1
|
Li Y, Wang Z, Tai G, Wang Q, Yang Z, Sun J. Mechanically Robust Nafion-Based Anhydrous Proton Exchange Membranes with High Proton Conductivity and Efficient In Situ Self-Healing Capacities. Macromol Rapid Commun 2025:e2500291. [PMID: 40350960 DOI: 10.1002/marc.202500291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2025] [Revised: 04/27/2025] [Indexed: 05/14/2025]
Abstract
There is increasing demand for self-healing high-temperature proton exchange membranes (HT-PEMs) with superior mechanical robustness and proton conductivity. In this study, the fabrication of mechanically robust HT-PEMs (denoted as N-IL-PW) is demonstrated by integrating high proton conductivity and the ability to in situ heal fatigue and damage during operation via the complexation of Nafion, phosphotungstic acid (PW) clusters, and ionic liquids (ILs). Originating from the synergistic effect of high-density electrostatic interactions as well as hydrogen bonds in ionic domains and stable crystalline domains, the N-IL-PW membranes are highly resilient and fatigue resistant, and display excellent creep resistance even at 170 °C. Under an anhydrous condition of ≈170 °C, the N-IL-PW membranes have a high proton conductivity of ≈18.86 mS cm-1. Meanwhile, the hydrogen-powered HT-PEM fuel cells assembled with N-IL-PW membranes exhibit good cell performance under an anhydrous condition of ≈120 °C. More importantly, the reversibility of electrostatic and hydrogen bonding interactions enables the membranes in situ to heal fatigue and mechanical damages under fuel cell operation conditions. Healed membranes can regain their pristine mechanical properties, proton conductivity, hydrogen barrier property, and cell performance. Excellent high-temperature creep resistance, fatigue resistance, and healing capability can work in concert to enhance the reliability of N-IL-PW membranes.
Collapse
Affiliation(s)
- Yixuan Li
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Zheyi Wang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Guitian Tai
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Qinghao Wang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Zhuo Yang
- China Energy Engineering Group Hydrogen Energy Co. Ltd., Beijing, 100000, P. R. China
| | - Junqi Sun
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| |
Collapse
|
2
|
Zhou Y, Wang B, Ling Z, Liu Q, Fu X, Zhang Y, Zhang R, Hu S, Zhao F, Li X, Bao X, Yang J. Advances in ionogels for proton-exchange membranes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 921:171099. [PMID: 38387588 DOI: 10.1016/j.scitotenv.2024.171099] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 01/29/2024] [Accepted: 02/17/2024] [Indexed: 02/24/2024]
Abstract
To ensure the long-term performance of proton-exchange membrane fuel cells (PEMFCs), proton-exchange membranes (PEMs) have stringent requirements at high temperatures and humidities, as they may lose proton carriers. This issue poses a serious challenge to maintaining their proton conductivity and mechanical performance throughout their service life. Ionogels are ionic liquids (ILs) hybridized with another component (such as organic, inorganic, or organic-inorganic hybrid skeleton). This design is used to maintain the desirable properties of ILs (negligible vapor pressure, thermal stability, and non-flammability), as well as a high ionic conductivity and wide electrochemical stability window with low outflow. Ionogels have opened new routes for designing solid-electrolyte membranes, especially PEMs. This paper reviews recent research progress of ionogels in proton-exchange membranes, focusing on their electrochemical properties and proton transport mechanisms.
Collapse
Affiliation(s)
- Yilin Zhou
- Hubei Provincial Key Laboratory of Green Materials for Light Industry, School of Materials and Chemical Engineering, Hubei University of Technology, Wuhan 430068, China
| | - Bei Wang
- Hubei Provincial Key Laboratory of Green Materials for Light Industry, School of Materials and Chemical Engineering, Hubei University of Technology, Wuhan 430068, China
| | - Zhiwei Ling
- Hubei Provincial Key Laboratory of Green Materials for Light Industry, School of Materials and Chemical Engineering, Hubei University of Technology, Wuhan 430068, China
| | - Qingting Liu
- Hubei Provincial Key Laboratory of Green Materials for Light Industry, School of Materials and Chemical Engineering, Hubei University of Technology, Wuhan 430068, China.
| | - Xudong Fu
- Hubei Provincial Key Laboratory of Green Materials for Light Industry, School of Materials and Chemical Engineering, Hubei University of Technology, Wuhan 430068, China
| | - Yanhua Zhang
- Hubei Provincial Key Laboratory of Green Materials for Light Industry, School of Materials and Chemical Engineering, Hubei University of Technology, Wuhan 430068, China
| | - Rong Zhang
- Hubei Provincial Key Laboratory of Green Materials for Light Industry, School of Materials and Chemical Engineering, Hubei University of Technology, Wuhan 430068, China
| | - Shengfei Hu
- Hubei Provincial Key Laboratory of Green Materials for Light Industry, School of Materials and Chemical Engineering, Hubei University of Technology, Wuhan 430068, China
| | - Feng Zhao
- Hubei Provincial Key Laboratory of Green Materials for Light Industry, School of Materials and Chemical Engineering, Hubei University of Technology, Wuhan 430068, China; Wuhan Troowin Power System Technology Co., Ltd., Wuhan 430079, China
| | - Xiao Li
- Hubei Provincial Key Laboratory of Green Materials for Light Industry, School of Materials and Chemical Engineering, Hubei University of Technology, Wuhan 430068, China; Wuhan Troowin Power System Technology Co., Ltd., Wuhan 430079, China
| | - Xujin Bao
- Hubei Provincial Key Laboratory of Green Materials for Light Industry, School of Materials and Chemical Engineering, Hubei University of Technology, Wuhan 430068, China; Department of Materials, Loughborough University, Leicestershire LE11 3NW, UK.
| | - Jun Yang
- Zhuzhou Times New Material Technology Co., Ltd, Zhuzhou, Hunan 412007, China.
| |
Collapse
|
3
|
Liu Q, Liu H, Zhang W, Ma Q, Xu Q, Hooshyari K, Su H. Enhancing Polymer Electrolyte Membrane Fuel Cells with Ionic Liquids: A Review. Chemistry 2023:e202303525. [PMID: 38149791 DOI: 10.1002/chem.202303525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/26/2023] [Accepted: 12/27/2023] [Indexed: 12/28/2023]
Abstract
Polymer electrolyte membrane fuel cells (PEMFCs) represent a promising clean energy solution. However, their widespread adoption faces hurdles related to component optimization. This review explores the pivotal role of ionic liquids (ILs) in enhancing PEMFC performance, focusing on their role in polymer electrolyte membranes, catalyst modification, and other components. By addressing key obstacles, including proton conductivity, catalyst stability, and fuel crossover, ILs provide a pathway towards the widespread commercialization of PEMFCs. In the realm of PEMFC membranes, ILs have shown great potential in improving proton conductivity, mechanical strength, and thermal stability. Additionally, the utilization of ILs as catalyst modifiers has shown promise in enhancing the electrocatalytic activity of electrodes by serving as an effective stabilizer to promote the dispersion of metal nanoparticles, and reduce their agglomeration, thereby augmenting catalytic performance. Furthermore, ILs can be tailored to optimize the catalyst-support interaction, ultimately enhancing the overall fuel cell efficiency. Their unique properties, such as high oxygen solubility and low volatility, offer advantages in terms of reducing mass transport and water management issues. This review not only underscores the promising advancements achieved thus far but also outlines the challenges that must be addressed to unlock the full potential of ILs in PEMFC technology, offering a valuable resource for researchers and engineers working toward the realization of efficient and durable PEMFCs.
Collapse
Affiliation(s)
- Qingqing Liu
- Institute for Energy Research, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, PR China
| | - Huiyuan Liu
- Institute for Energy Research, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, PR China
| | - Weiqi Zhang
- Institute for Energy Research, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, PR China
| | - Qiang Ma
- Institute for Energy Research, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, PR China
| | - Qian Xu
- Institute for Energy Research, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, PR China
| | - Khadijeh Hooshyari
- Department of Applied Chemistry, Faculty of Chemistry, Urmia University, Urmia, 5756151818, Iran
| | - Huaneng Su
- Institute for Energy Research, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, PR China
| |
Collapse
|
4
|
Meyer Q, Yang C, Cheng Y, Zhao C. Overcoming the Electrode Challenges of High-Temperature Proton Exchange Membrane Fuel Cells. ELECTROCHEM ENERGY R 2023. [DOI: 10.1007/s41918-023-00180-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
Abstract
AbstractProton exchange membrane fuel cells (PEMFCs) are becoming a major part of a greener and more sustainable future. However, the costs of high-purity hydrogen and noble metal catalysts alongside the complexity of the PEMFC system severely hamper their commercialization. Operating PEMFCs at high temperatures (HT-PEMFCs, above 120 °C) brings several advantages, such as increased tolerance to contaminants, more affordable catalysts, and operations without liquid water, hence considerably simplifying the system. While recent progresses in proton exchange membranes for HT-PEMFCs have made this technology more viable, the HT-PEMFC viscous acid electrolyte lowers the active site utilization by unevenly diffusing into the catalyst layer while it acutely poisons the catalytic sites. In recent years, the synthesis of platinum group metal (PGM) and PGM-free catalysts with higher acid tolerance and phosphate-promoted oxygen reduction reaction, in conjunction with the design of catalyst layers with improved acid distribution and more triple-phase boundaries, has provided great opportunities for more efficient HT-PEMFCs. The progress in these two interconnected fields is reviewed here, with recommendations for the most promising routes worthy of further investigation. Using these approaches, the performance and durability of HT-PEMFCs will be significantly improved.
Collapse
|
5
|
Gorre A, Das A, Jana T. Mixed matrix composite PEM with super proton conductivity developed from ionic liquid modified silica nanoparticle and polybenzimidazole. JOURNAL OF MACROMOLECULAR SCIENCE PART A-PURE AND APPLIED CHEMISTRY 2022. [DOI: 10.1080/10601325.2022.2154677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Akhil Gorre
- School of Chemistry, University of Hyderabad, Hyderabad, India
| | - Anupam Das
- School of Chemistry, University of Hyderabad, Hyderabad, India
| | - Tushar Jana
- School of Chemistry, University of Hyderabad, Hyderabad, India
| |
Collapse
|
6
|
A review on structural aspects and applications of PAMAM dendrimers in analytical chemistry: Frontiers from separation sciences to chemical sensor technologies. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
7
|
Research Progress on the Preparation and Applications of Laser-Induced Graphene Technology. NANOMATERIALS 2022; 12:nano12142336. [PMID: 35889560 PMCID: PMC9317010 DOI: 10.3390/nano12142336] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/03/2022] [Accepted: 07/03/2022] [Indexed: 11/17/2022]
Abstract
Graphene has been regarded as a potential application material in the field of new energy conversion and storage because of its unique two-dimensional structure and excellent physical and chemical properties. However, traditional graphene preparation methods are complicated in-process and difficult to form patterned structures. In recent years, laser-induced graphene (LIG) technology has received a large amount of attention from scholars and has a wide range of applications in supercapacitors, batteries, sensors, air filters, water treatment, etc. In this paper, we summarized a variety of preparation methods for graphene. The effects of laser processing parameters, laser type, precursor materials, and process atmosphere on the properties of the prepared LIG were reviewed. Then, two strategies for large-scale production of LIG were briefly described. We also discussed the wide applications of LIG in the fields of signal sensing, environmental protection, and energy storage. Finally, we briefly outlined the future trends of this research direction.
Collapse
|
8
|
Ren HM, Wang HW, Jiang YF, Tao ZX, Mu CY, Li G. Proton Conductive Lanthanide-Based Metal-Organic Frameworks: Synthesis Strategies, Structural Features, and Recent Progress. Top Curr Chem (Cham) 2022; 380:9. [PMID: 35119539 DOI: 10.1007/s41061-022-00367-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 01/17/2022] [Indexed: 12/25/2022]
Abstract
In the fields of proton exchange membrane fuel cells as well as impedance recognition, molecular sieve, and biochemistry, the development of proton conductive materials is essential. The design and preparation of the next generation of proton conductive materials-crystalline metal-organic framework (MOF) materials with high proton conductivity and excellent water stability-are facing great challenges. Due to the large radius and high positive charge of lanthanides, they often interact with organic ligands to exhibit high coordination numbers and flexible coordination configurations, resulting in the higher stability of lanthanide-based MOFs (Ln-MOFs) than their transition metal analogues, especially regarding water stability. Therefore, Ln-MOFs have attracted considerable attention. This review offers a view of the latest progress of proton conductive Ln-MOFs, including synthesis strategy, structural characteristics, and advantages, proton conductivity, proton conductive mechanism, and applications. More importantly, by discussing structure-property relationships, we searched for and analyzed design techniques and directions of development of Ln-MOFs in the future. The latest progress of synthesis strategy, structural characteristics, proton conductive properties and mechanism and applications on Ln-MOFs. Ln-MOFS Lanthanide-based MOFs, MOF metal-organic framework, PEMFC proton exchange membrane fuel cells.
Collapse
Affiliation(s)
- Hui-Min Ren
- College of Chemistry and Green Catalysis Center, Zhengzhou University, 450001, Henan, PR China
| | - Hong-Wei Wang
- College of Chemistry and Green Catalysis Center, Zhengzhou University, 450001, Henan, PR China
| | - Yuan-Fan Jiang
- College of Chemistry and Green Catalysis Center, Zhengzhou University, 450001, Henan, PR China
| | - Zhi-Xiong Tao
- College of Chemistry and Green Catalysis Center, Zhengzhou University, 450001, Henan, PR China
| | - Chen-Yu Mu
- College of Chemistry and Green Catalysis Center, Zhengzhou University, 450001, Henan, PR China
| | - Gang Li
- College of Chemistry and Green Catalysis Center, Zhengzhou University, 450001, Henan, PR China.
| |
Collapse
|