1
|
Li C, Liao Q, Wang R, Zhang X, Ma M, Liu Y, Xiao L, Jiao Y, Wang N. An OPRM1-SNAP-tag/CMC method to directly identify drug components in sewage. Anal Bioanal Chem 2025; 417:615-625. [PMID: 39613988 DOI: 10.1007/s00216-024-05672-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 11/08/2024] [Accepted: 11/18/2024] [Indexed: 12/01/2024]
Abstract
The scourge of drug addiction and abuse poses a significant challenge to society. Opioid drugs acting on μ-opioid receptor (OPRM1) make it one of the pivotal targets for drug addiction. In the past decade, sewage analysis has become a prevalent method of drug monitoring. However, traditional methods of detecting drugs in sewage are cumbersome, and rapid detection methods are relatively lacking. To address this, an innovative OPRM1-SNAP-tag/CMC method to directly identify drug components in sewage was established. Cell membrane chromatography (CMC) is an affinity chromatography technique which effectively detects receptor affinity substances. Cells constructed with high expression of specific receptor could be used to screen for compounds acting on the receptor. CMC based on OPRM1 provides a potentially convenient and effective tool for the detection of targeted drug components in sewage. In this study, the selectivity, reproducibility, column lifetime, and carryover of the CMC column had been assessed. Initially, we eluted the collected domestic sewage with methanol and acetonitrile, and the retention peaks were observed on the CMC system. Subsequently, without any preliminary sample preparation, we directly injected filtered samples of suspicious sewage into the OPRM1-SNAP-tag/CMC system, where we observed retention peaks as well. The retained components were further identified as morphine by using UPLC-MS/MS. In conclusion, the OPRM1-SNAP-tag/CMC method stands out as a reliable and robust model for the detection of drug components in sewage. It provides a valuable analytical tool for frontline drug control efforts, enhancing our capacity to monitor and mitigate the impact of drug abuse on society.
Collapse
Affiliation(s)
- Chenjia Li
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Qi Liao
- National Narcotics Laboratory ShaanXi Regional Center, Xi'an, Shaanxi, China
- School of Chemistry, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Rui Wang
- National Narcotics Laboratory ShaanXi Regional Center, Xi'an, Shaanxi, China
| | - Xinping Zhang
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Mengyang Ma
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Yonghong Liu
- National Narcotics Laboratory ShaanXi Regional Center, Xi'an, Shaanxi, China
| | - Lei Xiao
- National Narcotics Laboratory ShaanXi Regional Center, Xi'an, Shaanxi, China
| | - Ying Jiao
- National Narcotics Laboratory ShaanXi Regional Center, Xi'an, Shaanxi, China.
- Key Laboratory of Drugs Analysis & Intelligent Monitoring, Narcotics Technology Center of Shaanxi Provincial Public Security Department, Xi'an, 710115, China.
| | - Nan Wang
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| |
Collapse
|
2
|
Luo L, Wu J, Yuan X, Li X, Huang B, Chen S, Deng J, Luan T. Insights into the sunlight-Induced photodegradation mechanisms of methamphetamine in surface water driven by NO₃ ⁻, HCO₃ ⁻ and Fe 3. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 363:125303. [PMID: 39537084 DOI: 10.1016/j.envpol.2024.125303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 11/09/2024] [Accepted: 11/10/2024] [Indexed: 11/16/2024]
Abstract
Psychoactive substances abuse is a global issue, with the methamphetamine (METH) being the most used and produced illicit substance in recent years. METH has been recognized as emerging contaminants in aquatic ecosystems. Research on the removal of METH from surface water is still lacking in-depth exploration. The effects of key aqueous environmental factors on the photodegradation of METH were investigated in this study. NO₃⁻, Fe3+ and dissolved organic matter (DOM) enhanced the photodegradation of METH, respectively, with degradation rates increasing as their concentrations increased. When HCO₃⁻ coexisted with NO₃⁻, it exhibited dual effects on METH photodegradation: low concentrations inhibited the process, whereas high concentrations promoted it. The primary photodegradation products of METH, such as OH-METH, (OH)2-METH, AMP and NO2-OH-METH, were identified. The latter two compounds were newly discovered in this study. The mechanism of NO₃⁻, HCO₃⁻ and Fe3+ accelerating the photodegradation of METH in water was proposed to proceed via the generation of hydroxyl radical (HO∙), leading to the oxidation of METH, along with the involvement of nitro radical (∙NO2) and carbonate radical (CO3•-).
Collapse
Affiliation(s)
- Lijuan Luo
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou, 510006, China; Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang Center, Jieyang, 515200, China
| | - Junhui Wu
- Laboratory of Agricultural Microbiomics and Precision Application (MARA), Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangdong Detection Center of Microbiology, Guangzhou, 510070, China; State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat⁃Sen University, Guangzhou, 510275, China
| | - Xueting Yuan
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou, 510006, China; Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang Center, Jieyang, 515200, China
| | - Xinyan Li
- Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang Center, Jieyang, 515200, China; School of Biomedical and Pharmaceutical Sciences and Smart Medical Innovation Technology Center, Guangdong University of Technology, Guangzhou, 510006, China
| | - Bi Huang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat⁃Sen University, Guangzhou, 510275, China
| | - Shanshan Chen
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou, 510006, China; Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang Center, Jieyang, 515200, China
| | - Jiewei Deng
- Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang Center, Jieyang, 515200, China; School of Biomedical and Pharmaceutical Sciences and Smart Medical Innovation Technology Center, Guangdong University of Technology, Guangzhou, 510006, China
| | - Tiangang Luan
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou, 510006, China; Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang Center, Jieyang, 515200, China; State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat⁃Sen University, Guangzhou, 510275, China; School of Environmental and Chemical Engineering, Wuyi University, Jiangmen, 529020, China.
| |
Collapse
|
3
|
Li W, Lu J, Zhao H, Zhao J, Yan Y, Xu Y. International Workers' Day: Consumption Patterns of Morphine, Codeine, and Methamphetamine in Urban and Rural Areas Based on Wastewater-Based Epidemiology. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2024; 43:2569-2577. [PMID: 39221921 DOI: 10.1002/etc.5987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 07/29/2024] [Accepted: 08/03/2024] [Indexed: 09/04/2024]
Abstract
Wastewater-based epidemiology (WBE) is a reliable means to estimate drug consumption in a specific population. By measuring the concentration of drug residues or metabolites in wastewater, the consumption behavior pattern of a specific population can be deduced. Using the WBE method, the present study, for the first time, continuously monitored the differences in the consumption of morphine (MOR), codeine (CODE), and methamphetamine (METH) in three wastewater-treatment plants in a city and two surrounding villages in Xinjiang, China during International Workers' Day and the following week. The wastewater samples were pretreated by solid-phase extraction and then analyzed by high-performance liquid chromatography-tandem mass spectrometry. Methamphetamine was not detected in rural areas and was detected only on International Workers' Day in urban areas. According to the estimation of per capita consumption, the per capita consumption of MOR, CODE, and METH in urban inhabitants was 12.04 to 23.39, 10.44 to 16.39, and 1.31 mg/day/1000 inhabitants. The per capita consumption of MOR and CODE in rural areas was 5.19 to 8.35 and 2.56 to 3.52 mg/day/1000 inhabitants. The consumption of MOR in urban and rural areas was significantly higher than that of CODE and METH. During International Workers' Day, workdays, and weekends, the consumption of MOR and CODE in urban areas is significantly higher than that in rural areas. Compared with those on weekends, the consumption of urban MOR and CODE increased more during International Workers' Day. The consumption of MOR in urban areas showed a weekend effect. The present study can provide information for subsequent research and government departments. Environ Toxicol Chem 2024;43:2569-2577. © 2024 SETAC.
Collapse
Affiliation(s)
- Wen Li
- School of Chemistry and Chemical Engineering/Key Laboratory of Environmental Monitoring and Pollutant Control, Shihezi University, Shihezi, China
| | - Jianjiang Lu
- School of Chemistry and Chemical Engineering/Key Laboratory of Environmental Monitoring and Pollutant Control, Shihezi University, Shihezi, China
| | - Haijun Zhao
- The First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, China
| | - Jie Zhao
- School of Chemistry and Chemical Engineering/Key Laboratory of Environmental Monitoring and Pollutant Control, Shihezi University, Shihezi, China
| | - Yujun Yan
- School of Chemistry and Chemical Engineering/Key Laboratory of Environmental Monitoring and Pollutant Control, Shihezi University, Shihezi, China
| | - Yan Xu
- School of Chemistry and Chemical Engineering/Key Laboratory of Environmental Monitoring and Pollutant Control, Shihezi University, Shihezi, China
| |
Collapse
|
4
|
Yuan X, Luo L, Li X, Lu Y, Chen S, Luan T. Recent advances in the removal of psychoactive substances from aquatic environments: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 953:176156. [PMID: 39255934 DOI: 10.1016/j.scitotenv.2024.176156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 09/05/2024] [Accepted: 09/07/2024] [Indexed: 09/12/2024]
Abstract
Psychoactive substances (PS) have become emerging contaminants in aquatic environments, characterized by their wide distribution, high persistence, bioaccumulation and toxicity. They are difficult to be completely removed in sewage treatment plants due to their high stability under different conditions. The incomplete removal of PS poses a threat to the aquatic animals and can also lead to human health problems through accumulation in the food chain. PS has become a huge burden on global health systems. Therefore, finding an effective technology to completely remove PS has become a "hot topic" for researchers. The methods for removal PS include physical techniques, chemical methods and biological approaches. However, there is still a lack of comprehensive and systematic exploration of these methods. This review aims to address this gap by providing a comprehensive overview of traditional strategies, highlighting recent advancements, and emphasizing the potential of natural aquatic plants in removing trace PS from water environments. Additionally, the degradation mechanisms that occur during the treatment process were discussed and an evaluation of the strengths and weaknesses associated with each method was provided. This work would help researchers in gaining a deeper understanding of the methodologies employed and serve as a reference point for future research endeavors and promoting the sustainable and large-scale application of PS elimination.
Collapse
Affiliation(s)
- Xueting Yuan
- Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang Center, Jieyang 515200, China; Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China
| | - Lijuan Luo
- Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang Center, Jieyang 515200, China; Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China; Smart Medical Innovation Technology Center, Guangdong University of Technology, Guangzhou 510006, China.
| | - Xinyan Li
- Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang Center, Jieyang 515200, China; Smart Medical Innovation Technology Center, Guangdong University of Technology, Guangzhou 510006, China; School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Yaobin Lu
- Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang Center, Jieyang 515200, China; Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China
| | - Shanshan Chen
- Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang Center, Jieyang 515200, China; Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China
| | - Tiangang Luan
- Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang Center, Jieyang 515200, China; Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China; School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China; School of Environmental and Chemical Engineering, Wuyi University, Jiangmen 529020, China
| |
Collapse
|
5
|
Ding L, Zhang CM. Occurrence, ecotoxicity and ecological risks of psychoactive substances in surface waters. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 926:171788. [PMID: 38499097 DOI: 10.1016/j.scitotenv.2024.171788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 03/14/2024] [Accepted: 03/15/2024] [Indexed: 03/20/2024]
Abstract
Psychoactive substances (PSs) represent a subset of emerging contaminants. Their widespread production and utilization contribute to a growing ecological burden and risk on a global scale. Conventional wastewater treatment methods have proven insufficient in adequately removing psychoactive substances, leading to their occurrence in surface water ecosystems worldwide. As of present, however, a thorough understanding of their geographical prevalence and distribution patterns remains elusive. Further, in the existing literature, there is a scarcity of comprehensive overviews that systematically summarize the toxicity of various psychoactive substances towards aquatic organisms. Through summarizing almost 140 articles, the present study provides an overview of the sources, pollution status, and biotoxicity of psychoactive substances in surface waters, as well as an assessment of their ecological risks. Concentrations of several psychoactive substances in surface waters were found to be as high as hundreds or even thousands of ng·L-1. In parallel, accumulation of psychoactive substances in the tissues or organs of aquatic organisms was found to potentially cause certain adverse effects, including behavioral disorders, organ damage, and DNA changes. Oxidative stress was found to be a significant factor in the toxic effects of psychoactive substances on organisms. The application of the risk quotient approach indicated that psychoactive substances posed a medium to high risk in certain surface water bodies, as well as the need for sustained long-term attention and management strategies.
Collapse
Affiliation(s)
- Lin Ding
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Key Laboratory of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Chong-Miao Zhang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Key Laboratory of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; International Science and Technology Cooperation Center for Urban Alternative Water Resources Development, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| |
Collapse
|
6
|
Wang H, Xu B, Yang L, Huo T, Bai D, An Q, Li X. Consumption of common illicit drugs in twenty-one cities in southwest China through wastewater analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 851:158105. [PMID: 35987225 DOI: 10.1016/j.scitotenv.2022.158105] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 08/13/2022] [Accepted: 08/14/2022] [Indexed: 06/15/2023]
Abstract
Wastewater-based epidemiology (WBE) was applied to estimate illicit drugs consumption at a provincial scale in southwest China. A large-scale wastewater sampling campaign was carried out from October to November in 2021 in 156 different wastewater treatment plants (WWTPs). Two 24-h composite influent wastewater samples were collected in each WWTP. Concentrations of 11 illicit drugs or their metabolites were determined using liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS). Benzoylecgonine, cocaine, 6-monoacetylmorphine, norketamine, 3,4-methylenedioxymethamphetamine (MDMA), and MDA were not detected in any of the wastewater samples. Methamphetamine and morphine were detected in >84% of samples, while ketamine was found in about 6% of the samples. The city-specific population-weighted consumption of methamphetamine and ketamine were in the range of 0.6-49.7 and N.D.-7.0 mg 1000 inh-1 day-1, respectively, with provincial population-weighted values of 22.6 and 2.4 mg 1000 inh-1 day-1 in southwest China. The city-specific load of morphine varied from 3.2 to 10.2 mg 1000 inh-1 day-1, with provincial population-weighted load of 6.7 mg 1000 inh-1 day-1. Taking into account therapeutic use of morphine and codeine, the provincial heroin consumption was estimated to be 10.3 mg 1000 inh-1 day-1, ranging from 1.7 to 18.5 mg 1000 inh-1 day-1 in 21 cities. Overall, the patterns of illicit drugs use were similar across southwest China, with high prevalence of methamphetamine and heroin, but relatively low use of ketamine. These findings could provide accurate drugs consumption information for timely identifying potential hotspots of illicit drugs use in southwest China.
Collapse
Affiliation(s)
- Huanbo Wang
- School of Environment and Resource, Southwest University of Science and Technology, Mianyang, China
| | - Buyi Xu
- National Anti-Drug Laboratory Sichuan Regional Center, Chengdu, China; Sichuan Police College, Luzhou, China.
| | - Li Yang
- National Anti-Drug Laboratory Sichuan Regional Center, Chengdu, China
| | - Tingting Huo
- School of Environment and Resource, Southwest University of Science and Technology, Mianyang, China
| | - Dengwen Bai
- National Anti-Drug Laboratory Sichuan Regional Center, Chengdu, China
| | - Qi An
- School of Environment and Resource, Southwest University of Science and Technology, Mianyang, China
| | - Xiran Li
- School of Environment and Resource, Southwest University of Science and Technology, Mianyang, China
| |
Collapse
|
7
|
Liu W, Zhang H, Liu Y, Li X, Lu H, Guo C, Xu J. Occurrence, distribution, and ecological risk of psychoactive substances in typical lakes and rivers in Qinghai-Tibet Plateau. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 242:113928. [PMID: 35926407 DOI: 10.1016/j.ecoenv.2022.113928] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 07/25/2022] [Accepted: 07/27/2022] [Indexed: 06/15/2023]
Abstract
The occurrence, distribution, and ecological risks of psychoactive substances (PSs) in Qinghai-Tibet Plateau (QTP) was investigated in this study. The surface water samples were collected in July in 2020 from five major water bodies, and 9 PSs were determined by liquid chromatography-mass spectrometry. The mean concentrations of the total PSs were 2.19-96.86 ng/L in lakes and 4.56-34.47 ng/L in rivers. Amphetamine (AMP) was the predominant contaminant both in lakes and rivers with a mean concentration of 12.21 ± 22.76 ng/L and 9.83 ± 6.14 ng/L, respectively. The compositions of PSs in lakes and rivers were significantly different. AMP, methadone (MTD), 3,4-methylenedioxyamphetamine (MDA), and ketamine (KET) were the most detected contaminants in lakes, while in rivers AMP, MDA, heroin (HER), and methamphetamine (METH) were the most detected ones. Concentrations of AMP and MTD, the two predominant drugs, varied spatially, with the decreasing concentration of AMP in the order of Huangshui River > Yamzhog Yumco Lake > Qinghai Lake > Lhasa River > Namco Lake, and of MTD in the order of Qinghai Lake > Namco Lake > Huangshui River > Yamzhog Yumco Lake. The risk quotients (RQs) of PSs ranged from 4.44 × 10-6 to 4.32 × 10-2, indicating a low risk of PSs in the aquatic ecosystem in QTP. Compared with other research in the world, the contamination of psychoactive substances in the Qinghai-Tibet Plateau was at relatively low levels with low ecological risks.
Collapse
Affiliation(s)
- Wenxiu Liu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; Center for Environmental Health Risk Assessment and Research, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Environmental Protection Key Laboratory of Ecological Effect and Risk Assessment of Chemicals, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Heng Zhang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; Center for Environmental Health Risk Assessment and Research, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Environmental Protection Key Laboratory of Ecological Effect and Risk Assessment of Chemicals, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Yang Liu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; Center for Environmental Health Risk Assessment and Research, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Environmental Protection Key Laboratory of Ecological Effect and Risk Assessment of Chemicals, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Xu Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; Center for Environmental Health Risk Assessment and Research, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Environmental Protection Key Laboratory of Ecological Effect and Risk Assessment of Chemicals, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Haijian Lu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; Center for Environmental Health Risk Assessment and Research, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Environmental Protection Key Laboratory of Ecological Effect and Risk Assessment of Chemicals, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Changsheng Guo
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; Center for Environmental Health Risk Assessment and Research, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Environmental Protection Key Laboratory of Ecological Effect and Risk Assessment of Chemicals, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Jian Xu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; Center for Environmental Health Risk Assessment and Research, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Environmental Protection Key Laboratory of Ecological Effect and Risk Assessment of Chemicals, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| |
Collapse
|