained well below the risk threshold. Despite the low level of immediate risks, chronic exposure in vulnerable population groups justifies proactive measures. Further investigation of exposure sources and implementation of interventions to reduce potential health risks are recommended, given the ubiquity of CPs in indoor environments. ENVIRONMENTAL IMPLICATIONS: This study highlights significant environmental implications of pervasive polychlorinated alkanes (PCAs-C8-36) contamination in Tehran's kindergartens, highlighting their persistence and potential long-term ecological impacts. Despite cumulative exposure risks (HQs <1) via dust ingestion, dermal contact, and inhalation, the ubiquity of PCAs (∑PCAs-C10-20: 1370 ng/g dw) raises concerns about chronic low-dose exposure in vulnerable toddlers. The lack of correlation between contamination levels and environmental/indoor factors suggests complex, unidentified emission sources. These findings emphasize the need for proactive regulatory measures to mitigate CP releases and prioritize indoor environmental quality, particularly in child-centric settings. Further research is critical to identify exposure pathways and inform policies safeguarding public health against persistent organic pollutants.
Collapse
Affiliation(s)
- Shanshan Yin
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou 310015, China; Toxicological Centre, University of Antwerp, Universiteitsplein 1, Wilrijk 2610, Belgium
| | - Adam Cseresznye
- Toxicological Centre, University of Antwerp, Universiteitsplein 1, Wilrijk 2610, Belgium
| | | | - Stijn Bosschaerts
- Toxicological Centre, University of Antwerp, Universiteitsplein 1, Wilrijk 2610, Belgium
| | - Fatemeh Rajaei
- Department of Environmental Sciences, Faculty of Science, University of Zanjan, Zanjan 45371-38791, Iran
| | - Reza Dahmardeh Behrooz
- Department of Environmental Sciences, Faculty of Natural Resources, University of Zabol, Sistan, Zabol 98615-538, Iran
| | - Giulia Poma
- Toxicological Centre, University of Antwerp, Universiteitsplein 1, Wilrijk 2610, Belgium
| | - Xuanchen Liu
- Interdisciplinary Research Academy (IRA), Zhejiang Shuren University, Hangzhou 310015, China
| | - Adrian Covaci
- Toxicological Centre, University of Antwerp, Universiteitsplein 1, Wilrijk 2610, Belgium.
| |
Collapse
|
5
|
Xia K, Qin M, Han M, Zhang X, Wu X, Liu M, Liu S, Wang X, Liu W, Xie Z, Yuan R, Liu Q. Elucidating the size distribution of p‑Phenylenediamine-Derived quinones in atmospheric particles. ENVIRONMENT INTERNATIONAL 2025; 197:109329. [PMID: 39978217 DOI: 10.1016/j.envint.2025.109329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 01/16/2025] [Accepted: 02/11/2025] [Indexed: 02/22/2025]
Abstract
Transformed from p-phenylenediamines (PPDs) antioxidant, PPD-derived quinones (PPD-Qs) have recently been recognized as emerging contaminants due to their potential negative impacts on the environment and human health. While there have been measurements of airborne PPD-Qs, the size distribution of PPD-Qs and the impact of particle size on PPD transformation chemistry remain largely unknown. Here, through the measurements of atmospheric particles in three megacities in China (Beijing, Xi'an, and Hefei), we find that PPD-Qs are widely distributed in these cities. Further analysis of the size-fractioned particles in Hefei indicates that 48 % of PPD-Qs reside in coarse particles. Given that previous studies mainly focus on the measurement of PPD-Qs in fine particles, the previously reported PPD-Q concentrations and the corresponding human exposure dosages are likely to be significantly underestimated. Furthermore, the ratio of PPD-Q to PPD concentration (PPD-Q/PPD) for particles with size range of 0.056 - 0.1 μm is up to 3 times higher than that with size range of 10 - 18 μm, highlighting the key role of particle size in determining the atmospheric oxidation reactivity of PPDs. Model simulations reveal a size-dependent pattern for the estimated concentration of particulate PPD-Qs in human body. In addition, we also demonstrate that PPD-Qs can induce the formation of cellular reactive oxygen species, suggesting that they may pose risks to human health. Overall, our results emphasize the importance of considering the particle size effect when evaluating the reaction potential and exposure risk of airborne PPD-Qs.
Collapse
Affiliation(s)
- Kaihui Xia
- Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China; State Key Laboratory of Fire Science, University of Science and Technology of China, Hefei 230026, China
| | - Meng Qin
- Department of Chemistry and Biochemistry, Concordia University, 7141 Sherbrooke Street West, Montreal, QC H4B 1R6, Canada
| | - Mingming Han
- Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China; Department of Anesthesiology, The First Affliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China
| | - Xianming Zhang
- Department of Chemistry and Biochemistry, Concordia University, 7141 Sherbrooke Street West, Montreal, QC H4B 1R6, Canada
| | - Xiaoguo Wu
- Anhui Provincial Engineering Laboratory of Water and Soil Pollution Control and Remediation, School of Ecology and Environment, Anhui Normal University, Wuhu, Anhui 241002, China
| | - Mingyuan Liu
- Division of Ambient Air Monitoring, China National Environmental Monitoring Centre, Beijing 100012, China
| | - Shang Liu
- Department of Civil and Environmental Engineering, Northeastern University, Boston, MA, USA
| | - Xinkai Wang
- Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Wei Liu
- Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Zhouqing Xie
- Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China; State Key Laboratory of Fire Science, University of Science and Technology of China, Hefei 230026, China
| | - Renmin Yuan
- School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026, China
| | - Qifan Liu
- Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China; State Key Laboratory of Fire Science, University of Science and Technology of China, Hefei 230026, China; Beijing National Laboratory for Molecular Sciences (BNLMS), Beijing 100190, China.
| |
Collapse
|
6
|
Cheng Y, Fei Y, Xu Z, Huang R, Jiang Y, Sun L, Wang X, Yu S, Luo Y, Mao X, Zhao X. Associations Between Brominated Flame Retardant Exposure and Depression in Adults: A Cross-Sectional Study. TOXICS 2024; 12:918. [PMID: 39771133 PMCID: PMC11728815 DOI: 10.3390/toxics12120918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 12/15/2024] [Accepted: 12/16/2024] [Indexed: 01/16/2025]
Abstract
BACKGROUND Brominated flame retardants (BFRs) are a type of widespread pollutant that can be transmitted through particulate matter, such as dust in the air, and have been associated with various adverse health effects, such as diabetes, metabolic syndrome, and cardiovascular disease. However, there is limited research on the link between exposure to mixtures of BFRs and depression in the general population. METHODS To analyze the association between exposure to BFRs and depression in the population, nationally representative data from the National Health and Nutrition Examination Survey (NHANES; 2005-2016) were used. In the final analysis, a total of 8138 adults aged 20 years and older were included. To investigate the potential relationship between BFRs and outcomes, we used binary logistic regression, restricted cubic spline (RCS), quantile-based g computation (QGC), and weighted quantile sum (WQS) regression. RESULTS The findings showed that serum BFR concentrations were associated with depressive symptoms over a broad spectrum. Binary logistic regression and RCS analysis showed that certain BFRs, particularly PBB153, were significantly and positively associated with the incidence of depression, even after adjustment for various confounders (p < 0.05). Mixed exposure to BFRs was also found to be associated with depression in the population, with a stronger association in men. The two most influential BFRs, PBB153 and PBDE85, were identified in both mixed exposure models and are potential risk factors of concern. CONCLUSION Our study identified new insights into the relationship between BFRs and depression, but sizable population-based cohort studies and toxicology mechanism studies will be needed to establish causality.
Collapse
Affiliation(s)
- Yulan Cheng
- Affiliated Haimen Hospital of Xinglin College, Nantong University, Nantong 226019, China;
- Nantong Key Laboratory of Environmental Toxicology, Department of Occupational Medicine and Environmental Toxicology, School of Public Health, Nantong University, Nantong 226019, China; (Y.F.); (Z.X.); (Y.J.); (X.W.); (S.Y.)
| | - Yue Fei
- Nantong Key Laboratory of Environmental Toxicology, Department of Occupational Medicine and Environmental Toxicology, School of Public Health, Nantong University, Nantong 226019, China; (Y.F.); (Z.X.); (Y.J.); (X.W.); (S.Y.)
| | - Zemin Xu
- Nantong Key Laboratory of Environmental Toxicology, Department of Occupational Medicine and Environmental Toxicology, School of Public Health, Nantong University, Nantong 226019, China; (Y.F.); (Z.X.); (Y.J.); (X.W.); (S.Y.)
| | - Ruiyao Huang
- Department of Clinical Medicine, Nantong University Xinglin College, Nantong 226000, China;
| | - Yuling Jiang
- Nantong Key Laboratory of Environmental Toxicology, Department of Occupational Medicine and Environmental Toxicology, School of Public Health, Nantong University, Nantong 226019, China; (Y.F.); (Z.X.); (Y.J.); (X.W.); (S.Y.)
| | - Lihan Sun
- School of Medicine, Nantong University, Nantong 226001, China;
| | - Xuehai Wang
- Nantong Key Laboratory of Environmental Toxicology, Department of Occupational Medicine and Environmental Toxicology, School of Public Health, Nantong University, Nantong 226019, China; (Y.F.); (Z.X.); (Y.J.); (X.W.); (S.Y.)
| | - Shali Yu
- Nantong Key Laboratory of Environmental Toxicology, Department of Occupational Medicine and Environmental Toxicology, School of Public Health, Nantong University, Nantong 226019, China; (Y.F.); (Z.X.); (Y.J.); (X.W.); (S.Y.)
| | - Yonghua Luo
- Nantong Fourth People’s Hospital, Nantong 226019, China;
| | - Xiaobo Mao
- Affiliated Haimen Hospital of Xinglin College, Nantong University, Nantong 226019, China;
| | - Xinyuan Zhao
- Nantong Key Laboratory of Environmental Toxicology, Department of Occupational Medicine and Environmental Toxicology, School of Public Health, Nantong University, Nantong 226019, China; (Y.F.); (Z.X.); (Y.J.); (X.W.); (S.Y.)
| |
Collapse
|
7
|
Liang N, Cao R, Jiang N, Shi C, Guo Z, Gao Y, Zhang R, Zhang H, Chen J, Geng N. Occurrence and fate of atmospheric short/medium chain chlorinated paraffins: Size distribution and inhalation exposure. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176507. [PMID: 39341256 DOI: 10.1016/j.scitotenv.2024.176507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/20/2024] [Accepted: 09/23/2024] [Indexed: 09/30/2024]
Abstract
Chlorinated paraffins (CPs) are intricate industrial compounds synthesized through alkane chlorination. Researches on the size distribution of short-chain (SCCPs) and medium-chain chlorinated paraffins (MCCPs) in atmospheric particulate matter (PM) are limited. Here, we conducted a thorough investigation on the size-dependent distribution characteristics, deposition behavior in respiratory tract, and health risks associated with CPs in atmospheric PM. The concentration of SCCPs in atmospheric particulate matter (PM10) was much higher than MCCPs, with concentration ranges of 2.53-31.8 and 1.07-4.62 ng m-3, respectively. Concentrations of CPs increase with decreasing PM size, peaking at aerodynamic diameters (Dp) < 0.49 μm. Physicochemical properties influence the distribution of CP homologs in PM. Those with lower vapor pressure, higher octanol-air and octanol-water partition coefficients tended to accumulate in PM with larger geometric mean diameters. Most of the inhaled CPs in PM deposited in the upper airways, with a small amount in the trachea and alveolar regions. The estimated daily intakes values were highest when Dp < 0.49 μm. Particle size is an essential determinant for the deposition of inhaled CPs in PM and should be considered in health risk assessments.
Collapse
Affiliation(s)
- Naibing Liang
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; College of Ecology and Environment, Zhengzhou University, Zhengzhou 450001, China
| | - Rong Cao
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Nan Jiang
- College of Ecology and Environment, Zhengzhou University, Zhengzhou 450001, China
| | - Chengcheng Shi
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian 116026, China
| | - Zhangpeng Guo
- College of Ecology and Environment, Zhengzhou University, Zhengzhou 450001, China
| | - Yuan Gao
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Ruiqin Zhang
- College of Ecology and Environment, Zhengzhou University, Zhengzhou 450001, China
| | - Haijun Zhang
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Jiping Chen
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Ningbo Geng
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
| |
Collapse
|
8
|
Arko WE, Zhao S, Ma J, Tian L, Asante KA, Amoah DK, Qi S, Zhang G. Impact of anthropogenic activities on atmospheric chlorinated paraffins in Ghana using polyurethane foam disk - passive air sampler. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176252. [PMID: 39278497 DOI: 10.1016/j.scitotenv.2024.176252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 09/09/2024] [Accepted: 09/11/2024] [Indexed: 09/18/2024]
Abstract
Chlorinated paraffins (CPs) are a global concern due to their high production, ubiquity in the environment and potential toxicity. In Ghana, there is a significant research gap on the concentration and sources of CPs in the air, as well as insufficient regular monitoring programs to track CP levels over time. This study utilized polyurethane foam-based passive air samplers (PUF-PAS) to examine the concentrations, sources and potential human health risks of CPs in the atmosphere surrounding e-waste sites, urban areas, commercial areas and control/background areas in Ghana. The medium-chain CPs (MCCPs) dominated with an average concentration of 26.0 ± 40.1 ng/m3 and ranged from 1.78 to 240 ng/m3. Short-chain CPs (SCCPs) ranged from 0.05 to 15.2 ng/m3 and had an average concentration of 3.48 ± 3.99 ng/m3. The very short-chain CPs (C9-CPs), had an average concentration of 0.544 ± 0.524 ng/m3 and ranged from 0.091 to 2.14 ng/m3. MCCPs exceeded SCCPs by a factor of 7.5 and C9-CPs by a factor of 48. C14Cl8 was the dominant congener in MCCPs and C10Cl7 was also the dominant congener in SCCPs. E-waste was the main contributor to SCCPs and MCCPs (>30 %) in Ghana. The assessed non-cancer risks associated with CP exposure were within acceptable ranges. For cancer risk, MCCPs indicated high potential health risk but C9-CPs and SCCPs showed low risk. To the best of our knowledge, this is the first study on CPs in Ghana's atmosphere, and e-waste was identified as the country's main source of CPs. This study will help regulatory bodies create policies and procedures to control the use and disposal of chlorinated paraffins.
Collapse
Affiliation(s)
- William Ekow Arko
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430078, China; State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; CSIR Water Research Institute, P. O. Box AH 38, Achimota, Accra, Ghana
| | - Shizhen Zhao
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China.
| | - Jianchu Ma
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lele Tian
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | | | | | - Shihua Qi
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430078, China
| | - Gan Zhang
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| |
Collapse
|
9
|
Guo J, Chen Z, Chen X, Xu Z, Ruan J. Organophosphate flame retardants in air from formal e-waste recycling workshops in China: Size-distribution, gas-particle partitioning and exposure assessment. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 359:124593. [PMID: 39043313 DOI: 10.1016/j.envpol.2024.124593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 07/18/2024] [Accepted: 07/21/2024] [Indexed: 07/25/2024]
Abstract
In order to understand the organophosphate flame retardants (OPFRs) pollution and evaluate the inhalation exposure risk in formal e-waste recycling facilities, the air concentrations, particle size distribution and gas-particle partitioning of OPFRs in four typical workshops were investigated. The total Σ15OPFR concentrations inside workshops were in the range of 64.7-682 ng/m3, with 5.80-23.4 ng/m3 in gas phase and 58.8-658 ng/m3 in particle phase. Triphenyl phosphate (TPHP) and tris(2-chloroisopropyl) phosphate (TCIPP) were main analogs, both of which contributed to 49.0-85.7% of total OPFRs. In the waste printed circuit boards thermal treatment workshop, the OPFRs concentration was the highest, and particle-bound OPFRs mainly distributed in 0.7-1.1 μm particles. The proportions of TPHP in different size particles increased as the decrease of particle size, while TCIPP presented an opposite trend. The gas-particle partitioning of OPFR analogs was dominated by absorption process, and did not reach equilibrium state due to continuous emission of OPFRs from the recycling activities. The deposition fluxes of OPFRs in respiratory tract were 65.7-639 ng/h, and the estimated daily intake doses of OPFRs were 8.52-76.9 ng/(kg·day) in four workshops. Inhalation exposure was an important exposure pathway for e-waste recycling workers, and deposition fluxes of size-segregated OPFRs were mainly in head airways region.
Collapse
Affiliation(s)
- Jie Guo
- School of Environment and Architecture, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai, 200093, PR China; School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, PR China.
| | - Zhenyu Chen
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, PR China
| | - Xuan Chen
- School of Environment and Architecture, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai, 200093, PR China
| | - Zhenming Xu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, PR China
| | - Jujun Ruan
- School of Environmental Science and Engineering, Sun Yat-sen University, 135 West Xingang Road, Guangzhou, 510275, PR China
| |
Collapse
|
10
|
Radbel J, Rebuli ME, Kipen H, Brigham E. Indoor air pollution and airway health. J Allergy Clin Immunol 2024; 154:835-846. [PMID: 39182629 DOI: 10.1016/j.jaci.2024.08.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 08/20/2024] [Accepted: 08/20/2024] [Indexed: 08/27/2024]
Abstract
Because of the disproportionate amount of time that people spend indoors and the complexities of air pollutant exposures found there, indoor air pollution is a growing concern for airway health. Both infiltration of outdoor air pollution into the indoor space and indoor sources (such as smoke from tobacco products, cooking or heating practices and combustion of associated fuels, and household materials) contribute to unique exposure mixtures. Although there is substantial literature on the chemistry of indoor air pollution, research focused on health effects is only beginning to emerge and remains an important area of need to protect public health. We provide a review of emerging literature spanning the past 3 years and relating indoor air exposures to airway health, with a specific focus on the impact of either individual pollutant exposures or common combustion sources on the lower airways. Factors defining susceptibility and/or vulnerability are reviewed with consideration for priority populations and modifiable risk factors that may be targeted to advance health equity.
Collapse
Affiliation(s)
- Jared Radbel
- Division of Pulmonary and Critical Care Medicine, Rutgers Robert Wood Johnson University, New Brunswick, NJ
| | - Meghan E Rebuli
- Department of Pediatrics and Center for Environmental Medicine, Asthma and Lung Biology, University of North Carolina, Chapel Hill, NC
| | - Howard Kipen
- Department of Environmental and Occupational Health and Justice, Rutgers University, Piscataway, NJ
| | - Emily Brigham
- Division of Respirology, University of British Columbia, Vancouver, British Columbia, Canada; Vancouver Coastal Health Research Institute, Vancouver, British Columbia, Canada.
| |
Collapse
|
11
|
Zhou T, Yang Q, Weng J, Gao L, Liu Y, Xu M, Zhao B, Zheng M. Characterization and health risks of short- and medium-chain chlorinated paraffins in the gas and size-fractionated particulate phases in ambient air. CHEMOSPHERE 2024; 358:142225. [PMID: 38705415 DOI: 10.1016/j.chemosphere.2024.142225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 04/29/2024] [Accepted: 05/01/2024] [Indexed: 05/07/2024]
Abstract
Short-chain and medium-chain chlorinated paraffins (SCCPs and MCCPs) have garnered significant attention because they have persistence and potential toxicity, and can undergo long-distance transport. Chlorinated paraffins (CPs) inhaled in the size-fractionated particulate phase and gas phase can carry different risks to human health due to their ability to accumulate in different regions of the respiratory tract and exhibit varying deposition efficiencies. In our study, large-volume ambient air samples in both the size-fractionated particulate phase (Dp < 1.0 μm, 1.0-2.5 μm, 2.5-10 μm, and Dp ≥ 10 μm) and gas phase were collected simultaneously in Beijing using an active sampler. The overall levels of SCCPs and MCCPs were relatively high, the ranges being 57-881 and 30-385 ng/m3, respectively. SCCPs tended to be partitioned in the gas phase (on average 75% of the ΣSCCP concentration), while MCCPs tended to be partitioned in the particulate phase (on average 62% of the ΣMCCP concentration). Significant correlations were discovered between the logarithm-transformed gas-particle partition coefficients (KP) and predicted subcooled vapor pressures (PL0) (p < 0.01 for SCCPs and MCCPs) and between the logarithm-transformed KP values and octanol-air partition coefficients (KOA) (p < 0.01 for SCCPs and MCCPs). Thus, the slopes indicated that organic matter absorption was the dominant process involved in gas-particle partitioning. We used the ICRP model to calculate deposition concentrations for particulate-associated CPs in head airways region (15.6-71.4 ng/m³), tracheobronchial region (0.8-4.8 ng/m³), and alveolar region (5.1-21.9 ng/m³), then combined these concentrations with the CP concentrations in the gas phase to calculate estimated daily intakes (EDIs) for inhalation. The EDIs for SCCPs and MCCPs through inhalation of ambient air for the all-ages group were 67.5-184.2 ng/kg/day and 19.7-53.7 ng/kg/day, respectively. The results indicated that SCCPs and MCCPs in ambient air do not currently pose strong risks to human health in the study area.
Collapse
Affiliation(s)
- Tingting Zhou
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310000, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qianling Yang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310000, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jiyuan Weng
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lirong Gao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310000, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Yin Liu
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310000, China
| | - Ming Xu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310000, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Bin Zhao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310000, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Minghui Zheng
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310000, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
12
|
Qadeer A, Mubeen S, Liu M, Bekele TG, Ohoro CR, Adeniji AO, Alraih AM, Ajmal Z, Alshammari AS, Al-Hadeethi Y, Archundia D, Yuan S, Jiang X, Wang S, Li X, Sauvé S. Global environmental and toxicological impacts of polybrominated diphenyl ethers versus organophosphate esters: A comparative analysis and regrettable substitution dilemma. JOURNAL OF HAZARDOUS MATERIALS 2024; 466:133543. [PMID: 38262318 DOI: 10.1016/j.jhazmat.2024.133543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 01/13/2024] [Accepted: 01/15/2024] [Indexed: 01/25/2024]
Abstract
The prevalence of organophosphate esters (OPEs) in the global environment is increasing, which aligns with the decline in the usage of polybrominated diphenyl ethers (PBDEs). PBDEs, a category of flame retardants, were banned and classified as persistent organic pollutants (POPs) through the Stockholm Convention due to their toxic and persistent properties. Despite a lack of comprehensive understanding of their ecological and health consequences, OPEs were adopted as replacements for PBDEs. This research aims to offer a comparative assessment of PBDEs and OPEs in various domains, specifically focusing on their persistence, bioaccumulation, and toxicity (PBT) properties. This study explored physicochemical properties (such as molecular weight, octanol-water partition coefficient, octanol-air partition coefficient, Henry's law constant, and vapor pressures), environmental behaviors, global concentrations in environmental matrices (air, water, and soil), toxicities, bioaccumulation, and trophic transfer mechanisms of both groups of compounds. Based on the comparison and analysis of environmental and toxicological data, we evaluate whether OPEs represent another instance of regrettable substitution and global contamination as much as PBDEs. Our findings indicate that the physical and chemical characteristics, environmental behaviors, and global concentrations of PBDEs and OPEs, are similar and overlap in many instances. Notably, OPE concentrations have even surged by orders of several magnitude compared to PBDEs in certain pristine regions like the Arctic and Antarctic, implying long-range transport. In many instances, air and water concentrations of OPEs have been increased than PBDEs. While the bioaccumulation factors (BAFs) of PBDEs (ranging from 4.8 to 7.5) are slightly elevated compared to OPEs (-0.5 to 5.36) in aquatic environments, both groups of compounds exhibit BAF values beyond the threshold of 5000 L/kg (log10 BAF > 3.7). Similarly, the trophic magnification factors (TMFs) for PBDEs (ranging from 0.39 to 4.44) slightly surpass those for OPEs (ranging from 1.06 to 3.5) in all cases. Metabolic biotransformation rates (LogKM) and hydrophobicity are potentially major factors deciding their trophic magnification potential. However, many compounds of PBDEs and OPEs show TMF values higher than 1, indicating biomagnification potential. Collectively, all data suggest that PBDEs and OPEs have the potential to bioaccumulate and transfer through the food chain. OPEs and PBDEs present a myriad of toxicity endpoints, with notable overlaps encompassing reproductive issues, oxidative stress, developmental defects, liver dysfunction, DNA damage, neurological toxicity, reproductive anomalies, carcinogenic effects, and behavior changes. Based on our investigation and comparative analysis, we conclude that substituting PBDEs with OPEs is regrettable based on PBT properties, underscoring the urgency for policy reforms and effective management strategies. Addressing this predicament before an exacerbation of global contamination is imperative.
Collapse
Affiliation(s)
- Abdul Qadeer
- State Key Laboratory of Environmental Criteria and Risk Assessment, National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, State Environmental Protection Key Laboratory for Lake Pollution Control, Chinese Research Academy of Environmental Science, Beijing, China.
| | - Sidra Mubeen
- State Key Laboratory of Environmental Criteria and Risk Assessment, National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, State Environmental Protection Key Laboratory for Lake Pollution Control, Chinese Research Academy of Environmental Science, Beijing, China; Faculty of Computer Science and Information Technology, Superior University Lahore, Pakistan
| | - Mengyang Liu
- State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong 999077, Hong Kong SAR China
| | - Tadiyose Girma Bekele
- Department of Biology, Eastern Nazarene College, 23 East Elm Avenue, Quincy, MA 02170, USA
| | - Chinemerem R Ohoro
- Water Research Group, Unit for Environmental Sciences and Management, North, West University, Potchefstroom 2520, South Africa
| | - Abiodun O Adeniji
- Department of Chemistry and Chemical Technology, Faculty of Science and Technology, National University of Lesotho, Lesotho
| | - Alhafez M Alraih
- Department of Chemistry, College of Science and Arts, Mohail Aseer, King Khalid University, Saudi Arabia
| | - Zeeshan Ajmal
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, Zhejiang, PR China
| | - Ahmad S Alshammari
- King Abdulaziz City for Science and Technology (KACST), Riyadh 11442, Saudi Arabia
| | - Yas Al-Hadeethi
- Physics Department, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Denisse Archundia
- Instituto de Geología, Universidad Nacional Autónoma de México, Coyoacán, CDMX, México 04510, Mexico
| | - Shengwu Yuan
- State Key Laboratory of Environmental Criteria and Risk Assessment, National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, State Environmental Protection Key Laboratory for Lake Pollution Control, Chinese Research Academy of Environmental Science, Beijing, China
| | - Xia Jiang
- State Key Laboratory of Environmental Criteria and Risk Assessment, National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, State Environmental Protection Key Laboratory for Lake Pollution Control, Chinese Research Academy of Environmental Science, Beijing, China.
| | - Shuhang Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, State Environmental Protection Key Laboratory for Lake Pollution Control, Chinese Research Academy of Environmental Science, Beijing, China.
| | - Xixi Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, State Environmental Protection Key Laboratory for Lake Pollution Control, Chinese Research Academy of Environmental Science, Beijing, China.
| | - Sébastien Sauvé
- Department of Chemistry, Université de Montréal, Campus MIL, 1375 Av. Thérèse-Lavoie-Roux, Montréal H2V 0B3, QC, Canada
| |
Collapse
|
13
|
Li Q, Cheng L, Jin X, Liu L, Shangguan J, Chang S, Sun R, Shang Y, Lv Q, Li J, Zhang G. Chlorinated paraffins in multimedia during residential interior finishing: Occurrences, behavior, and health risk. ENVIRONMENT INTERNATIONAL 2023; 178:108072. [PMID: 37406371 DOI: 10.1016/j.envint.2023.108072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 06/26/2023] [Accepted: 06/27/2023] [Indexed: 07/07/2023]
Abstract
Though with bioaccumulation and toxicity, chlorinated paraffins (CPs) are still high produced and widely utilized in various daily necessities for extender plasticization and flame retardation. CPs can be released during the reprocessing processes of finishing materials and distributed in multi-environmental media. Herein, concentrations and compositions of CPs in four representative media including interior finishing materials, PM10, total suspended particulate (TSP), and dust samples collected from eight interior finishing stages were studied. Unexpectedly, CP concentrations in ceramic tiles was found to be high with a mean value of 7.02 × 103 μg g-1, which could be attributed to the presence of CPs in the protective wax coated on ceramic tiles surfaces. Furthermore, the pollution characteristics of short-chain and medium-chain CPs (SCCPs and MCCPs) in those samples were inconsistent. According to the investigation regarding Kdust-TSP and [Formula: see text] , the occurrence and distribution of CPs in indoor atmospheric particles (PM10 and TSP) and dust were highly affected by reprocessing processes (cutting, hot melting, etc.) compared to that in the finishing materials. Moreover, dermal contact was the primary pathway of CP exposure for the occupational population (interior construction workers) for most interior finishing stages, and the interior finishing process is the prime CP exposure period for the occupational groups. As suggested by our assessment, though hardly posing an immediate health risk, CPs exposure still presents unneglected adverse health effects, which calls for adequate personal protections during interior finishing, especially in developing countries.
Collapse
Affiliation(s)
- Qilu Li
- School of Environment, Henan Normal University, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Xinxiang, Henan 453007, China.
| | - Lei Cheng
- School of Environment, Henan Normal University, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Xinxiang, Henan 453007, China
| | - Xinjie Jin
- School of Environment, Henan Normal University, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Xinxiang, Henan 453007, China
| | - Linjie Liu
- School of Environment, Henan Normal University, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Xinxiang, Henan 453007, China
| | - Jingfang Shangguan
- School of Pharmacy, Xinxiang Medical University, Xinxiang, Henan 453003, China.
| | - Shixiang Chang
- School of Environment, Henan Normal University, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Xinxiang, Henan 453007, China
| | - Ruoxi Sun
- School of Environment, Henan Normal University, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Xinxiang, Henan 453007, China
| | - Yihan Shang
- School of Environment, Henan Normal University, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Xinxiang, Henan 453007, China
| | - Qing Lv
- Institute of Industrial and Consumer Product Safety, Chinese Academy of Inspection and Quarantine, Beijing 100176, China
| | - Jun Li
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Gan Zhang
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| |
Collapse
|
14
|
Xue Q, Liu X, Tian Y, Feng Y. Variations of inhalation risks during different heavy pollution episodes based on 3-year measurement of toxic components in size-segregated particles. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 880:163234. [PMID: 37019225 DOI: 10.1016/j.scitotenv.2023.163234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 03/20/2023] [Accepted: 03/29/2023] [Indexed: 05/27/2023]
Abstract
Toxic metals (TMs) and polycyclic aromatic hydrocarbons (PAHs) in size-segregated particles during common days (CD) and different heavy pollution (HP) episodes were measured during 2018-2021 in a Chinese megacity. The Multiple Path Particle Dosimetry Model (MPPD) was performed to estimate deposition efficiency, and then inhalation risks in the human pulmonary region during different types of HP were assessed and compared. The higher pulmonary deposition efficiency of PAHs and TMs during all types of HP than those during CD was confirmed. The accumulative incremental lifetime cancer risk (ILCR) of different HP were 2.42 × 10-5, 1.52 × 10-5, 1.39 × 10-5, 1.30 × 10-5 and 2.94 × 10-6 for HP4 (combustion sources HP), HP1 (ammonium nitrate HP), HP5 (mixed sources HP), HP3 (resuspended dust HP) and HP2 (ammonium sulfate HP), respectively. The accumulative hazard quotient (HQ) during different HP episodes decreased in the order of HP4 (0.32) > HP3 (0.24) > HP1 (0.22) > HP5 (0.18) > HP2 (0.05). The inhalation risks were dominated by Ni and Cr, what's more, the HQ of Ni and ILCR of Cr during the five HP episodes shared a similar size distribution pattern. However, the characteristic components during different HP episodes and their size distributions of them were distinctive. The size distribution of inhalation risks of the related components (Ni, Cr, BaP, and As) from the combustion process during HP4 peaked at fine mode (0.65-2.1 μm). The size distribution of inhalation risks of the dust-related components (Mn and V) and the components (As and BaP) that are likely to volatilize and re-distribution peaked at coarse mode (2.1-3.3 μm) during HP3. Notably, Mn and Co as catalysts at fine mode could increase the degree of secondary formation and toxicity.
Collapse
Affiliation(s)
- Qianqian Xue
- The State Environmental Protection Key Laboratory of Urban Air Particulate Matter Pollution Prevention and Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Xinyi Liu
- The State Environmental Protection Key Laboratory of Urban Air Particulate Matter Pollution Prevention and Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Yingze Tian
- The State Environmental Protection Key Laboratory of Urban Air Particulate Matter Pollution Prevention and Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; CMA-NKU Cooperative Laboratory for Atmos. Environ.-Health Research (CLAER/CMA-NKU), Tianjin 300350, China.
| | - Yinchang Feng
- The State Environmental Protection Key Laboratory of Urban Air Particulate Matter Pollution Prevention and Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; CMA-NKU Cooperative Laboratory for Atmos. Environ.-Health Research (CLAER/CMA-NKU), Tianjin 300350, China
| |
Collapse
|
15
|
Yin S, McGrath TJ, Cseresznye A, Bombeke J, Poma G, Covaci A. Assessment of silicone wristbands for monitoring personal exposure to chlorinated paraffins (C 8-36): A pilot study. ENVIRONMENTAL RESEARCH 2023; 224:115526. [PMID: 36813067 DOI: 10.1016/j.envres.2023.115526] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/17/2023] [Accepted: 02/18/2023] [Indexed: 06/18/2023]
Abstract
Chlorinated paraffins (CPs) are a major environmental concern due to their ubiquitous presence in the environment. Since human exposure to CPs can significantly differ among individuals, it is essential to have an effective tool for monitoring personal exposure to CPs. In this pilot study, silicone wristbands (SWBs) were employed as a personal passive sampler to measure time-weighted average exposure to CPs. Twelve participants were asked to wear a pre-cleaned wristband for a week during the summer of 2022, and three field samplers (FSs) in different micro-environments were also deployed. The samples were then analyzed for CP homologs by LC-Q-TOFMS. In worn SWBs, the median concentrations of quantifiable CP classes were 19 ng/g wb, 110 ng/g wb, and 13 ng/g wb for ∑SCCPs, ∑MCCPs, and ∑LCCPs (C18-20), respectively. For the first time, lipid content is reported in worn SWBs, which could be a potential impact factor in the kinetics of the accumulation process for CPs. Results showed that micro-environments were key contributors to dermal exposure to CPs, while a few outliers suggested other sources of exposure. CP exposure via dermal contact showed an increased contribution and thus poses a nonnegligible potential risk to humans in daily life. Results presented here provide proof of concept of the use of SWBs as a cheap and non-invasive personal sampler in exposure studies.
Collapse
Affiliation(s)
- Shanshan Yin
- Toxicological Centre, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Belgium; Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy (IRA), Zhejiang Shuren University, Hangzhou, 310015, China.
| | - Thomas J McGrath
- Toxicological Centre, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Belgium
| | - Adam Cseresznye
- Toxicological Centre, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Belgium
| | - Jasper Bombeke
- Toxicological Centre, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Belgium
| | - Giulia Poma
- Toxicological Centre, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Belgium
| | - Adrian Covaci
- Toxicological Centre, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Belgium.
| |
Collapse
|
16
|
Huang J, Zhao L, Shi Y, Zeng X, Sun W, Zhao X, Liu R, Wu Q, Dong G, Chen D, Liu X. Characterization of short-, medium- and long-chain chlorinated paraffins in ambient PM 2.5 from the Pearl River Delta, China. ENVIRONMENT INTERNATIONAL 2023; 175:107932. [PMID: 37116426 DOI: 10.1016/j.envint.2023.107932] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 03/08/2023] [Accepted: 04/11/2023] [Indexed: 05/22/2023]
Abstract
Research on the environmental occurrence of long-chain chlorinated paraffins (LCCPs) in ambient fine particulate matter (PM2.5) is still scarce. In the present study, short-chain chlorinated paraffins (SCCPs), medium-chain chlorinated paraffins (MCCPs) and LCCPs were simultaneously quantified and profiled in PM2.5 samples collected from 96 primary or secondary schools in the Pearl River Delta of South China. SCCPs, MCCPs and LCCPs were detected in higher than 90% samples with concentrations in the range of 0.832-109, 1.02-110, and 0.173-17.4 ng/m3, respectively. The dominant congener groups of SCCPs, MCCPs and LCCPs were C13Cl6-8, C14Cl7-8, and C18Cl7-9, respectively. The concentrations of SCCPs and MCCPs were higher in summer than in winter, while an opposite seasonal trend was observed for LCCPs. Principal components analysis showed there were seasonal variations in the congener group patterns with C13Cl6-7 and C14Cl7 more abundant in summer than in winter. Concentrations of CPs also exhibited slight spatial variations. Exposure risk assessment based on different age groups suggested exposure to PM2.5-associated CPs would not pose significant health risk. The present study expands the existing knowledge of CPs contamination in atmospheric environment.
Collapse
Affiliation(s)
- Jingwen Huang
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Lei Zhao
- School of Environment and Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China
| | - Yumeng Shi
- School of Environment and Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China
| | - Xiaowen Zeng
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Wenwen Sun
- SCIEX (China) Co., Ltd., Guangzhou 510623, China
| | | | - Ruqing Liu
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Qizhen Wu
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Guanghui Dong
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Da Chen
- School of Environment and Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China
| | - Xiaotu Liu
- School of Environment and Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
17
|
Chen L, Yin Q, Xu L, Hua M, Zhang Z, Xu Y, Xia W, Qian H, Hong J, Jin J. Serum polybrominated diphenyl ether exposure and influence factors in blood donors of Wuxi adults from 2013 to 2016. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:63932-63940. [PMID: 37055693 DOI: 10.1007/s11356-023-26802-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 03/30/2023] [Indexed: 04/15/2023]
Abstract
Polybrominated diphenyl ethers (PBDEs) have been used as brominated flame retardants worldwide and are correlated with extensive environmental pollution and human health concerns. This study is aimed at analyzing the concentrations of PBDEs and at evaluating their temporal trends among a population of blood donors (n = 33) over a 4-year period. A total of 132 serum samples were used for PBDE detection. Nine PBDE congeners were quantified in serum samples by gas chromatography with mass spectrometry (GC-MS). The median concentrations of Σ9PBDEs in each year were 33.46, 29.75, 30.85, and 35.02 ng/g lipid, respectively. Most of the PBDE congeners showed a downward trend from 2013 to 2014 and then increased after 2014. No correlations between age and PBDE congener concentrations were observed, while concentrations of each congener and Σ9PBDE were nearly always lower in females than in males, especially in BDE-66, BDE-153, BDE-183, BDE-190, and Σ9PBDE. We also found that the intake of fish, fruit, and eggs in the daily diet was related to the exposure level of PBDEs. Our results suggest that, as deca-BDE is still produced and used in China, diet is an important exposure pathway for PBDEs, and follow-up studies will be required to improve our understanding of the behaviors of PBDE isomers in humans and the exposure levels.
Collapse
Affiliation(s)
- Limei Chen
- Department of Environmental Health, The Affiliated Wuxi Center for Disease Control and Prevention of Nanjing Medical University, Wuxi Center for Disease Control and Prevention, Wuxi, China.
- Research Base for Environment and Health in Wuxi, Chinese Center for Disease Control and Prevention, Wuxi, 214023, China.
| | - Qitao Yin
- Wuxi Maternal and Child Health Care Hospital, No. 48, Huaishu Lane, Wuxi, 214002, China
| | - Lu Xu
- Wuxi Blood Center, Wuxi, 214021, China
| | - Minyu Hua
- Wuxi Blood Center, Wuxi, 214021, China
| | | | - Yuqian Xu
- Wuxi Blood Center, Wuxi, 214021, China
| | - Wei Xia
- Wuxi Blood Center, Wuxi, 214021, China
| | | | - Jun Hong
- Wuxi Blood Center, Wuxi, 214021, China
| | - Jun Jin
- College of Life and Environment Sciences, Minzu University of China, Beijing, 100081, China
| |
Collapse
|
18
|
Fan Q, Chen H, Liao Q, Zhang C, Ding Y, Zou X, Fu G. Distribution of organophosphate ester fractions in sediment of the Eastern China Marginal Seas and the influencing factors. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:23810-23819. [PMID: 36329246 DOI: 10.1007/s11356-022-23921-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 10/26/2022] [Indexed: 06/16/2023]
Abstract
Organic pollutant fractions should be closely investigated because of their different ecological risks. In this study, we examined the distribution of organophosphate ester (OPE) fractions (labile, stable-adsorbed, and tight-adsorbed fractions) in sediments from Eastern China Marginal Seas (ECMSs) and assessed the influencing factor of the fractions. The mean values of total OPEs in ECMSs are 13.70 ± 6.16 μg L-1 in seawater and 32.04 ± 14.31 μg kg-1 in sediment. The results showed that OPE concentration decreased from the northern to the southern ECMSs, and tris(1-chloro-2-propyl) phosphate and tris(1,3-dichloro-2-propyl) phosphate were the primary OPEs. The mean contents of labile, stable-adsorbed, and tight-adsorbed fractions in the ECMSs were 9.50, 11.29, and 11.71 μg kg-1, respectively. Labile OPEs were predominant in offshore waters; the percentage of stable- and tight-adsorbed fractions increased progressively with offshore distance in ECMSs. The specific surface area and surface functional groups of sediment were not consistent with the fraction concentrations from the correlation coefficient, but the gross domestic product per coastline agreed well with the fraction distribution. Based on this, we conclude that human activity, rather than physicochemical characteristics of sediments, may be the primary influencing factor of the relative distribution of different OPE concentration fractions in ECMSs.
Collapse
Affiliation(s)
- Qinya Fan
- School of Geography and Ocean Science, Nanjing University, Nanjing, 210023, China
- Ministry of Education Key Laboratory for Coast and Island Development, Nanjing University, Nanjing, 210023, China
- Collaborative Innovation Center of South China Sea Studies, Nanjing University, Nanjing, 210023, China
| | - Hongyu Chen
- School of Geography and Ocean Science, Nanjing University, Nanjing, 210023, China
| | - Qihang Liao
- School of Geography and Ocean Science, Nanjing University, Nanjing, 210023, China
| | - Chuchu Zhang
- School of Geography and Ocean Science, Nanjing University, Nanjing, 210023, China
| | - Yongcheng Ding
- School of Geography and Ocean Science, Nanjing University, Nanjing, 210023, China
| | - Xinqing Zou
- School of Geography and Ocean Science, Nanjing University, Nanjing, 210023, China.
- Ministry of Education Key Laboratory for Coast and Island Development, Nanjing University, Nanjing, 210023, China.
- Collaborative Innovation Center of South China Sea Studies, Nanjing University, Nanjing, 210023, China.
| | - Guanghe Fu
- School of Geography and Ocean Science, Nanjing University, Nanjing, 210023, China
| |
Collapse
|
19
|
Li Q, Jiang S, Li Y, Su J, Shangguan J, Zhan M, Wang Y, Su X, Li J, Zhang G. The impact of three related emission industries on regional atmospheric chlorinated paraffins pollution. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 316:120564. [PMID: 36336184 DOI: 10.1016/j.envpol.2022.120564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/23/2022] [Accepted: 10/29/2022] [Indexed: 06/16/2023]
Abstract
Identifying the contributions of various chlorinated paraffins (CPs) sources in the environment plays an important practical role in the prevention and control of the CPs contamination. However, little is known about how main CP-related emission industries affect the regional atmospheric characteristics of CPs, including CP products industry, metal working industry, and polyvinyl chloride (PVC) industry. In this study, 60 passive air samples were collected from five typical cities in Henan Province, China, which had serious CP pollution and different structures of CP-related emission industry. Short chain CPs (SCCPs) and medium chain CPs (MCCPs) were detected in all samples in concentrations ranging of 2.6-7.7 × 102 and 2.1-4.3 × 102 ng m-3, respectively, which were higher than those in most reports. Moreover, Luoyang (LY) is different from other cities, showing a relatively severe MCCP contaminations. The CP pollution characteristics between different cities are obviously affected by the proportion of local CP-related industries. According to the results of cluster heatmaps, the local CP-related emission industrial structure had a greater impact on MCCPs pollution than SCCPs. Additionally, the contribution of metal working industry was beyond that of PVC production industry and CP products industry.
Collapse
Affiliation(s)
- Qilu Li
- School of Environment, Henan Normal University, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Xinxiang, Henan, 453007, PR China.
| | - Shanshan Jiang
- School of Environment, Henan Normal University, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Xinxiang, Henan, 453007, PR China
| | - Yajing Li
- School of Environment, Henan Normal University, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Xinxiang, Henan, 453007, PR China
| | - Jingjing Su
- School of Environment, Henan Normal University, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Xinxiang, Henan, 453007, PR China
| | - Jingfang Shangguan
- School of Pharmacy, Xinxiang Medical University, Xinxiang, Henan, 453003, China
| | - Mengdi Zhan
- School of Environment, Henan Normal University, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Xinxiang, Henan, 453007, PR China
| | - Yan Wang
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | - Xianfa Su
- School of Environment, Henan Normal University, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Xinxiang, Henan, 453007, PR China
| | - Jun Li
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
| | - Gan Zhang
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
| |
Collapse
|