1
|
Yang X, Zhu J, Ding G, Cai H, Shi L, Qiu G, Wang X, Wang S, Wang C. Arsenite transporter OsNIP3;5 modulates phosphate starvation responses via regulating arsenite translocation in rice. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 225:109990. [PMID: 40403621 DOI: 10.1016/j.plaphy.2025.109990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 12/19/2024] [Accepted: 04/06/2025] [Indexed: 05/24/2025]
Abstract
The plants inevitably absorb toxic arsenate [As(V)] through phosphate (Pi) transporters (PTs) in As-contaminated soils due to the structural similarity between phosphate and arsenate As(V). Plants suppress PT's expression to reduce As(V) uptake when As accumulates in the cytosol. However, how plants maintain efficient Pi uptake under As(V) stress conditions remains unknown. In this study, a nodulin 26-like intrinsic protein, OsNIP3;5, which coordinated Pi uptake and As stress adaptation by restricting the root to shoot As translocation in rice, was identified. The expression of OsNIP3;5 was specifically induced by Pi starvation and regulated by PHOSPHATE RESPONSE 2, a core Pi signaling regulator. OsNIP3;5 exhibited high arsenite [As(III)] permeability in yeast. Loss of OsNIP3;5 function resulted in As accumulation in xylem sap and shoots under low Pi plus As(V) conditions. Additionally, the suppressed expression of Pi-starvation responsive genes by prolonged As(V) treatment was more pronounced in nip3;5 mutants than that in WT, which consequently impaired Pi uptake of rice. In conclusion, we identified a Pi starvation-induced As(III) transporter that regulates Pi uptake ability by reducing arsenic accumulation in rice.
Collapse
Affiliation(s)
- Xu Yang
- Microelement Research Center, College of Resources & Environment, Huazhong Agricultural University, Wuhan, 430070, PR China; Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Jiawei Zhu
- Microelement Research Center, College of Resources & Environment, Huazhong Agricultural University, Wuhan, 430070, PR China; Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Guangda Ding
- Microelement Research Center, College of Resources & Environment, Huazhong Agricultural University, Wuhan, 430070, PR China; Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Hongmei Cai
- Microelement Research Center, College of Resources & Environment, Huazhong Agricultural University, Wuhan, 430070, PR China; Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Lei Shi
- Microelement Research Center, College of Resources & Environment, Huazhong Agricultural University, Wuhan, 430070, PR China; Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Guohong Qiu
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture, Huazhong Agricultural University, Wuhan, 430070, PR China; Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agriculture Genomics Institute at Shenzhen, Chinese Academy of Agriculture Science, Shenzhen, PR China
| | - Xu Wang
- Guangdong Provincial Key Laboratory of Quality & Safety Risk Assessment for Agro-products, Guangzhou, PR China
| | - Sheliang Wang
- Microelement Research Center, College of Resources & Environment, Huazhong Agricultural University, Wuhan, 430070, PR China; Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Chuang Wang
- Microelement Research Center, College of Resources & Environment, Huazhong Agricultural University, Wuhan, 430070, PR China; Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture, Huazhong Agricultural University, Wuhan, 430070, PR China.
| |
Collapse
|
2
|
Leavitt ME, Reba ML, Seyfferth AL, Runkle BRK. Agronomic solutions to decrease arsenic concentrations in rice. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2025; 47:209. [PMID: 40379822 PMCID: PMC12084250 DOI: 10.1007/s10653-025-02508-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Accepted: 04/07/2025] [Indexed: 05/19/2025]
Abstract
Rice plants accumulate arsenic (As), a toxic metalloid found both naturally and as a form of anthropogenic pollution in rice fields. Arsenic concentrations in rice grain may pose human health risks, particularly when consumed regularly or used in food products for infants and young children. The purpose of this review is to summarize evidence-based mitigation strategies for minimizing the As content of rice and establish recommendations for their implementation. Mitigation strategies include irrigation management practices that introduce aerobic periods, applying soil and foliar amendments that decrease As plant-uptake, selecting and developing cultivars with lower rates of As-uptake, and post-harvest processing. In addition to a literature review, we interviewed rice producers and stakeholders to identify barriers or knowledge gaps to implementing the mitigation strategies. Alternate wetting and drying irrigation showed high effectiveness in decreasing grain As concentrations and is also climate-smart and can be cost-neutral. Combining irrigation management with select amendments maximized the decrease of grain As concentrations. Combining treatments will allow a choice of options to accommodate different farm circumstances, though nearly all field-level treatments lack experimental evidence from trials at production-scale operations (i.e., > 1 ha, with commercial management). Thus, more research is needed to develop best management strategies at the field scale in collaboration with farmers.
Collapse
Affiliation(s)
- Marguerita E Leavitt
- Department of Biological & Agricultural Engineering, University of Arkansas, Fayetteville, AR, 72701, USA
| | - Michele L Reba
- USDA-ARS Delta Water Management Research Unit, Jonesboro, AR, 72401, USA
| | - Angelia L Seyfferth
- Department of Plant and Soil Sciences, University of Delaware, Newark, DE, 19716, USA
| | - Benjamin R K Runkle
- Department of Biological & Agricultural Engineering, University of Arkansas, Fayetteville, AR, 72701, USA.
| |
Collapse
|
3
|
Zhang T, Sun Y, Parikh SJ, Colinet G, Garland G, Huo L, Zhang N, Shan H, Zeng X, Su S. Water-fertilizer regulation drives microorganisms to promote iron, nitrogen and manganese cycling: A solution for arsenic and cadmium pollution in paddy soils. JOURNAL OF HAZARDOUS MATERIALS 2024; 477:135244. [PMID: 39032176 DOI: 10.1016/j.jhazmat.2024.135244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 07/10/2024] [Accepted: 07/16/2024] [Indexed: 07/22/2024]
Abstract
The co-contamination of arsenic (As) and cadmium (Cd) in rice fields presents a global imperative for resolution. However, understanding the complex microbially driven geochemical processes and network connectivity crucial for As and Cd bioavailability under the frequent redox transitions in rice fields remains limited. Here, we conducted a series of microcosm experiments, using flooding and drainage, alongside fertilization treatments to emulate different redox environment in paddy soils. Soil As significantly reduced in drained conditions following applications of biochar or calcium-magnesium-phosphate (CMP) fertilizers by 26.3 % and 31.2 %, respectively, with concurrent decreases in Cd levels. Utilizing geochemical models, we identified the primary redox cycles dynamically altering during flooding (Fe and S cycles) and drainage (Fe, Mn, and N cycles). PLS-SEM elucidated 76 % and 61 % of the variation in Cd and As through Mn and N cycles. Functional genes implicated in multi-element cycles were analyzed, revealing a significantly higher abundance of assimilatory N reduction genes (nasA, nirA/B, narB) in drained soil, whereas an increase in ammonia-oxidizing genes (amoA/B) and a decrease in nitrate reduction to ammonium genes were observed after CMP fertilizer application. Biochar application led to significant enrichment of the substrate-binding protein of the Mn transport gene (mntC). Moreover, Fe transport genes were enriched after biochar or CMP application compared to drained soils. Among 40 high-quality metagenome-assembled genomes (MAGs), microbial predictors associated with low Cd and As contents across different treatments were examined. Bradyrhizobacea harbored abundant Mn and FeIII transport genes, while Nitrososphaeraceae carried nitrification-related genes. Two MAGs affiliated with Caulobacteraceae, carrying diverse Fe transport genes, were enriched in biochar-applied soils. Therefore, applying CMP fertilizer or biochar in aerobic rice fields can synergistically reduce the bioavailability of Cd and As by specifically enhancing the circulation of essential elements.
Collapse
Affiliation(s)
- Ting Zhang
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Environment, Ministry of Agriculture, Beijing 100081, China; TERRA Teaching and Research Centre, Gembloux Agro-Bio Tech, University of Liege, Gembloux 5030, Belgium
| | - Yifei Sun
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Environment, Ministry of Agriculture, Beijing 100081, China
| | - Sanjai J Parikh
- Department of Land, Air and Water Resources, University of California Davis, Davis, CA 95616, USA
| | - Gilles Colinet
- TERRA Teaching and Research Centre, Gembloux Agro-Bio Tech, University of Liege, Gembloux 5030, Belgium
| | - Gina Garland
- Department of Environmental System Science, ETH Zurich, Zurich 8046, Switzerland
| | - Lijuan Huo
- School of Environment and Resources, Taiyuan University of Science and Technology, Waliu Road No 66, Taiyuan 030024, China
| | - Nan Zhang
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Environment, Ministry of Agriculture, Beijing 100081, China
| | - Hong Shan
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Environment, Ministry of Agriculture, Beijing 100081, China
| | - Xibai Zeng
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Environment, Ministry of Agriculture, Beijing 100081, China
| | - Shiming Su
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Environment, Ministry of Agriculture, Beijing 100081, China.
| |
Collapse
|
4
|
Zhang X, Fu Q, Hu H, Zhu J, Fang L. Iron minerals enhance Fe(II)-mediated abiotic As(III) oxidation. CHEMOSPHERE 2024; 363:142913. [PMID: 39053775 DOI: 10.1016/j.chemosphere.2024.142913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 07/18/2024] [Accepted: 07/20/2024] [Indexed: 07/27/2024]
Abstract
The abiotic oxidation of As(III) is simultaneously mediated by the oxidation of Fe(II) in microaerobic environment, but the role of Fe minerals in the Fe(II)-mediated As(III) oxidation have been neglected. This work mimicked the microaerobic environment and examined the mechanisms of Fe(II) mediated the As(III) oxidation in the presence of Fe minerals using a variety of iron minerals (lepidocrocite, goethite, etc.). The results indicated the Fe(II) and As(III) oxidation rate were improved with Fe minerals, while As(III) oxidation efficiency increased by 1.3-1.8 times in comparison to that without minerals. Fe(II) mediated the As(III) oxidation happened on Fe minerals surface in the presence of Fe minerals. The As(III) oxidation efficiency increased with increasing Fe mineral concentrations (from 0.5 to 2 g L-1) but decreased with increasing pH values. Reactive oxygen species (ROS) that play a crucial role in As(III) oxidation were Fe(IV) and ·O2-, accounting for 42.7%-47.9% and 24.1%-29.8%, respectively. The Fe minerals facilitated the oxidation of As(III) by ROS and stimulated the release of ROS through the adsorbed-Fe(II) oxidation, both of which favored As(III) oxidation. This work highlighted the potential mechanisms of Fe minerals in promoting Fe(II) mediated the As(III) oxidation in microaerobic environment, especially in terms of As(III) oxidation efficiency, shedding a valuable insight on optimization of arsenic contaminated wastewater treatment processes.
Collapse
Affiliation(s)
- Xin Zhang
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture and Rural Affairs, College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, China; Hubei Key Laboratory of Soil Environment and Pollution Remediation, Huazhong Agricultural University, Wuhan, 430070, China
| | - Qingling Fu
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture and Rural Affairs, College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, China; Hubei Key Laboratory of Soil Environment and Pollution Remediation, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Hongqing Hu
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture and Rural Affairs, College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, China; Hubei Key Laboratory of Soil Environment and Pollution Remediation, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jun Zhu
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture and Rural Affairs, College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, China; Hubei Key Laboratory of Soil Environment and Pollution Remediation, Huazhong Agricultural University, Wuhan, 430070, China
| | - Linchuan Fang
- Hubei Key Laboratory of Mineral Resources Processing and Environment, Wuhan University of Technology, Luoshi Road 122, Wuhan, 430070, China
| |
Collapse
|
5
|
Sehar S, Adil MF, Askri SMH, Dennis E, Faizan M, Zhao P, Zhou F, Shamsi IH. Nutrient and mycoremediation of a global menace 'arsenic': exploring the prospects of phosphorus and Serendipita indica-based mitigation strategies in rice and other crops. PLANT CELL REPORTS 2024; 43:90. [PMID: 38466444 DOI: 10.1007/s00299-024-03165-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 01/26/2024] [Indexed: 03/13/2024]
Abstract
KEY MESSAGE Serendipita indica induced metabolic reprogramming in colonized plants complements phosphorus-management in improving their tolerance to arsenic stress on multifaceted biological fronts. Restoration of the anthropic damage done to our environment is inextricably linked to devising strategies that are not only economically sound but are self-renewing and ecologically conscious. The dilemma of heavy metal (HM) dietary ingestion, especially arsenic (As), faced by humans and animals alike, necessitates the exploitation of such technologies and the cultivation of healthy and abundant crops. The remarkable symbiotic alliance between plants and 'mycorrhizas' has evolved across eons, benefiting growth/yield aspects as well as imparting abiotic/biotic stress tolerance. The intricate interdependence of Serendipita indica (S. indica) and rice plant reportedly reduce As accumulation, accentuating the interest of microbiologists, agriculturists, and ecotoxicological scientists apropos of the remediation mechanisms of As in the soil-AMF-rice system. Nutrient management, particularly of phosphorus (P), is also praised for mitigating As phytotoxicity by deterring the uptake of As molecules due to the rhizospheric cationic competition. Taking into consideration the reasonable prospects of success in minimizing As acquisition by rice plants, this review focuses on the physiological, metabolic, and transcriptional alterations underlying S. indica symbiosis, recuperation of As stress together with nutritional management of P by gathering case studies and presenting successful paradigms. Weaving together a volume of literature, we assess the chemical forms of As and related transport pathways, discuss As-P-rice interaction and the significance of fungi in As toxicity mitigation, predominantly the role of mycorrhiza, as well as survey of the multifaceted impacts of S. indica on plants. A potential strategy for simultaneous S. indica + P administration in paddy fields is proposed, followed by future research orientation to expand theoretic comprehension and encourage field-based implementation.
Collapse
Affiliation(s)
- Shafaque Sehar
- Zhejiang Key Laboratory of Crop Germplasm Resource, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Muhammad Faheem Adil
- Zhejiang Key Laboratory of Crop Germplasm Resource, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China.
| | - Syed Muhammad Hassan Askri
- Zhejiang Key Laboratory of Crop Germplasm Resource, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Elvis Dennis
- Zhejiang Key Laboratory of Crop Germplasm Resource, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
- School of Natural Resources, Department of Agriculture, Papua New Guinea University of Natural Resources and Environment, Kokopo, ENBP 613, Papua New Guinea
| | - Mohammad Faizan
- Botany Section, School of Sciences, Maulana Azad National Urdu University, Hyderabad, 500032, India
| | - Ping Zhao
- Key Laboratory of State Forestry and Grassland Administration on Highly Efficient Utilization of Forestry Biomass Resources in Southwest China, College of Material and Chemical Engineering, Southwest Forestry University, Kunming, 650224, China
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming, 650224, China
| | - Fanrui Zhou
- Key Laboratory of State Forestry and Grassland Administration on Highly Efficient Utilization of Forestry Biomass Resources in Southwest China, College of Material and Chemical Engineering, Southwest Forestry University, Kunming, 650224, China.
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China.
| | - Imran Haider Shamsi
- Zhejiang Key Laboratory of Crop Germplasm Resource, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
6
|
Wang Y, Kong L, Wang K, Tao Y, Qi H, Wan Y, Wang Q, Li H. The combined impacts of selenium and phosphorus on the fate of arsenic in rice seedlings (Oryza sativa L.). CHEMOSPHERE 2022; 308:136590. [PMID: 36167200 DOI: 10.1016/j.chemosphere.2022.136590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 09/20/2022] [Accepted: 09/21/2022] [Indexed: 06/16/2023]
Abstract
Although the single role of selenium (Se) or phosphorus (P) in regulating the As contamination of rice plants has been reported in some studies, the combined impacts of Se and P on the fate of As and the underlying mechanisms are poorly understood. To address this knowledge gap, the uptake, translocation, and biotransformation of As mediated by Se were investigated in rice (Oryza sativa L.) seedlings hydroponically cultured with P-normal and P-deficient conditions. The results showed Se addition stimulated the uptake of arsenite and arsenate by 15.6% and 30.7%, respectively in P-normal condition, and such effect was more profound in P-deficient condition with the value of 43.8% and 70.8%. However, regardless of Se addition, P-deficiency elevated the As uptake by 47.0%-92.1% for arsenate but had no obvious effects for arsenite. Accompanying with the As transfer factorShoot/Root reduced by 74.5%-80.2% and 71.1%-85.7%, Se addition decreased the shoot As content by 65.8%-69.7% and 59.6%-73.1%, respectively, in the arsenite- and arsenate-treated rice plants. Relative to the corresponding treatments of P-normal condition, P-deficiency reduced the As transfer factorShoot/Root by 38.9%-52.5% and thus decreasing the shoot As content by 35.2%-42.5% in the arsenite-treated plants; while the opposite impacts were observed in the arsenate-treated plants, in which the shoot As content was increased by 22.4%-83.7%. The analysis results of As species showed As(III) was dominant in both shoots (68.9%-75.1%) and roots (94.9%-97.2%), and neither Se addition nor P-deficiency had obvious impacts on the interconversion between As(III) and As(V). Our results demonstrate the regulating roles of Se in As accumulation mainly depend on P regimes and the specific rice tissues, but the effects of P-deficiency on the fate of As were influenced by the form of As added to the culture.
Collapse
Affiliation(s)
- Yaqi Wang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, Key Laboratory of Plant-Soil Interactions of the Ministry of Education, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Lingxuan Kong
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, Key Laboratory of Plant-Soil Interactions of the Ministry of Education, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Kang Wang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, Key Laboratory of Plant-Soil Interactions of the Ministry of Education, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Yanjin Tao
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, Key Laboratory of Plant-Soil Interactions of the Ministry of Education, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Hao Qi
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, Key Laboratory of Plant-Soil Interactions of the Ministry of Education, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Yanan Wan
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, Key Laboratory of Plant-Soil Interactions of the Ministry of Education, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Qi Wang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, Key Laboratory of Plant-Soil Interactions of the Ministry of Education, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, People's Republic of China.
| | - Huafen Li
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, Key Laboratory of Plant-Soil Interactions of the Ministry of Education, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, People's Republic of China.
| |
Collapse
|
7
|
Ke YH, Syu CH, Liao YJ, Lee DY. Field experiments for evaluating the effects of water management and phosphate application on inorganic arsenic accumulation in water spinach (Ipomoea aquatica Forssk.). THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 844:157232. [PMID: 35810890 DOI: 10.1016/j.scitotenv.2022.157232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 07/02/2022] [Accepted: 07/04/2022] [Indexed: 06/15/2023]
Abstract
Water spinach (Ipomoea aquatica Forssk.) is a commonly planted vegetable in the Southeast Asia; it is a semi-aquatic leafy vegetable with high inorganic arsenic (As) accumulation capability and can be planted under both upland and flooding cultivation conditions. To date, a limited number of field studies have investigated the effect of soil management on As phytotoxicity and accumulation of water spinach. Therefore, in this study, a field experiment was conducted to investigate the effects of water management and phosphate (P) application on the As phytotoxicity and accumulation of water spinach grown in As-contaminated fields (121 mg As kg-1). Water spinach was planted in the study field with two water management (flooding and upland cultivation) and two P application rates (90 and 180 kg P2O5 ha-1), and continuously harvested three times. Results reveal that the concentration and estimated daily intake (EDI) of inorganic As in the edible parts of water spinach under flooding cultivation were approximately twofold higher than those under upland cultivation. It was also found that the accumulation of As in the shoot of water spinach was strongly related to the As concentrations, rather than P/As molar ratio in pore water due to that P application rates were lower than the maximum capacity for P retention of the tested soil. Moreover, the As phytotoxicity and accumulation of water spinach were reduced at the third harvest relative to the first two harvests because of the increase in iron plaque formation on the root surface and the decrease in the growing temperature during the experimental period. Our results suggest that upland cultivation is the better practice than flooding cultivation for reducing inorganic As accumulation in the edible parts of water spinach grown in As-contaminated soils. Further, ratooning may be a feasible cultivation approach to reducing inorganic As accumulation in water spinach.
Collapse
Affiliation(s)
- Yi-Hsuan Ke
- Department of Agricultural Chemistry, National Taiwan University, Taipei City, Taiwan
| | - Chien-Hui Syu
- Agricultural Chemistry Division, Taiwan Agricultural Research Institute, Council of Agriculture, Executive Yuan, Taiwan
| | - Yi-Jie Liao
- Department of Agricultural Chemistry, National Taiwan University, Taipei City, Taiwan
| | - Dar-Yuan Lee
- Department of Agricultural Chemistry, National Taiwan University, Taipei City, Taiwan.
| |
Collapse
|