1
|
Liu T, Wang M, Wang M, Xiong Q, Jia L, Ma W, Sui S, Wu W, Guo X. Identification of the primary pollution sources and dominant influencing factors of soil heavy metals using a random forest model optimized by genetic algorithm coupled with geodetector. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 290:117731. [PMID: 39823671 DOI: 10.1016/j.ecoenv.2025.117731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Revised: 01/09/2025] [Accepted: 01/12/2025] [Indexed: 01/19/2025]
Abstract
Identifying and quantifying the dominant factors influencing heavy metal (HM) pollution sources are essential for maintaining soil ecological health and implementing effective pollution control measures. This study analyzed soil HM samples from 53 different land use types in Jiaozuo City, Henan Province, China. Pollution sources were identified using Absolute Principal Component Score (APCS), with 8 anthropogenic factors, 9 natural factors, and 4 soil physicochemical properties mapped using Geographic Information System (GIS) kernel density estimation. Geodetector and a genetic algorithm optimized random forest model (GA-RF) were employed to quantify the dominant factors and precisely identify pollution sources. A Monte Carlo model was further applied to assess source-oriented health risk probabilities across age groups in the study area. The results revealed three principal components representing pollution sources, with contribution rates of 47.2 %, 33.3 %, and 19.5 %, respectively. For pollution source 1, industrial activities were dominant, with factory density (27.7 %) and distance from the factory (36.3 %) identified as the main factors. Cr, Cu, Mn, and Ni had high loads in this source. Pollution source 2, a combination of natural and transportation influences, was primarily affected by the normalized difference vegetation index (NDVI, 37.8 %), road network density (16.8 %), and proximity to roads (15.3 %). Pollution source 3 was linked to agricultural activities, with cultivated land density (CLD) contributing 39.1 %. As exhibited a high load (91.1 %) in this source, with an exceedance rate of 93 % in cultivated soil, a moderate enrichment factor of 2.33, and a strong ecological risk index of 615.72, making it the most polluted metal in the area. The source-oriented Health Risk Assessment (HRA) showed that agricultural activities contributed 88.7 % to the carcinogenic risk from As in cultivated land. Overall, 99.3 % of the population faced an acceptable cancer risk level. Unlike traditional source apportionment methods, the GA-RF model effectively quantified the contributions of specific influencing factors (e.g., factory density) to pollution sources, rather than merely estimating the percentage contributions of the sources themselves. This approach provides a novel perspective for HM source apportionment under complex environmental conditions.
Collapse
Affiliation(s)
- Tong Liu
- College of Resource and Environment, Henan Polytechnic University, Jiaozuo 454003, China
| | - Mingshi Wang
- College of Resource and Environment, Henan Polytechnic University, Jiaozuo 454003, China.
| | - Mingya Wang
- College of Resource and Environment, Henan Polytechnic University, Jiaozuo 454003, China
| | - Qinqing Xiong
- College of Atmospheric Physics, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Luhao Jia
- College of Resource and Environment, Henan Polytechnic University, Jiaozuo 454003, China
| | - Wanqi Ma
- College of Resource and Environment, Henan Polytechnic University, Jiaozuo 454003, China
| | - Shaobo Sui
- College of Resource and Environment, Henan Polytechnic University, Jiaozuo 454003, China
| | - Wei Wu
- College of Resource and Environment, Henan Polytechnic University, Jiaozuo 454003, China
| | - Xiaoming Guo
- College of Resource and Environment, Henan Polytechnic University, Jiaozuo 454003, China
| |
Collapse
|
2
|
Manatunga DC, Sewwandi M, Perera KI, Jayarathna MD, Peramune DL, Dassanayake RS, Ramanayaka S, Vithanage M. Plasticizers: distribution and impact in aquatic and terrestrial environments. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2024; 26:2114-2131. [PMID: 39404615 DOI: 10.1039/d4em00317a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2024]
Abstract
Plasticizers, essential additives for enhancing plastic properties, have emerged as significant environmental and health concerns due to their persistence and widespread use. This study provides an in-depth exploration of plasticizers, focusing on their types, structures, properties, production methods, environmental distribution, and associated risks. The findings reveal that petroleum-based phthalates, particularly di-(2-ethylhexyl) phthalate (DEHP), are prevalent in aquatic and terrestrial environments, primarily due to the gradual degradation of plastic polymers. In the analysis of 39 studies on water contamination during the period of 2022-2023, only 22 works could be extracted due to insufficient details on the numerical value of plasticizer concentrations. Similarly, soil and sediment contamination studies were fewer, with only 11 studies focusing on sediments. These studies reveal that high plasticizer concentrations, notably in industrial and urban areas, often exceed recommended environmental limits, posing risks to ecological integrity and human health through bioaccumulation. Bioaccumulation of these compounds in soil and water could negatively affect the microbial communities, nutrient cycling, and could destabilize the overall ecological integrity. Concerns about their direct uptake by plants and potential risks to human health and food safety are highlighted in this study due to the high concentrations exceeding the threshold values. The review evaluates current treatment technologies, including metal-organic frameworks, electrochemical systems, multi-walled carbon nanotubes, and microbial degradation, noting their potential and challenges related to cost and energy consumption. It underscores the need for improved detection protocols, cost-effective treatments, stricter regulations, public awareness, and collaborative research to mitigate the adverse impacts of plasticizers on ecosystems and human health.
Collapse
Affiliation(s)
- Danushika C Manatunga
- Department of Biosystems Technology, Faculty of Technology, University of Sri Jayewardenepura, Pitipana, Homagama, 10206, Sri Lanka
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK
| | - Madushika Sewwandi
- Ecosphere Resilience Research Center, University of Sri Jayewardenepura, Nugegoda, 10250, Sri Lanka.
| | - Kalani Imalka Perera
- Ecosphere Resilience Research Center, University of Sri Jayewardenepura, Nugegoda, 10250, Sri Lanka.
| | | | - Dinusha L Peramune
- Department of Biosystems Technology, Faculty of Technology, University of Sri Jayewardenepura, Pitipana, Homagama, 10206, Sri Lanka
| | - Rohan S Dassanayake
- Department of Biosystems Technology, Faculty of Technology, University of Sri Jayewardenepura, Pitipana, Homagama, 10206, Sri Lanka
| | - Sammani Ramanayaka
- Ecosphere Resilience Research Center, University of Sri Jayewardenepura, Nugegoda, 10250, Sri Lanka.
- Lancaster Environment Centre, Lancaster University, Bailrigg, Lancaster LA1 4YW, UK
| | - Meththika Vithanage
- Ecosphere Resilience Research Center, University of Sri Jayewardenepura, Nugegoda, 10250, Sri Lanka.
- The Institute of Agriculture, The University of Western Australia, Crawley, WA 6009, Australia
| |
Collapse
|
3
|
Adjei JK, Acquah H, Essumang DK. Occurrence, efficiency of treatment processes, source apportionment and human health risk assessment of pharmaceuticals and xenoestrogen compounds in tap water from some Ghanaian communities. Heliyon 2024; 10:e31815. [PMID: 38845891 PMCID: PMC11153180 DOI: 10.1016/j.heliyon.2024.e31815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 04/15/2024] [Accepted: 05/22/2024] [Indexed: 06/09/2024] Open
Abstract
The occurrence of pharmaceuticals and xenoestrogen compounds (PXCs) in drinking water presents a dire human health risk challenge. The problem stems from the high anthropogenic pollution load on source water and the inefficiencies of the conventional water treatment plants in treating PXCs. This study assessed the PXCs levels and the consequential health risks of exposure to tap water from selected Ghanaian communities as well as that of raw water samples from the respective treatment plants. Thus the PXCs treatment efficiency of two drinking water treatment plants in the metropolises studied was also assessed. The study also conducted source apportionment of the PXCs in the tap water. Twenty six (26) tap and raw water samples from communities in the Cape Coast and Sekondi-Takoradi metropolises were extracted using SPE cartridges and analysed for PXCs using Ultra-fast-HPLC-UV instrument. Elevated levels of PXCs up to 24.79 and 22.02 μg/L were respectively recorded in raw and tap water samples from the metropolises. Consequently, elevated non-cancer health risk (HI > 1) to residential adults were found for tap water samples from Cape Coast metropolis and also for some samples from Sekondi-Takoradi metropolis. Again, elevated cumulative oral cancer risks >10-5 and dermal cancer risk up to 4 × 10-5 were recorded. The source apportionment revealed three significant sources of PXCs in tap water samples studied. The results revealed the inefficiency of the treatment plants in removing PXCs from the raw water during treatments. The situation thus requires urgent attention to ameliorate it, safeguarding public health. It is recommended that the conventional water treatment process employed be augmented with advanced treatment technologies to improve their efficacy in PXCs treatment.
Collapse
Affiliation(s)
- Joseph K. Adjei
- Environmental Research Group, Department of Chemistry, University of Cape Coast, Ghana
| | - Henrietta Acquah
- Environmental Research Group, Department of Chemistry, University of Cape Coast, Ghana
| | - David K. Essumang
- Environmental Research Group, Department of Chemistry, University of Cape Coast, Ghana
| |
Collapse
|
4
|
Hadi M, Bashardoust P, Solaimany Aminabad M, Nazmara S, Rezvani Ghalhari M, Mesdaghinia A, Hemmati Borji S. Exposure assessment of nitrate and phenol derivatives in Tehran's water distribution system. JOURNAL OF WATER AND HEALTH 2024; 22:147-168. [PMID: 38295078 PMCID: wh_2023_133 DOI: 10.2166/wh.2023.133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2024]
Abstract
The presence of organic and inorganic contaminants in drinking water is a global concern. Nitrate and phenol derivatives are examples of pollutants that could be of anthropogenic origin. They are associated with numerous health risks, underscoring the importance of monitoring their presence in drinking water. This study aimed to measure nitrate and phenol derivatives, including 2,4-Dichlorophenol (2,4-DCP), Pentachlorophenol (PCP), 2,4,5-Trichlorophenol (2,4,5-TCP), 2-Chlorophenol (2-CP), 4-Chlorophenol (4-CP), and phenol, in Tehran's water distribution system (WDS). The pollutants in Tehran's WDS were significantly and positively correlated with precipitation. The Hazard Quotient (HQ) and the Excess Lifetime Cancer Risk (ELCR) of the detected pollutants were estimated. The results showed that the regional mean of nitrate and PCP in Tehran's WDS were 35.58±8.71mg L-1 and 76.14±16.93 ng L-1 lower than the guideline values of 50 mg L-1 and 1000 ng L-1, respectively. Some districts exhibited nitrate concentration exceeding the allowable limit by a factor of 1.2 to 2.3. Consequently, the nitrate intake in some districts constituted approximately 50% of the reference dose. While PCP as a phenol derivative with more health concerns was identified in Tehran's WDS, the likelihood of its health effects was determined to be negligible.
Collapse
Affiliation(s)
- Mahdi Hadi
- Center for Water Quality Research (CWQR), Institute for Environmental Research (IER), Tehran University of Medical Sciences, Tehran, Iran E-mail: ;
| | - Parnia Bashardoust
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehri Solaimany Aminabad
- Center for Water Quality Research (CWQR), Institute for Environmental Research (IER), Tehran University of Medical Sciences, Tehran, Iran
| | - Shahrokh Nazmara
- Center for Water Quality Research (CWQR), Institute for Environmental Research (IER), Tehran University of Medical Sciences, Tehran, Iran; Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Rezvani Ghalhari
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Alireza Mesdaghinia
- Center for Water Quality Research (CWQR), Institute for Environmental Research (IER), Tehran University of Medical Sciences, Tehran, Iran; Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Saeedeh Hemmati Borji
- Center for Water Quality Research (CWQR), Institute for Environmental Research (IER), Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
5
|
Maddela NR, Kakarla D, Venkateswarlu K, Megharaj M. Additives of plastics: Entry into the environment and potential risks to human and ecological health. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 348:119364. [PMID: 37866190 DOI: 10.1016/j.jenvman.2023.119364] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 10/03/2023] [Accepted: 10/14/2023] [Indexed: 10/24/2023]
Abstract
A steep rise in global plastic production and significant discharge of plastic waste are expected in the near future. Plastics pose a threat to the ecosystem and human health through the generation of particulate plastics that act as carriers for other emerging contaminants, and the release of toxic chemical additives. Since plastic additives are not covalently bound, they can freely leach into the environment. Due to their occurrence in various environmental settings, the additives exert significant ecotoxicity. However, only 25% of plastic additives have been characterized for their potential ecological concern. Despite global market statistics highlighting the substantial environmental burden caused by the unrestricted production and use of plastic additives, information on their ecotoxicity remains incomplete. By focusing on the ecological impacts of plastic additives, the present review aims to provide detailed insights into the following aspects: (i) diversity and occurrence in the environment, (ii) leaching from plastic materials, (iii) trophic transfer, (iv) human exposure, (v) risks to ecosystem and human health, and (vi) legal guidelines and mitigation strategies. These insights are of immense value in restricting the use of toxic additives, searching for eco-friendly alternatives, and establishing or revising guidelines on plastic additives by global health and environmental agencies.
Collapse
Affiliation(s)
- Naga Raju Maddela
- Departamento de Ciencias Biológicas, Facultad de Ciencias de la Salud, Universidad Técnica de Manabí, Portoviejo, 130105, Ecuador
| | - Dhatri Kakarla
- University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Kadiyala Venkateswarlu
- Formerly Department of Microbiology, Sri Krishnadevaraya University, Anantapuramu, 515003, India
| | - Mallavarapu Megharaj
- Global Centre for Environmental Remediation (GCER), College of Engineering Science and Environment, ATC Building, The University of Newcastle, Callaghan, NSW, 2308, Australia; Cooperative Research Centre for Contamination Assessment and Remediation of Environment (CRC CARE), The University of Newcastle, ATC Building, Callaghan, NSW, 2308, Australia.
| |
Collapse
|
6
|
Palacios Colón L, Rascón AJ, Ballesteros E. Determination of Parabens and Phenolic Compounds in Dairy Products through the Use of a Two-Step Continuous SPE System Including an Enhanced Matrix Removal Sorbent in Combination with UHPLC-MS/MS. Foods 2023; 12:2909. [PMID: 37569177 PMCID: PMC10418826 DOI: 10.3390/foods12152909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/19/2023] [Accepted: 07/28/2023] [Indexed: 08/13/2023] Open
Abstract
Dairy products can be contaminated by parabens and phenolic compounds from a vast variety of sources, such as packaging and manufacturing processes, or livestock through feed and environmental water. A two-step continuous solid-phase extraction (SPE) and purification methodology was developed here for the determination of both types of compounds. In the first step, a sample extract is passed in sequence through an EMR-lipid sorbent and an Oasis PRiME HBL sorbent to remove fat and preconcentrate the analytes for subsequent detection and quantification by UHPLC-MS/MS. This method enabled the determination of 28 parabens and phenolic contaminant with excellent recovery (91-105%) thanks to the SPE sorbent combination used. The proposed method was validated through the determination of the target compounds, and was found to provide low detection limits (1-20 ng/kg) with only slight matrix effects (0-10%). It was used to analyse 32 different samples of dairy products with different packaging materials. Bisphenol A and bisphenol Z were the two phenolic compounds quantified in the largest number of samples, at concentrations over the range of 24-580 ng/kg, which did not exceed the limit set by European regulations. On the other hand, ethylparaben was the paraben found at the highest levels (33-470 ng/kg).
Collapse
Affiliation(s)
| | | | - Evaristo Ballesteros
- Department of Physical and Analytical Chemistry, E.P.S of Linares, University of Jaén, 23700 Linares, Jaén, Spain; (L.P.C.); (A.J.R.)
| |
Collapse
|
7
|
Simultaneous determination of phenolic pollutants in dairy products held in various types of packaging by gas chromatography−mass spectrometry. Food Control 2023. [DOI: 10.1016/j.foodcont.2022.109564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
8
|
Liu Y, Chen Y, Fan Y, Gao G, Zhi J. Development of a Tyrosinase Amperometric Biosensor Based on Carbon Nanomaterials for the Detection of Phenolic Pollutants in Diverse Environments. ChemElectroChem 2022. [DOI: 10.1002/celc.202200861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Yanran Liu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials Technical Institute of Physics and Chemistry Chinese Academy of Sciences Beijing 100190 PR China
- University of Chinese Academy of Sciences Beijing 100049 PR China
| | - Yafei Chen
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials Technical Institute of Physics and Chemistry Chinese Academy of Sciences Beijing 100190 PR China
- University of Chinese Academy of Sciences Beijing 100049 PR China
| | - Yining Fan
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials Technical Institute of Physics and Chemistry Chinese Academy of Sciences Beijing 100190 PR China
- University of Chinese Academy of Sciences Beijing 100049 PR China
| | - Guanyue Gao
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials Technical Institute of Physics and Chemistry Chinese Academy of Sciences Beijing 100190 PR China
- University of Chinese Academy of Sciences Beijing 100049 PR China
| | - Jinfang Zhi
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials Technical Institute of Physics and Chemistry Chinese Academy of Sciences Beijing 100190 PR China
- University of Chinese Academy of Sciences Beijing 100049 PR China
| |
Collapse
|
9
|
Salamat Q, Yamini Y. Application of nanostructured supramolecular solvent based on C12mimBr ionic liquid surfactant to direct extraction of some chlorophenols in soil and rice samples. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
10
|
Han S, Sun R, Teng F, Wang Y, Chu H, Zong W, Chen Y, Sun Z. A highly selective molecularly imprinted electrochemical sensor with anti-interference based on GO/ZIF-67/AgNPs for the detection of p-cresol in a water environment. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:3079-3086. [PMID: 35916293 DOI: 10.1039/d2ay00911k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
p-Cresol is a harmful phenolic substance that can cause serious effects on human health even at a low concentration in water. Therefore, the detection of p-cresol in a water environment is particularly important. In this paper, a novel zeolite imidazolate framework-67 (ZIF-67) material with regular morphology was prepared on the surface of graphene oxide doped with silver nanoparticles. The composite was modified on the glassy carbon electrode surface to increase the specific surface area, accelerate the electron transfer rate, enhance the current response and improve the performance of electrochemical sensors. Furthermore, a layer of p-cresol-molecularly imprinted polymer was prepared on the surface of the modified electrode by electropolymerization for the selective, rapid and sensitive detection of p-cresol, which greatly improved the specific recognition of p-cresol. Under optimal conditions, the prepared sensor had a good linear range of 1.0 × 10-10 M to 1.0 × 10-5 M with a detection limit as low as 5.4 × 10-11 M, and it presented excellent reproducibility, stability and selectivity. Moreover, the sensor was successfully applied for the detection of trace p-cresol in a real water environment, providing a reliable assay for sensitive, rapid and selective detection of p-cresol in complex samples.
Collapse
Affiliation(s)
- Shuang Han
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, China.
| | - Ruonan Sun
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, China.
| | - Fu Teng
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, China.
| | - Yuan Wang
- Heilongjiang Province Qiqihar Ecological Environment Monitoring Center, Qiqihar 161005, China
| | - Hongtao Chu
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, China.
| | - Wei Zong
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, China.
| | - Yao Chen
- Heilongjiang Province Qiqihar Ecological Environment Monitoring Center, Qiqihar 161005, China
| | - Zhonghui Sun
- Heilongjiang Province Qiqihar Ecological Environment Monitoring Center, Qiqihar 161005, China
| |
Collapse
|
11
|
Angnunavuri PN, Attiogbe F, Dansie A, Mensah B. Evaluation of plastic packaged water quality using health risk indices: A case study of sachet and bottled water in Accra, Ghana. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 832:155073. [PMID: 35398415 DOI: 10.1016/j.scitotenv.2022.155073] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/27/2022] [Accepted: 04/02/2022] [Indexed: 06/14/2023]
Abstract
Plastic packaged water is the drinking water of choice for urban populations across Africa but its quality remains questionable in most developing countries. Six hundred (600) packages, consisting of sachet and bottled water, were sampled from two high-end companies in Accra (Ghana) and stored through their shelf lives under an average room temperature of 30 °C. The samples were tested for physicochemical quality and the presence of bacteria and phthalate esters at 2n × 3 periods, where n is the sampled batch number. The data were described and modelled with embedded Bayesian and Machine Learning algorithms in JASP0.16.0.0 and Argo-4.1.3. The results reported lower than regulated levels of electrical conductivity (163.66 μS/cm), alkalinity (39.67 mg/L), and residual chlorine (<0.01 mg/L) while the pH was generally within specification (6.5-7.7). All samples showed progressive biological contamination following the third week (sachet samples) and the sixth week (bottled water) of incubation. Initial samples, including raw water, processed bulk water and packaged water did not present detectable microbial growth. The total microbial load in sachet samples grew at 0.936 cfu/week and 1.006 cfu/week for the bottled samples although the results did not exceed 1000 cfu/L (0-976 cfu/100 mL). Modelled mean probability of infection was 1.196 × 10-4 in 67% of the samples. Raw and processed water samples did not show detectable levels of phthalate contaminants. The mean hazard index calculated on the individual hazard quotients of phthalates was 7.41 × 10-3 ± 8.20 × 10-4, suggesting lower acute risk potential. Mean integrated lifetime cancer risk (ILCR) was determined to be 1.53 × 10-3 ± 1.71 × 10-4 within a range of 2.86 × 10-4 and 7.18 × 10-3. Mean child ILCR was about 70% of adult ILCR and increased from 4.16 × 10-4 to 2.41 × 10-3 for sachet and 4.93 × 10-4 to 7.18 × 10-3 for bottled water. For adult ILCR, sachet water presented 2.86 × 10-4 to 1.65 × 10-3, and 3.38 × 10-4 to 4.93 × 10-3 for bottled water. This study confirmed the presence of phthalates and pathogenic bacteria in the samples, at-risk levels that require mitigation.
Collapse
Affiliation(s)
- Prosper Naah Angnunavuri
- School of Engineering, Department of Civil and Environmental Engineering, University of Energy and Natural Resources, Sunyani, Ghana.
| | - Francis Attiogbe
- School of Engineering, Department of Civil and Environmental Engineering, University of Energy and Natural Resources, Sunyani, Ghana
| | - Andrew Dansie
- School of Civil and Environmental Engineering, University of New South Wales, Sydney, Australia; School of Chemical Engineering, University of New South Wales, Sydney, Australia
| | - Bismark Mensah
- School of Engineering, University of Ghana, Legon, Ghana
| |
Collapse
|
12
|
Adjei JK, Dayie AD, Addo JK, Asamoah A, Amoako EO, Egoh BY, Bekoe E, Ofori NO, Adjei GA, Essumang DK. Occurrence, ecological risk assessment and source apportionment of pharmaceuticals, steroid hormones and xenoestrogens in the Ghanaian aquatic environments. Toxicol Rep 2022; 9:1398-1409. [DOI: 10.1016/j.toxrep.2022.06.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/10/2022] [Accepted: 06/18/2022] [Indexed: 11/26/2022] Open
|