1
|
Xiang R, Guo H, Liu B, Liu L, Zhang Y, Wang J, You L. A green process for total nitrogen removal without extra energy consumption: Synergistic actions for wastewater treatment. J Environ Sci (China) 2025; 156:747-756. [PMID: 40412972 DOI: 10.1016/j.jes.2024.12.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 12/13/2024] [Accepted: 12/25/2024] [Indexed: 05/27/2025]
Abstract
Total nitrogen (TN) removal is one of the key issues in improving water quality, while the traditional nitrification-denitrification process with its high energy consumption is unsustainable, due to greenhouse gas (GHG) emission. A method using organic-inorganic pellets and selected microalgae that can operate without electricity consumption was designed for TN removal in actual wastewater treatment. The results showed that the TN removal efficiencies with different pellets were 88.2 % ± 2.2 %, 86.6 % ± 3.0 %, 85.4 % ± 4.3 %, and 82.3 % ± 6.5 %, respectively. Microalgae assimilated inorganic nitrogen within cells, resulting in a significant positive relationship with TN (P < 0.05), and effectively removed TN through sedimentation. The pellets adsorbed nitrogen and microorganisms, released organic substances to regulate the ratio of water chemical oxygen demand (COD) to TN, and correspondingly influenced microbial growth. Microalgae and bacteria such as Romboutsia, Proteiniclasticum, and Rhodopseudomonas cooperated to form a mixed aerobic (water) -anaerobic (pellets) environment in the devices, and acted synergistically to remove TN. This study verifies the feasibility of TN removal with only solar energy in a low flow application in large spaces, benefiting carbon neutrality in wastewater treatment.
Collapse
Affiliation(s)
- Rongting Xiang
- College of Architecture and Environment, Sichuan University, Chengdu 610065, China
| | - Hongguang Guo
- College of Architecture and Environment, Sichuan University, Chengdu 610065, China
| | - Benhong Liu
- College of Architecture and Environment, Sichuan University, Chengdu 610065, China.
| | - Lei Liu
- College of Architecture and Environment, Sichuan University, Chengdu 610065, China
| | - Yi Zhang
- College of Architecture and Environment, Sichuan University, Chengdu 610065, China
| | - Jue Wang
- College of Architecture and Environment, Sichuan University, Chengdu 610065, China
| | - Lixia You
- College of Architecture and Environment, Sichuan University, Chengdu 610065, China
| |
Collapse
|
2
|
Cui Y, Zhang L, Wang H, Fan X, Peng Y. Advanced nitrogen removal from extremely low carbon/nitrogen ratio municipal wastewater by optimizing multiple pathways based on step-feed and intermittent aeration. BIORESOURCE TECHNOLOGY 2025; 421:132202. [PMID: 39933664 DOI: 10.1016/j.biortech.2025.132202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 01/14/2025] [Accepted: 02/06/2025] [Indexed: 02/13/2025]
Abstract
The advantages of step-feed and intermittent aeration have been well-documented, however, combining them to enhance nitrogen removal in anaerobic/oxic/anoxic systems has been rarely explored. This study established the non-single-form anoxic stages by step-feed and intermittent aeration and finally enhanced the nitrogen removal of real municipal wastewater with step-feed anaerobic/oxic/anoxic/oxic/anoxic operation mode. Results revealed that Candidatus_Brocadia increased from 0.00 % to 0.21 % in the suspended sludge system, contributing 54.7 % of the nitrogen removal. Partial nitrification (PN) and endogenous partial denitrification (EPD) supplied nitrite for Anammox. A comprehensive multi-pathway nitrogen removal system, encompassing PN, nitrification, partial denitrification, Anammox, EPD/Anammox, and denitrification was constructed. The system effectively reduced total inorganic nitrogen concentration to 3.6 ± 1.2 mg/L at a carbon/nitrogen ratio of 3.0 ± 0.3, achieving a nitrogen removal efficiency of 95.3 ± 1.5 %. This study provides a novel approach for the advanced treatment of municipal wastewater and enrichment of anaerobic ammonia-oxidizing bacteria.
Collapse
Affiliation(s)
- Yanru Cui
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124 PR China
| | - Liang Zhang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124 PR China
| | - Hanbin Wang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124 PR China
| | - Xinsheng Fan
- China Energy Conservation and Environmental Protection Group (CECEP) Guozhen Environm Protect Sci & Tech Co Ltd, Hefei 230088 PR China
| | - Yongzhen Peng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124 PR China.
| |
Collapse
|
3
|
Li Y, Liang H, Yang W, Cheng L, Gao D. Enhanced nitrogen removal and microbial community of the mainstream deammonification treating fluctuating influent C/N wastewater by the novel functional carriers. CHEMOSPHERE 2024; 366:143416. [PMID: 39341392 DOI: 10.1016/j.chemosphere.2024.143416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 09/05/2024] [Accepted: 09/25/2024] [Indexed: 10/01/2024]
Abstract
The plug-flow fixed bed reactors with zeolite/tourmaline-modified polyurethane carriers (PFBRZTP) and polyurethane carriers (PFBRPU) were operated to assess the fluctuating influent C/N impact on the system performance and the carrier effect on the enhancing the system operation. Result suggested that fluctuations in influent C/N and variations in operational temperature reduced the removal performance and system stability within PFBRPU. The negative impact of C/N fluctuation could be effectively mitigated by effluent reflux. In contrast, PFBRZTP performance and operational stability of maintained at high level with a greater nitrogen removal rate (0.18 kg N·(m³·d)-1). Redundancy analyses showed that the fluctuations in influent C/N dramatically affected the microbiome structure in PFBRPU, and the leading influencing factor was shifted to the fluctuating amount of influent C/N, which in turn reduced the system performance and stability. ZTP carriers could maintain the balance of main functional bacterial activity and abundance and promote the partial denitrification process with a higher Thauera abundance of 0.48%.
Collapse
Affiliation(s)
- Yuqi Li
- Centre for Urban Environmental Remediation, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China; Collaborative Innovation Center of Energy Conservation & Emission Reduction and Sustainable Urban-Rural Development in Beijing, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China; Key Laboratory of Urban Stormwater System & Water Environment (Ministry of Education), Beijing University of Civil Engineering and Architecture, Beijing, 100044, China; CAUPD (Beijing) Planning & Design Consultants Ltd, Beijing, 100044, China
| | - Hong Liang
- Centre for Urban Environmental Remediation, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China; Collaborative Innovation Center of Energy Conservation & Emission Reduction and Sustainable Urban-Rural Development in Beijing, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China; Key Laboratory of Urban Stormwater System & Water Environment (Ministry of Education), Beijing University of Civil Engineering and Architecture, Beijing, 100044, China
| | - Wenbo Yang
- Centre for Urban Environmental Remediation, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China; Collaborative Innovation Center of Energy Conservation & Emission Reduction and Sustainable Urban-Rural Development in Beijing, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China; Key Laboratory of Urban Stormwater System & Water Environment (Ministry of Education), Beijing University of Civil Engineering and Architecture, Beijing, 100044, China
| | - Lang Cheng
- Centre for Urban Environmental Remediation, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China; Collaborative Innovation Center of Energy Conservation & Emission Reduction and Sustainable Urban-Rural Development in Beijing, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China; Key Laboratory of Urban Stormwater System & Water Environment (Ministry of Education), Beijing University of Civil Engineering and Architecture, Beijing, 100044, China
| | - Dawen Gao
- Centre for Urban Environmental Remediation, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China; Collaborative Innovation Center of Energy Conservation & Emission Reduction and Sustainable Urban-Rural Development in Beijing, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China; Key Laboratory of Urban Stormwater System & Water Environment (Ministry of Education), Beijing University of Civil Engineering and Architecture, Beijing, 100044, China.
| |
Collapse
|
4
|
Fan X, Zhang L, Hao S, Peng Y, Yang J, Ni S. Exploring the zero-valent iron (ZVI) mediated transformation of dissolved organic nitrogen (DON) in anammox system using FT-ICR MS and fluorescence spectroscopy. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 367:122034. [PMID: 39098067 DOI: 10.1016/j.jenvman.2024.122034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 07/20/2024] [Accepted: 07/27/2024] [Indexed: 08/06/2024]
Abstract
With fluorescence spectroscopy and Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS), this study evaluated the performance of zero-valent iron (ZVI) enhanced anammox process for treating fulvic acids (FA)-containing wastewater and investigated the fate of dissolved organic nitrogen (DON) at the molecular level. The results showed that ZVI increased the total organic carbon (TOC) removal rate of the anammox system by approximately 10% and reduced the organic matter fluorescence intensity by 21%. Specifically, microbial humic-like C1 and terrestrial humic-like C4 components were preferentially degraded by ZVI among the fluorescence components (C1-C4). Moreover, ZVI significantly altered the transformation pathways of DON molecules in anammox. The number of precursors molecular formulas increased from 1617 to 2002, attributed to the elimination of high molecular weight (MW) (>500 Da) molecules. Specifically, DON molecules with high O/C were degraded under the effect of ZVI, while some high MW were resisted. The original products generated from anammox consortia metabolism and FA degradation underwent secondary reactions with ZVI, thereby decreased the O/C of products molecular formulas. Furthermore, anammox process was subjected to the most carboxylic acid reaction, including decarboxylation and reduction of carboxylic acids. For CHON molecules, a significant number of reactions involving the reduction of nitro groups contributed to the reduction of wastewater toxicity, which improved the overall performance.
Collapse
Affiliation(s)
- Xuepeng Fan
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing, 100124, China
| | - Li Zhang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing, 100124, China.
| | - Shiwei Hao
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing, 100124, China
| | - Yongzhen Peng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing, 100124, China
| | - Jiachun Yang
- China Coal Technology & Engineering Group Co. Ltd, Tokyo, 100-0011, Japan.
| | - Shouqing Ni
- School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong, 266237, China
| |
Collapse
|
5
|
Liu W, Li J, Liu T, Zheng M, Meng J, Li J. Temperature-resilient superior performances by coupling partial nitritation/anammox and iron-based denitrification with granular formation. WATER RESEARCH 2024; 254:121424. [PMID: 38460226 DOI: 10.1016/j.watres.2024.121424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 03/03/2024] [Accepted: 03/04/2024] [Indexed: 03/11/2024]
Abstract
Partial nitritation-anammox (PN/A), an energy-neutral process, is widely employed in the treatment of nitrogen-rich wastewater. However, the intrinsic nitrate accumulation limits the total nitrogen (TN) removal, and the practical application of PN/A continues to face a significant challenge at low temperatures (<15 °C). Here, an integrated partial nitritation-anammox and iron-based denitrification (PNAID) system was developed to address the concern. Two up-flow bioreactors were set up and operated for 400 days, with one as the control group and the other as the experiment group with the addition of Fe0. In comparison to the control group, the experiment group with the Fe0 supplement showed better nitrogen removal during the entire course of the experiment at different temperature levels. Specifically, the TN removal efficiency of the control group decreased from 82.9 % to 53.9 % when the temperature decreased from 30 to 12 °C, while in stark contrast, the experiment group consistently achieved 80 % of TN removal in the same condition. Apart from the enhanced nitrogen removal, the experiment group also exhibited better phosphorus removal (10.6 % versus 74.1 %) and organics removal (49.5 % versus 65.1 %). The enhanced and resilient nutrient removal performance of the proposed integrated process under low temperatures appeared to be attributed to the compact structure of granules and the increased microbial metabolism with Fe0 supplement, elucidated by a comprehensive analysis including microbial-specific activity, apparent activation energy, characteristics of granular sludge, and metagenomic sequencing. These results clearly confirmed that Fe0 supplement not only improved nitrogen removal of PN/A process, but also conferred a certain degree of robustness to the system in the face of temperature fluctuations.
Collapse
Affiliation(s)
- Wenbin Liu
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, 73 Huanghe Road, Harbin 150090, China
| | - Jianzheng Li
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, 73 Huanghe Road, Harbin 150090, China
| | - Tao Liu
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong 999077, China
| | - Min Zheng
- Water Research Centre, School of Civil and Environmental Engineering, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Jia Meng
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, 73 Huanghe Road, Harbin 150090, China.
| | - Jiuling Li
- Australian Centre for Water and Environmental Biotechnology, The University of Queensland, Brisbane, Queensland 4072, Australia
| |
Collapse
|
6
|
Wang Y, Gao W, Lv L, Ma X, Ren Z, Sun L, Liu X, Wang P, Sun Z, Tian Y, Zhang G. Comprehensive carbon footprint analysis of wastewater treatment: A case study of modified cyclic activated sludge technology for low carbon source urban wastewater treatment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 923:171550. [PMID: 38461981 DOI: 10.1016/j.scitotenv.2024.171550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 01/30/2024] [Accepted: 03/04/2024] [Indexed: 03/12/2024]
Abstract
To reduce pollution and carbon emissions, a quantitative evaluation of the carbon footprint of the wastewater treatment processes is crucial. However, micro carbon element flow analysis is rarely focused considering treatment efficiency of different technology. In this research, a comprehensive carbon footprint analysis is established under the micro carbon element flow analysis and macro carbon footprint analysis based on life cycle assessment (LCA). Three wastewater treatment processes (i.e., anaerobic anoxic oxic, A2O; cyclic activated sludge technology, CAST; modified cyclic activated sludge technology, M-CAST) for low carbon source urban wastewater are selected. The micro key element flow analysis illustrated that carbon source mainly flows to the assimilation function to promote microorganism growth. The carbon footprint analysis illustrated that M-CAST as the optimal wastewater treatment process had the lowest global warming potential (GWP). The key to reduce carbon emissions is to limit electricity consumption in wastewater treatment processes. Under the comprehensive carbon footprint analysis, M-CAST has the lowest environmental impact with low carbon emissions. The sensitivity analysis results revealed that biotreatment section variables considerably reduced the environmental impact on the LCA and the GWP, followed by the sludge disposal section. With this research, the optimization scheme can guide wastewater treatment plants to optimize relevant treatment sections and reduce pollution and carbon emissions.
Collapse
Affiliation(s)
- Yuting Wang
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, 300401, China
| | - Wenfang Gao
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, 300401, China.
| | - Longyi Lv
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, 300401, China.
| | - Xiaotian Ma
- Institute of Blue and Green Development, Weihai Institute of Interdisciplinary Research, Shandong University, Weihai 264209, China
| | - Zhijun Ren
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, 300401, China
| | - Li Sun
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, 300401, China
| | - Xiaoyang Liu
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, 300401, China
| | - Pengfei Wang
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, 300401, China
| | - Zhi Sun
- National Key Laboratory of Biochemical Engineering, Beijing Engineering Research Centre of Process Pollution Control, Institute of Process Engineering, Innovation Academy for Green Manufacture, Chinese Academy of Sciences, Beijing 100190, China
| | - Yu Tian
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Guangming Zhang
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, 300401, China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| |
Collapse
|
7
|
Li W, Li X, Zhang Q, Kao C, Hou X, Peng Y. Recent advances of partial anammox by controlling nitrite supply in mainstream wastewater treatment through step-feed mode. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:168965. [PMID: 38030009 DOI: 10.1016/j.scitotenv.2023.168965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 11/15/2023] [Accepted: 11/26/2023] [Indexed: 12/01/2023]
Abstract
At present, the step-feed process is a very active branch in practical application of mainstream wastewater treatment, and the anammox technology empowers the sustainable development and in-depth research of step-feed process. This review provides a systematically inspection of the realization and application of partial anammox process through step-feed mode, with a particular focus on controlling nitrite supply for anammox. The characteristics and advantages of step-feed mode in traditional management are reviewed. The unique organics utilization strategy by step-feed and indispensable intermittent aeration mode creates advantages for achieving nitritation (NH4+ → NO2-) and denitratation (NO3- → NO2-), providing flexible combination possibility with anammox. Additionally, the lab- or pilot-scale control strategies with different forms of anammox, including nitritation/anammox, denitratation/anammox, and double-anammox (combined nitritation/anammox and denitratation/anammox), are summarized. Finally, future directions and application perspectives on leveraging the relationship between flocs and biofilm, nitritation and denitratation, and different strains to maximize the anammox proportion in N-removal are proposed.
Collapse
Affiliation(s)
- Wenyu Li
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Xiyao Li
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Qiong Zhang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Chengkun Kao
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Xiaohang Hou
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Yongzhen Peng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China.
| |
Collapse
|
8
|
Dou Q, Zhang L, Dong T, Song Z, Fan X, Peng Y, Wang X, Yang J. Degradation properties of fulvic acid and its microbially driven mechanism from a partial nitritation bioreactor through multi-spectral and bioinformatic analysis. J Environ Sci (China) 2024; 135:318-331. [PMID: 37778807 DOI: 10.1016/j.jes.2022.11.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/12/2022] [Accepted: 11/15/2022] [Indexed: 10/03/2023]
Abstract
This study employed multispectral techniques to evaluate fulvic acid (FA) compositional characteristic and elucidate its biodegradation mechanisms during partial nitritation (PN) process. Results showed that FA removal efficiency (FRE) decreased from 90.22 to 23.11% when FA concentrations in the reactor were increased from 0 to 162.30 mg/L, and that molecular size, degree of aromatization and humification of the effluent FA macromolecules all increased after treatment. Microbial population analysis indicated that the proliferation of the Comamonas, OLB12 and Thauera exhibit high FA utilization capacity in lower concentrations (<50.59 mg/L), promoting the degradation and removal of macromolecular FA. In addition, the sustained increase in external FA may decrease the abundance of above functional microorganisms, resulting in a rapid drop in FRE. Furthermore, from the genetic perspective, the elevated FA levels restricted carbohydrate (ko00620, ko00010 and ko00020) and nitrogen (HAO, AMO, NIR and NOR) metabolism-related pathways, thereby impeding FA removal and total nitrogen loss associated with N2O emissions.
Collapse
Affiliation(s)
- Quanhao Dou
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing 100124, China
| | - Li Zhang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing 100124, China.
| | - Tingjun Dong
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing 100124, China
| | - Zixuan Song
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing 100124, China
| | - Xuepeng Fan
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing 100124, China
| | - Yongzhen Peng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing 100124, China
| | - Xiayan Wang
- Department of Chemistry and Biology, Center of Excellence for Environmental Safety and Biological Effects, Beijing Key Laboratory for Green Catalysis and Separation, Beijing University of Technology, Beijing 100124, China
| | - Jiachun Yang
- Environmental Protection Development Group Co., Ltd., Shandong 250101, China
| |
Collapse
|
9
|
Zhou L, Chen J, Zhang X, Zhu Z, Wu Z, Zhang K, Wang Y, Wu P, Zhang X. Efficient nitrogen removal from municipal wastewater by an autotrophic-heterotrophic coupled anammox system: The up-regulation of key functional genes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 904:166359. [PMID: 37595900 DOI: 10.1016/j.scitotenv.2023.166359] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/07/2023] [Accepted: 08/15/2023] [Indexed: 08/20/2023]
Abstract
The metabolic pathways based on key functional genes were innovatively revealed in the autotrophic-heterotrophic coupled anammox system for real municipal wastewater treatment. The nitrogen removal performance of the system was stabilized at 88.40 ± 3.39 % during the treatment of real municipal wastewater. The relative abundances of the nitrification functional genes ammonia oxidase (amoA/B/C), hydroxylamine oxidoreductase (hao), and nitrite oxidoreductases (nxrA/B) were increased by 1.2-2.4 times, and these three nitrification functional genes were mostly contributed by Nitrospira that dominated the efficient nitrification of the system. The relative abundance of anammox bacteria Candidatus Brocadia augmented from 0.35 % to 0.75 %, accompanied with the increased expression of hydrazine synthase (hzs) and hydrazine dehydrogenase (hdh), resulting in the major role of anammox (81.24 %) for nitrogen removal. The expression enhancement of the functional genes nitrite reductase (narG/H, napA/B) that promoted partial denitrification (PD) of the system weakened the adverse effects of the sharp decline in the population of PD microbe Thauera (from 5.7 % to 2.2 %). The metabolic module analysis indicated that the carbon metabolism pathways of the system mainly included CO2 fixation and organic carbon metabolism, and the stable enrichment of autotrophic bacteria ensured stable CO2 fixation. Furthermore, the enhanced expression of the glucokinases (glk, GCK, HK, ppgk) and the abundant pyruvate kinase (PK) achieved stable hydrolysis ability of organic carbon metabolism function of the system. This study offers research basics to practical application of the mainstream anammox process.
Collapse
Affiliation(s)
- Li Zhou
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, No. 1 Kerui Road, Suzhou 215009, PR China
| | - Junjiang Chen
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, No. 1 Kerui Road, Suzhou 215009, PR China
| | - Xiaonong Zhang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, No. 1 Kerui Road, Suzhou 215009, PR China
| | - Zixuan Zhu
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, No. 1 Kerui Road, Suzhou 215009, PR China
| | - Zhiqiang Wu
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, No. 1 Kerui Road, Suzhou 215009, PR China
| | - Kangyu Zhang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, No. 1 Kerui Road, Suzhou 215009, PR China
| | - Yiwen Wang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, No. 1 Kerui Road, Suzhou 215009, PR China
| | - Peng Wu
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, No. 1 Kerui Road, Suzhou 215009, PR China; National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, No. 1 Kerui Road, Suzhou 215009, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, No. 1 Kerui Road, Suzhou 215009, PR China.
| | - Xingxing Zhang
- Shanghai Key Laboratory for Urban Ecological Processes and Eco-Restoration, Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| |
Collapse
|
10
|
Han X, Zhang L, Yuan Y, Zhang Q, Peng Y. Anaerobic starvation realizes partial nitrification and starts anammox bacteria self-enrichment in mainstream municipal sewage treatment in a low filling ratio sequencing batch reactor. BIORESOURCE TECHNOLOGY 2023; 387:129505. [PMID: 37468012 DOI: 10.1016/j.biortech.2023.129505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/11/2023] [Accepted: 07/16/2023] [Indexed: 07/21/2023]
Abstract
The initiating and stable preservation of partial nitrification (PN) and achievement of anammox bacteria self-enrichment in domestic sewage is a purposeful subject. In this article, an originality tactics of anaerobic starvation for 100 days was adopted for rapidly achieving PN in actual wastewater, the nitrite accumulation rate (NAR) improved from 4.95% to 81.73% in 18 days. After anaerobic starvation was stopped, the stable PN effect furnished enough stroma for the growth of anammox bacteria. The abundance of Candidatus Brocadia grew from 0% to 0.42% in floc sludge and 0.43% in blank biofilm, which promoted nitrogen removal effect. Anaerobic starvation continuing 74 days generated further decrease in the abundance of Nitrobacter and Nitrospira of nitrite-oxidizing bacteria (NOB), indicating that anaerobic starvation can restore the destroyed partial nitrification. In conclusion, this article furnished a low-cost method for achieving anammox bacteria self-enrichment in mainstream municipal wastewater in 10% filling ratio without chemicals addition.
Collapse
Affiliation(s)
- Xueke Han
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, China
| | - Liyuan Zhang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, China
| | - Yue Yuan
- Shanghai Municipal Engineering Design Institute (Group) Co., Ltd., Shanghai 200092, China
| | - Qiong Zhang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, China
| | - Yongzhen Peng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, China.
| |
Collapse
|
11
|
Cho K, Lee S, Jung J, Choi D. Elucidating prioritized factor for mainstream partial nitritation between C/N ratio and dissolved oxygen: Response surface methodology and microbial community shifts. ENVIRONMENTAL RESEARCH 2023; 227:115748. [PMID: 36972772 DOI: 10.1016/j.envres.2023.115748] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 02/24/2023] [Accepted: 03/22/2023] [Indexed: 05/08/2023]
Abstract
Recently, C/N ratio is suggested as a promising control factor with dissolved oxygen (DO) achieving mainstream partial nitritation (PN); however, their combined effects on mainstream PN are still limited. This study evaluated the mainstream PN with respect to the combined factors, and investigated the prioritized factor affecting the community of aerobic functional microbes competing with NOB. Response surface methodology was performed to assess the combined effects of C/N ratio and DO on the activity of functional microbes. Aerobic heterotrophic bacteria (AHB) played the greatest role in oxygen competition among functional microbes, which resulted in relative inhibition of nitrite-oxidizing bacteria (NOB). The combination of high C/N ratio and low DO had a positive role in the relative inhibition of NOB. In bioreactor operation, the PN was successfully achieved at ≥ 1.5 of C/N ratio for 0.5-2.0 mg/L DO conditions. Interestingly, aerobic functional microbes outcompeting NOB were shifted with C/N ratio rather than DO, suggesting C/N ratio is more prioritized factor achieving mainstream PN. These findings will provide insights into how combined aerobic conditions contribute to achieve mainstream PN.
Collapse
Affiliation(s)
- Kyungjin Cho
- Center for Water Cycle Research, Korea Institute of Science and Technology, Seoul, 02792, South Korea; Division of Energy & Environment Technology, KIST School, University of Science and Technology (UST), Seoul, 02792, South Korea
| | - Sangji Lee
- Department of Environmental Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan-Si, Gyeongbuk, 38541, South Korea
| | - Jinyoung Jung
- Department of Environmental Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan-Si, Gyeongbuk, 38541, South Korea
| | - Daehee Choi
- Department of Environmental Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan-Si, Gyeongbuk, 38541, South Korea.
| |
Collapse
|
12
|
Choi D, Jung J. Nitrogen removal enhancement through competitive inhibition of nitrite oxidizing bacteria in mainstream partial nitritation/anammox: Anammox seeding and influent C/N ratios. Biochem Eng J 2023. [DOI: 10.1016/j.bej.2023.108910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
|
13
|
Yao K, Huang X, Dong W, Wang F, Liu X, Yan Y, Qu Y, Fu Y. Changes of nitrogen and phosphorus removal pattern caused by alternating aerobic/anoxia from the perspective of microbial characteristics. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:68863-68876. [PMID: 37129825 DOI: 10.1007/s11356-023-27302-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 04/25/2023] [Indexed: 05/03/2023]
Abstract
The purpose of this study was to compare the impact of different numbers of alternating aerobic/anoxic (A/O) cycles on pollutant removal. Three sequential batch reactors (SBRs) with varying numbers of alternating A/O cycles were established. Under the tertiary anoxic operating conditions, the removal efficiencies of chemical oxygen demand (COD), ammonia nitrogen (NH4+-N), total nitrogen (TN), and total phosphorus (TP) were 88.73%, 89.56%, 72.15%, and 77.61%, respectively. Besides, alternating A/O affected the dominant microbial community relative abundance (Proteobacteria and Bacteroidetes) and increased microbial richness and diversity. It also increased the relative abundance of aerobic denitrifying, heterotrophic nitrifying, and denitrifying phosphorus removal bacteria to change N and P removal patterns. Furthermore, the abundance of carbohydrate metabolism and amino acid metabolism was improved by alternating A/O to improve organic matter and TN removal.
Collapse
Affiliation(s)
- Kai Yao
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing, 210044, China
| | - Xiao Huang
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing, 210044, China.
- Shenzhen Key Laboratory of Water Resources Utilization and Environmental Pollution Control, School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China.
| | - Wenyi Dong
- Shenzhen Key Laboratory of Water Resources Utilization and Environmental Pollution Control, School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China
| | - Fupeng Wang
- Northeast China Municipal Engineering Design and Research Institute Co. Ltd, Jilin, 130021, China
| | - Xueyong Liu
- Northeast China Municipal Engineering Design and Research Institute Co. Ltd, Jilin, 130021, China
- Urban and Rural Water Environment Technology R&D Center, China Communications Construction Co. Ltd, Jilin, 130021, China
| | - Yu Yan
- Northeast China Municipal Engineering Design and Research Institute Co. Ltd, Jilin, 130021, China
- Urban and Rural Water Environment Technology R&D Center, China Communications Construction Co. Ltd, Jilin, 130021, China
| | - Yanhui Qu
- China Urban and Rural Holdings Group Co. Ltd, Beijing, 100029, China
| | - Yicheng Fu
- State Key Laboratory of Simulation and Regulation of River Basin Water Cycle, China Institute of Water Resources and Hydropower Research, Beijing, 100038, China
| |
Collapse
|
14
|
Li J, Li J, Wang B, Wang Z, Li X, Wang S, Peng Y. Stable enhanced nitrogen removal from low COD/N municipal wastewater via partial nitrification-anammox in the traditional continuous anoxic/oxic process through bio-augmentation of partial nitrification sludge under decreasing temperatures. BIORESOURCE TECHNOLOGY 2022; 363:127953. [PMID: 36108942 DOI: 10.1016/j.biortech.2022.127953] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 09/01/2022] [Accepted: 09/07/2022] [Indexed: 06/15/2023]
Abstract
The application of partial nitrification-anammox (PNA) in continuous flow processes for treating low COD/N (C/N) sewage remains a critical challenge. Here, a traditional continuous anoxic/oxic (A/O) process was operated to investigate nitrogen removal from municipal wastewater by the bio-augmentation of partial nitrification sludge combined with the inoculation of biocarriers under decreasing temperatures. Stable enhanced nitrogen removal via PNA was achieved. The average total inorganic nitrogen in influent and effluent was 44.3 and 7.1 mg N/L under a low C/N ratio (3.4) and a short hydraulic retention time (8.2 h). The bio-augmentation of partial nitrification sludge enhanced the PNA process under low temperatures (16.9 ± 0.6 °C). The nitrogen removal efficiency remained stable at 83.3 ± 5.7 % as the temperature decreased from 29.1 to 16.3 °C, and the relative abundance of Ca. Brocadia in carrier biofilms increased from 2.22 % to 4.31 % and 3.27 % in two aerobic chambers after 70 days of operation.
Collapse
Affiliation(s)
- Jiapeng Li
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Jialin Li
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Bo Wang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Zihao Wang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Xiyao Li
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Shuying Wang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Yongzhen Peng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China.
| |
Collapse
|
15
|
Liu Q, Peng Y, Zhao Y, Zhao Q, Li X, Zhang Q, Sui J, Wang C, Li J. Excellent anammox performance driven by stable partial denitrification when encountering seasonal decreasing temperature. BIORESOURCE TECHNOLOGY 2022; 364:128041. [PMID: 36182020 DOI: 10.1016/j.biortech.2022.128041] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 09/21/2022] [Accepted: 09/24/2022] [Indexed: 06/16/2023]
Abstract
Effluent quality deterioration caused by seasonal temperature reductions in wastewater treatment systems using partial anammox technology is a challenge that cannot be ignored. Here, relationships of denitrification and anammox under decreasing temperature were investigated in an anoxic moving bed biofilm reactor (MBBR). Compared with stable partial-denitrification (NO3- → NO2-), the NO2- reduction to N2 was considerably inhibited when the temperature decreased, conversely helping to the competition of NO2- for anammox. Namely, this transformation provided sufficient substrates for anammox bacteria. Although the TIN removal decreased slightly, anammox contribution was robustly maintained at 91.3 ± 6.6 %, even increased. High-throughput sequencing results revealed that anammox bacteria were enriched (0.56 % to 1.22 %). Moreover, qPCR results showed that increased ratio of hzsB/(nirK + nirS) further supported anammox gained an enhancement. This study demonstrated partial-denitrification/anammox process using anoxic MBBR could maintain stable autotrophic nitrogen removal contribution when encountering temperature decrease, providing a new perspective on the application of mainstream anammox.
Collapse
Affiliation(s)
- Qiyu Liu
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Yongzhen Peng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Yang Zhao
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Qi Zhao
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Xiyao Li
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Qiong Zhang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Jun Sui
- Guangdong Shouhui Lantian Engineering and Technology Co.Ltd 510075, PR China
| | - Chuanxin Wang
- Guangdong Shouhui Lantian Engineering and Technology Co.Ltd 510075, PR China
| | - Jianwei Li
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China.
| |
Collapse
|
16
|
Jia T, Li X, Jiang H, Dan Q, Sui J, Wang S, Peng Y. Advanced nitrogen removal from municipal sewage via partial nitrification-anammox process under two typical operation modes and seasonal ambient temperatures. BIORESOURCE TECHNOLOGY 2022; 363:127864. [PMID: 36055540 DOI: 10.1016/j.biortech.2022.127864] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/23/2022] [Accepted: 08/24/2022] [Indexed: 06/15/2023]
Abstract
A novel two-stage partial nitrification-anammox (PN-A) process was developed, achieving nitrogen removal from low carbon/nitrogen ratio municipal sewage under two typical operational modes and seasonal ambient temperatures. When complete nitritation-anammox was performed at temperatures greater than 19.4 °C, the effluent concentration of total inorganic nitrogen (TIN) was 4.1 mg/L, corresponding to a nitrogen removal efficiency (NRE) of 94.3 %. In contrast, when partial nitritation-anammox was performed at temperatures below 19.4 °C, the effluent TIN was 12.3 mg/L, corresponding to a NRE of 83.6 %. The relative abundance of Nitrosomonas and Nitrosomonadaceae increased from 0.02 % to 0.28 %, while Ca. Brocadia decreased from 1.85 % to 1.30 %, with the contribution of anammox to nitrogen removal being highest under low temperatures (19.4℃ to 13.8℃), at 59.0 %. This novel two-stage PN-A process provides a new approach for the stable operation of wastewater treatment plants (WWTPs) under low ambient temperatures.
Collapse
Affiliation(s)
- Tong Jia
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Xiyao Li
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Hao Jiang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Qiongpeng Dan
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Jun Sui
- Guangdong Shouhui Lantian Engineering and Technology Co. Ltd, PR China
| | - Shuying Wang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Yongzhen Peng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China.
| |
Collapse
|
17
|
Zhang L, Zhang Q, Li X, Jia T, Wang S, Peng Y. Enhanced nitrogen removal from municipal wastewater via a novel combined process driven by partial nitrification/anammox (PN/A) and partial denitrification/anammox (PD/A) with an ultra-low hydraulic retention time (HRT). BIORESOURCE TECHNOLOGY 2022; 363:127950. [PMID: 36108939 DOI: 10.1016/j.biortech.2022.127950] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/06/2022] [Accepted: 09/07/2022] [Indexed: 06/15/2023]
Abstract
Anaerobic ammonia oxidation (Anammox) is a highly productive research area in municipal wastewater treatment. A novel combined process driven by partial nitrification/anammox (PN/A) and partial denitrification/anammox (PD/A) was established in this paper using a sequencing batch reactor (SBR) and two up-flow sludge beds (USBs). Municipal wastewater after carbon removal pretreatment in SBR entered PN/A-USB. PN/A process was initiated and enhanced by optimizing the intermittent aeration mode under low dissolved oxygen (DO). After enhancing and stabilizing the PD/A process, PN/A effluent entered the PD/A-USB along with raw municipal wastewater at a ratio of 4:1 and the combined system was established. Through this, this study achieved a nitrogen removal efficiency (NRE) of 84.9 % from municipal wastewater at an ultra-low total hydraulic residence time (HRT) of 3.9 h. Candidatus Brocadia (1.8 % in PN/A, 1.0 % in PD/A) was the only functional anammox bacterium in the combined process.
Collapse
Affiliation(s)
- Luyuan Zhang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Qiong Zhang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Xiyao Li
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Tong Jia
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Shuying Wang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Yongzhen Peng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China.
| |
Collapse
|
18
|
Feng Y, Wang S, Peng Y. Stable nitrogen removal in the novel continuous flow anammox system under deteriorated partial nitrification: Significance and superiority of the anaerobic-oxic-anoxic-oxic operation mode. BIORESOURCE TECHNOLOGY 2022; 361:127693. [PMID: 35905875 DOI: 10.1016/j.biortech.2022.127693] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 07/20/2022] [Accepted: 07/21/2022] [Indexed: 06/15/2023]
Abstract
The collapse of mainstream anammox system caused by deterioration of partial nitrification (PN) is easy to occur and it is vital to quickly restore the stable nitrogen elimination performance. Herein, a novel continuous push-flow anaerobic-oxic-anoxic-oxic (AOAO) process treating sewage was used to restore the nitrogen elimination performance rapidly under deteriorated PN. The increased abundances of Nitrospira and Candidatus Nitrotoga was responsible for the deterioration of PN. Effluent total inorganic nitrogen of 8.7 mg N/L and a stable nitrogen removal rate of 0.083 kg N/m3·d were obtained with the aerobic hydraulic retention time (HRT) of 3.75 h even PN deteriorated. Endogenous partial denitrification coupled anammox in the anoxic zone was essential to maintain stable nitrogen removal under the deterioration of PN and the anammox contribution increased from 17.2 % to 23.6 %. The AOAO system shows robustness on nitrogen removal even PN deteriorated under the decrease of HRT from 16 to 12 h.
Collapse
Affiliation(s)
- Yan Feng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Shuying Wang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Yongzhen Peng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China.
| |
Collapse
|
19
|
Xing W, Zhang Z, Zhang X, Liu J, Li J, Lin J, Yao H. Mainstream partial Anammox for improving nitrogen removal from municipal wastewater after organic recovery via magnetic separation. BIORESOURCE TECHNOLOGY 2022; 361:127726. [PMID: 35926560 DOI: 10.1016/j.biortech.2022.127726] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 07/26/2022] [Accepted: 07/28/2022] [Indexed: 06/15/2023]
Abstract
Total nitrogen (TN) removal from municipal wastewater after organic recovery is challenging because of the low ratio of chemical oxygen demand (COD) to TN. Anaerobic ammonium oxidation (Anammox) is promising because it has no organic requirement, but its performance in treating effluents following COD captured remains unclear. This study used mainstream partial Anammox to remove nitrogen from effluent following magnetic separation within a continuous-flow anoxic-oxic reactor. Compared with traditional nitrification and denitrification, partial Anammox increased TN removal efficiency by 15.0% and contributed 23.6% of TN removal. Quantitative polymerase chain reaction revealed that the copy number of the Anammox gene (hzsB) increased substantially, while those of the nitrite oxidation (nxrA) and denitrification (narG and nirS) genes decreased. High-throughput sequencing identified Candidatus Brocadia as the dominant genus of anaerobic ammonium-oxidizing bacteria. These findings demonstrate the effectiveness of mainstream partial Anammox for treating COD-captured effluents and its potential in municipal wastewater treatment.
Collapse
Affiliation(s)
- Wei Xing
- Beijing International Scientific and Technological Cooperation Base of Water Pollution Control Techniques for Antibiotics and Resistance Genes, Beijing Key Laboratory of Aqueous Typical Pollutants Control and Water Quality Safeguard, School of Environment, Beijing Jiaotong University, Beijing 100044, PR China
| | - Zexi Zhang
- Beijing International Scientific and Technological Cooperation Base of Water Pollution Control Techniques for Antibiotics and Resistance Genes, Beijing Key Laboratory of Aqueous Typical Pollutants Control and Water Quality Safeguard, School of Environment, Beijing Jiaotong University, Beijing 100044, PR China
| | - Xiaoman Zhang
- Beijing International Scientific and Technological Cooperation Base of Water Pollution Control Techniques for Antibiotics and Resistance Genes, Beijing Key Laboratory of Aqueous Typical Pollutants Control and Water Quality Safeguard, School of Environment, Beijing Jiaotong University, Beijing 100044, PR China
| | - Jie Liu
- Beijing Capital Eco-Environment Protection Group Co., Ltd., Beijing 100044, PR China
| | - Jia Li
- Beijing Capital Eco-Environment Protection Group Co., Ltd., Beijing 100044, PR China
| | - Jia Lin
- Beijing Capital Eco-Environment Protection Group Co., Ltd., Beijing 100044, PR China
| | - Hong Yao
- Beijing International Scientific and Technological Cooperation Base of Water Pollution Control Techniques for Antibiotics and Resistance Genes, Beijing Key Laboratory of Aqueous Typical Pollutants Control and Water Quality Safeguard, School of Environment, Beijing Jiaotong University, Beijing 100044, PR China.
| |
Collapse
|
20
|
Kao C, Li J, Gao R, Li W, Li X, Zhang Q, Peng Y. Advanced nitrogen removal from real municipal wastewater by multiple coupling nitritation, denitritation and endogenous denitritation with anammox in a single suspended sludge bioreactor. WATER RESEARCH 2022; 221:118749. [PMID: 35728496 DOI: 10.1016/j.watres.2022.118749] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 06/05/2022] [Accepted: 06/12/2022] [Indexed: 06/15/2023]
Abstract
Achieving advanced nitrogen removal based on anammox for treating mainstream municipal wastewater in a single suspended sludge bioreactor is a challenging research topic. In this study, multiple coupling nitritation, denitritation and endogenous denitritation with anammox (PNA-(E)PDA) was simultaneously achieved in a 10 L step-feed bioreactor, which enhanced stable nitrogen removal. After 223 days of operation, the total nitrogen concentrations of the influent and effluent were 70.7 ± 6.1 and 4.3 ± 1.8 mg/L, respectively, when treating municipal wastewater even at C/N ratio of 2.24 with only 5 h of aerobic time (DO: 0.5-0.8 mg/L). After the evolution of nitritation/anammox to PNA-(E)PDA, the contribution of anammox to nitrogen removal increased to 78.6% and the anammox activity increased from 4.3 ± 0.2 to 15.2 ± 0.7 mg NH4+-N/gVSS/d. qPCR results showed that the abundance of anammox bacteria increased from 4.1 × 109 to 4.5 × 1010 copies/ (g VSS). High-throughput sequencing further revealed that the relative abundance of Candidatus Brocadia, the dominant anammox genus, increased from 0.09 to 0.46%. Based on the strong competitiveness of anammox on nitrite, this novel PNA-(E)PDA process provides a potential strategy for enriching anammox bacteria in municipal wastewater treatment plants.
Collapse
Affiliation(s)
- Chengkun Kao
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, China
| | - Jianwei Li
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, China
| | - Ruitao Gao
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, China
| | - Wenyu Li
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, China
| | - Xiyao Li
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, China
| | - Qiong Zhang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, China
| | - Yongzhen Peng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, China.
| |
Collapse
|
21
|
Zhao Q, Peng Y, Li J, Gao R, Jia T, Deng L, Du R. Sustainable upgrading of biological municipal wastewater treatment based on anammox: From microbial understanding to engineering application. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 813:152468. [PMID: 34952066 DOI: 10.1016/j.scitotenv.2021.152468] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/12/2021] [Accepted: 12/12/2021] [Indexed: 06/14/2023]
Abstract
Anaerobic ammonium oxidation (anammox) has drawn increasing attention as a promising option to energy-neutral wastewater treatment. While anammox process still faces challenges in the low-strength and organics-contained municipal wastewater due to its susceptibility and the technical gaps in substrate supply. Effective strategies for extensive implementation of anammox in municipal wastewater treatment plants (WWTPs) remain poorly summarized. In view of the significance and necessity of introducing anammox into mainstream treatment, the growing understanding not only at level of microbial interactions but also on view of upgrading municipal WWTPs with anammox-based processes need to be considered urgently. In this review, the critical view and comprehensive analysis were offered from the perspective of microbial interactions within partial nitrification- and partial denitrification-based anammox processes. To minimize the microbial competition and enhance the cooperation among anammox bacteria and other functional bacteria, targeted control strategies were systematically evaluated. Based on the comprehensive overview of recent advances, the combination of flexible regulation of input organic carbon with anaerobic/oxic/anoxic process and the integration of sludge fermentation with anoxic biofilms in anaerobic/anoxic/oxic process were proposed as promising solutions to upgrade municipal WWTPs with anammox technology. Furthermore, a new perspective of coupling anammox with denitrifying dephosphatation was proposed as a promising method for in-depth nutrients removal from carbon-limit municipal wastewater in this study. This review provides the critical and comprehensive viewpoints on anammox engineering in municipal wastewater and paves the way for the anammox-based upgrading of municipal WWTPs.
Collapse
Affiliation(s)
- Qi Zhao
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Yongzhen Peng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Jianwei Li
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Ruitao Gao
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Tipei Jia
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Liyan Deng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Rui Du
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China.
| |
Collapse
|
22
|
Gao R, Peng Y, Li J, Liu Y, Deng L, Li W, Kao C. Mainstream partial denitrification-anammox (PD/A) for municipal sewage treatment from moderate to low temperature: Reactor performance and bacterial structure. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 806:150267. [PMID: 34600206 DOI: 10.1016/j.scitotenv.2021.150267] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 09/05/2021] [Accepted: 09/06/2021] [Indexed: 06/13/2023]
Abstract
Anammox is sensitive to temperature, which can limit its practical application in wastewater treatment. In this study, a step-feed anoxic-oxic (A/O) process coupled with PD/A was operated steadily from 26.8 °C to 13.1 °C for wastewater treatment for 200 days. The effluent total inorganic nitrogen (TIN) and phosphorus concentrations were 10.2 mg/L and 0.29 mg/L at C/N ratio of 4.6 and 15.0 °C even with increasing nitrogen loading rate (NLR). The anammox activity was 5.60 mg NH4+-N/gMLSS/d even at 14 °C, moreover, anammox abundance on the biocarriers increased with decreasing temperature. It was observed that the effect of partial denitrification (PD) was enhanced under low temperature, thus the contribution of anammox for nitrogen removal was improved. The pathway of anammox for nitrogen removal accounted for 48% and the effect of effluent did not deteriorate under low temperature. This study states that PD/A has advantages under low temperature operation, which is suitable for treatment of wastewater with low C/N ratio.
Collapse
Affiliation(s)
- Ruitao Gao
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Yongzhen Peng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China.
| | - Jianwei Li
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Ying Liu
- Zhongshan Public Utilities Water Co.Ltd., Zhongshan 528400, PR China
| | - Liyan Deng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Wenyu Li
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Chengkun Kao
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| |
Collapse
|
23
|
He Q, Liu J, Peng Y, Li X, Zhang Q. Realization of partial nitrification and in-situ anammox in continuous-flow anaerobic/aerobic/anoxic process with side-stream sludge fermentation for real sewage. BIORESOURCE TECHNOLOGY 2022; 346:126520. [PMID: 34896262 DOI: 10.1016/j.biortech.2021.126520] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 12/02/2021] [Accepted: 12/03/2021] [Indexed: 06/14/2023]
Abstract
A continuous-flow anaerobic/aerobic/anoxic reactor with complete suspended activated sludge using sludge alkaline fermentation products as carbon source was utilized to strengthen nitrogen removal performance for low C/N ratio (<4) wastewater. Long-time performance indicated that the nitrite accumulation rate reached 60.40%, which strengthened the contribution of anammox. The average total inorganic nitrogen removal efficiency improved 19.40%. The abundance of ammonia oxidizing bacteria has not changed, but the abundance of nitrite oxidizing bacteria reduced from 5.79% to 0.69%. Quantitative PCR results demonstrated that the abundance of anammox bacteria has raised by 80.5 times. These results indicated that side-stream sludge alkaline fermentation promoted the mainstream partial nitrification, consequently accelerating the in-situ enrichment of anammox bacteria. No external carbon source dosing and short oxic hydraulic retention time (5.3 h) save energy and reduce consumption significantly in this system.
Collapse
Affiliation(s)
- Qiang He
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Jinjin Liu
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Yongzhen Peng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China.
| | - Xiyao Li
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Qiong Zhang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| |
Collapse
|
24
|
Feng Y, Wang B, Peng Y, Li X, Zhang Q. Enhanced nitrogen removal from low COD/TIN mainstream wastewater in a continuous plug-flow reactor via partial nitrification, simultaneous anammox and endogenous denitrification (PN-SAED) process. BIORESOURCE TECHNOLOGY 2022; 345:126539. [PMID: 34906708 DOI: 10.1016/j.biortech.2021.126539] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 12/04/2021] [Accepted: 12/06/2021] [Indexed: 06/14/2023]
Abstract
A continuous plug-flow reactor with anaerobic/front-aerobic/anoxic/post-aerobic zones, where partial nitrification occurred in the front-aerobic zone, followed by simultaneous anammox and endogenous denitrification in the anoxic zone (PN-SAED), was built up to treat municipal wastewater. Alternating anoxic/aerobic conditions and longer anoxic duration facilitated stable partial nitrification. The nitrite accumulation ratio (NAR) was maintained at 97.4 ± 1.2%, with temperatures between 13.3℃ to 19.8℃. Candidatus Brocadia were naturally enriched in-situ from the anoxic zone with relative abundances of 31.93% and 6.67% on the agitator blade and carriers, respectively. High removal efficiencies of total inorganic nitrogen (TIN) (95.1 ± 1.9%) and effluent TIN (2.6 ± 1.1 mg N/L) were acquired from low COD/TIN (3.4 ± 0.4) municipal wastewater with anammox contribution of 13.5%±5.8% to TIN removal. The PN-SAED process is a promising mainstream nitrogen removal method.
Collapse
Affiliation(s)
- Yan Feng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Bo Wang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Yongzhen Peng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China.
| | - Xiyao Li
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Qiong Zhang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| |
Collapse
|