1
|
Zou W, Chang Y, Zhang X, Li X, Jin C, Zhang G, Cao Z, Zhou Q. MoS 2 Nanosheets at Low Doses Induced Cardiotoxicity in Developing Zebrafish via Ferroptosis: Influence of Lateral Size and Surface Modification. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:22539-22552. [PMID: 39589763 DOI: 10.1021/acs.est.4c08685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2024]
Abstract
The widespread applications of molybdenum disulfide (MoS2) nanosheets inevitably result in their release into aquatic environments, necessitating an exploration of their potential toxic effects on aquatic organisms. This study analyzes the cardiac responses of zebrafish larvae exposed to MoS2, with a focus on the influence of size and surface modifications. At higher concentrations (1 and 5 mg/L), MoS2 nanosheets hampered larval growth without influencing cardiomyogenesis. At lower doses (0.5-100 μg/L), small-sized MoS2 (ssMoS2, 187.2 nm) significantly impaired cardiac development, as proved by morphology abnormality, decreased heartbeat, stroke volume, and cardiac output, whereas these undesirable changes were not observed in the cysteine-modified form. Large-sized nanosheets (1.638 μm) did not localize to the heart, barely showing a cardiac disorder. Transcriptomics, biochemical analysis, and computational simulation validated that ssMoS2 aggravated Fe2+ overload through excessive ferritinophagy and ferroportin-1 inhibition, accompanied by down-regulation of glutathione peroxidase 4 and activation of PUFAs esterification, leading to ferroptosis. Significant associations between ferroptosis signals and cardiac indices, along with the ferrostatin-1 inhibition test, confirmed the ferroptosis-mediated cardiotoxicity of ssMoS2. Our study provides a key understanding of molecular events underlying MoS2-induced cardiotoxicity and highlights the importance of size and surface characteristics, which are significant for risk assessment and the safe design of nanoproducts.
Collapse
Affiliation(s)
- Wei Zou
- School of Environment, Key Laboratory of Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory of Environmental Pollution Control, Henan Normal University, Xinxiang 453007, China
| | - Yishuang Chang
- School of Environment, Key Laboratory of Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory of Environmental Pollution Control, Henan Normal University, Xinxiang 453007, China
| | - Xingli Zhang
- School of Environment, Key Laboratory of Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory of Environmental Pollution Control, Henan Normal University, Xinxiang 453007, China
| | - Xinyu Li
- School of Environment, Key Laboratory of Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory of Environmental Pollution Control, Henan Normal University, Xinxiang 453007, China
| | - Caixia Jin
- School of Environment, Key Laboratory of Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory of Environmental Pollution Control, Henan Normal University, Xinxiang 453007, China
| | - Guoqing Zhang
- School of Environment, Key Laboratory of Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory of Environmental Pollution Control, Henan Normal University, Xinxiang 453007, China
| | - Zhiguo Cao
- School of Environment, Key Laboratory of Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory of Environmental Pollution Control, Henan Normal University, Xinxiang 453007, China
| | - Qixing Zhou
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| |
Collapse
|
2
|
Sørhus E, Bjelland R, Durif C, Johnsen E, Donald CE, Meier S, Nordtug T, Vikebø FB, Perrichon P. Oil droplet fouling on lesser sandeel (Ammodytes marinus) eggshells does not enhance the crude oil induced developmental toxicity. JOURNAL OF HAZARDOUS MATERIALS 2024; 468:133814. [PMID: 38412802 DOI: 10.1016/j.jhazmat.2024.133814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 02/06/2024] [Accepted: 02/15/2024] [Indexed: 02/29/2024]
Abstract
The oil industry's expansion and increased operational activity at older installations, along with their demolition, contribute to rising cumulative pollution and a heightened risk of accidental oil spills. The lesser sandeel (Ammodytes marinus) is a keystone prey species in the North Sea and coastal systems. Their eggs adhere to the seabed substrate making them particularly vulnerable to oil exposure during embryonic development. We evaluated the sensitivity of sandeel embryos to crude oil in a laboratory by exposing them to dispersed oil at concentrations of 0, 15, 50, and 150 µg/L oil between 2 and 16 days post-fertilization. We assessed water and tissue concentrations of THC and tPAH, cyp1a expression, lipid distribution in the eyes, head and trunk, and morphological and functional deformities. Oil droplets accumulated on the eggshell in all oil treatment groups, to which the embryo responded by a dose-dependent rise in cyp1a expression. The oil exposure led to only minor sublethal deformities in the upper jaw and otic vesicle. The findings suggest that lesser sandeel embryos are resilient to crude oil exposure. The lowest observed effect level documented in this study was 36 µg THC/L and 3 µg tPAH/L. The inclusion of these species-specific data in risk assessment models will enhance the precision of risk evaluations for the North Atlantic ecosystems.
Collapse
Affiliation(s)
- Elin Sørhus
- Institute of Marine Research, Bergen, Norway.
| | - Reidun Bjelland
- Institute of Marine Research, Austevoll Research Station, Storebø, Norway
| | - Caroline Durif
- Institute of Marine Research, Austevoll Research Station, Storebø, Norway
| | | | | | | | | | | | | |
Collapse
|
3
|
Incardona JP, Linbo TL, Cameron JR, Scholz NL. Structure-activity relationships for alkyl-phenanthrenes support two independent but interacting synergistic models for PAC mixture potency. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 918:170544. [PMID: 38309367 DOI: 10.1016/j.scitotenv.2024.170544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/19/2024] [Accepted: 01/27/2024] [Indexed: 02/05/2024]
Abstract
Multiple lines of evidence at whole animal, cellular and molecular levels implicate polycyclic aromatic compounds (PACs) with three rings as drivers of crude oil toxicity to developing fish. Phenanthrene (P0) and its alkylated homologs (C1- through C4-phenanthrenes) comprise the most prominent subfraction of tricyclic PACs in crude oils. Among this family, P0 has been studied intensively, with more limited detail available for the C4-phenanthrene 1-methyl-7-isopropyl-phenanthrene (1-M,7-IP, or retene). While both compounds are cardiotoxic, P0 impacts embryonic cardiac function and development through direct blockade of K+ and Ca2+ currents that regulate cardiomyocyte contractions. In contrast, 1-M,7-IP dysregulates aryl hydrocarbon receptor (AHR) activation in developing ventricular cardiomyocytes. Although no other compounds have been assessed in detail across the larger family of alkylated phenanthrenes, increasing alkylation might be expected to shift phenanthrene family member activity from K+/Ca2+ ion current blockade to AHR activation. Using embryos of two distantly related fish species, zebrafish and Atlantic haddock, we tested 14 alkyl-phenanthrenes in both acute and latent developmental cardiotoxicity assays. All compounds were cardiotoxic, and effects were resolved into impacts on multiple, highly specific aspects of heart development or function. Craniofacial defects were clearly linked to developmental cardiotoxicity. Based on these findings, we suggest a novel framework to delineate the developmental toxicity of petrogenic PAC mixtures in fish, which incorporates multi-mechanistic pathways that produce interactive synergism at the organ level. In addition, relationships among measured embryo tissue concentrations, cytochrome P4501A mRNA induction, and cardiotoxic responses suggest a two-compartment toxicokinetic model that independently predicts high potency of PAC mixtures through classical metabolic synergism. These two modes of synergism, specific to the sub-fraction of phenanthrenes, are sufficient to explain the high embryotoxic potency of crude oils, independent of as-yet unmeasured compounds in these complex environmental mixtures.
Collapse
Affiliation(s)
- John P Incardona
- Environmental and Fisheries Science Division, Northwest Fisheries Science Center, National Marine Fisheries Service, NOAA Fisheries, Seattle, WA, USA.
| | - Tiffany L Linbo
- Environmental and Fisheries Science Division, Northwest Fisheries Science Center, National Marine Fisheries Service, NOAA Fisheries, Seattle, WA, USA
| | - James R Cameron
- Saltwater, Inc., Under Contract to Northwest Fisheries Science Center, National Oceanic and Atmospheric Administration, Seattle, WA, USA
| | - Nathaniel L Scholz
- Environmental and Fisheries Science Division, Northwest Fisheries Science Center, National Marine Fisheries Service, NOAA Fisheries, Seattle, WA, USA
| |
Collapse
|
4
|
McIntyre JK, Spromberg J, Cameron J, Incardona JP, Davis JW, Scholz NL. Bioretention filtration prevents acute mortality and reduces chronic toxicity for early life stage coho salmon (Oncorhynchus kisutch) episodically exposed to urban stormwater runoff. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 902:165759. [PMID: 37495136 DOI: 10.1016/j.scitotenv.2023.165759] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 07/10/2023] [Accepted: 07/22/2023] [Indexed: 07/28/2023]
Abstract
As the human population of western North America continues to expand, widespread patterns of urban growth pose increasingly existential threats to certain wild stocks of Pacific salmon and steelhead (Oncorhynchus sp.). Rainfall previously absorbed into the soils of forests and grasslands falls instead on pavement and other hardened surfaces. This creates stormwater runoff that carries toxic metals, oil, and many other contaminants into salmon-bearing habitats. These include freshwater streams where coho salmon (O. kisutch) spawn in gravel beds. Coho salmon embryos develop within a thick eggshell (chorion) for weeks to months before hatching as alevins and ultimately emerging from the gravel as fry. Untreated urban runoff is highly toxic to older coho salmon (freshwater-resident juveniles and adult spawners), but the vulnerability of the earliest life stages remains poorly understood. To address this uncertainty, we fertilized eggs and raised them under an episodic stormwater exposure regimen, using runoff collected from a high-traffic arterial roadway from 15 discrete storm events. We monitored survival and morphological development, as well as molecular markers for contaminant exposure and cardiovascular stress. We also evaluated the benefit of treating runoff with green infrastructure (bioretention filtration) on coho salmon health and survival. Untreated runoff caused subtle sublethal toxicity in pre-hatch embryos with no mortality, followed by high rates of mortality from exposure at hatch. Bioretention filtration removed most measured contaminants (bacteria, dissolved metals, and polycyclic aromatic hydrocarbons), and the treated effluent was considerably less toxic - notably preventing mortality at the alevin stage. Our findings indicate that untreated urban runoff poses an important threat to early life stage coho salmon, in terms of both acute and delayed-in-time mortality. Moreover, while inexpensive management strategies involving bioinfiltration are promising, future green infrastructure effectiveness research should emphasize sublethal metrics for contaminant exposure and adverse health outcomes in salmonids.
Collapse
Affiliation(s)
- Jenifer K McIntyre
- Washington State University, School of the Environment, Puyallup Research and Extension Center, 2606 W Pioneer Ave, Puyallup, WA 98371, USA.
| | - Julann Spromberg
- Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, 2725 Montlake Blvd. E., Seattle, WA 98112, USA
| | - James Cameron
- Saltwater Inc, under contract to Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, 2725 Montlake Blvd. E., Seattle, WA 98112, USA
| | - John P Incardona
- Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, 2725 Montlake Blvd. E., Seattle, WA 98112, USA
| | - Jay W Davis
- United States Fish and Wildlife Service, Environmental Contaminants Program, 510 Desmond Dr. SE, Lacey, WA 98503, USA
| | - Nathaniel L Scholz
- Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, 2725 Montlake Blvd. E., Seattle, WA 98112, USA
| |
Collapse
|
5
|
Donald CE, Sørhus E, Perrichon P, Nakken CL, Goksøyr A, Jørgensen KB, Mayer P, da Silva DAM, Meier S. Co-Exposure of Phenanthrene and the cyp-Inducer 3-Methylchrysene Leads to Altered Biotransformation and Increased Toxicity in Fish Egg and Larvae. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023. [PMID: 37465931 DOI: 10.1021/acs.est.3c02770] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) have frequently been suspected of governing crude oil toxicity because of similar morphological defects in fish. However, PAH concentrations are often not high enough to explain the observed crude oil toxicity. We hypothesize that one PAH can enhance the metabolism and toxicity of another PAH when administered as a mixture. Early life stage Atlantic haddock (Melanogrammus aeglefinus) were in this study exposed to phenanthrene in the presence and absence of 3-methylchrysene that is known to induce the metabolic enzyme cytochrome P450 1A via cyp1a gene expression. Uptake, metabolism, and multiple toxicity endpoints were then measured in a time-course study up to 3 days post-hatching. Passive dosing provided aqueous concentrations ≈180 μg/L for phenanthrene and ≈0.6 μg/L for 3-methylchrysene, which resulted in tissue concentrations ≈60 μg/g ww for phenanthrene and ≈0.15 μg/g ww for 3-methylchrysene. The low concentration of 3-methylchrysene led to the elevated expression of cyp1a but no toxicity. Levels of phenanthrene metabolites were 5-fold higher, and morphological defects and cardiotoxicity were consistently greater when co-exposed to both compounds relative to phenanthrene alone. This work highlights the metabolic activation of PAH toxicity by a co-occurring PAH, which can lead to excess toxicity, synergistic effects, and the overproportional contribution of PAHs to crude oil toxicity.
Collapse
Affiliation(s)
- Carey E Donald
- Marine Toxicology, Institute of Marine Research, 5004 Bergen, Norway
| | - Elin Sørhus
- Marine Toxicology, Institute of Marine Research, 5004 Bergen, Norway
| | - Prescilla Perrichon
- Reproduction and Developmental Biology, Institute of Marine Research, Austevoll Research Station, 5392 Storebø, Norway
| | | | - Anders Goksøyr
- Department of Biological Sciences, University of Bergen, 5006 Bergen, Norway
| | - Kåre B Jørgensen
- Department of Chemistry, Bioscience and Environmental Engineering, Faculty of Science and Technology, University of Stavanger, 4021 Stavanger, Norway
| | - Philipp Mayer
- Department of Environmental & Resource Engineering, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Denis A M da Silva
- Environmental Chemistry Program, Northwest Fisheries Science Center (NOAA), Seattle, Washington 98112, United States
| | - Sonnich Meier
- Marine Toxicology, Institute of Marine Research, 5004 Bergen, Norway
| |
Collapse
|
6
|
Sørhus E, Nakken CL, Donald CE, Ripley DM, Shiels HA, Meier S. Cardiac toxicity of phenanthrene depends on developmental stage in Atlantic cod (Gadus morhua). THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 881:163484. [PMID: 37068678 DOI: 10.1016/j.scitotenv.2023.163484] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 03/16/2023] [Accepted: 04/09/2023] [Indexed: 06/01/2023]
Abstract
Complex mixtures like crude oil, and single components such as Phenanthrene (Phe), induce cardiotoxicity by interfering with excitation-contraction coupling. However, recent work has demonstrated that the timing of pollutant exposure during embryogenesis greatly impacts the degree of cardiac dysfunction caused. Here, we aimed to clarify the temporal dependence of Phe toxicity and the downstream effects of cardiac dysfunction using Atlantic cod (Gadus morhua). Phe (nominal concentration, 1.12 μmol/L), or the L-type‑calcium channel blocker Nicardipine (Nic) (nominal concentration, 2 and 4 μmol/L), were individually applied to cod embryos either during cardiogenesis (early) or after the onset of cardiac function (late). Phe toxicity was highly dependent on the timing of exposure. Exposure after the onset of cardiac function (i.e. late) caused more severe cardiac and extracardiac abnormalities at 3 days post hatching (dph) than early exposure. Late Phe exposure resulted in a smaller ventricle, eliminated ventricular contraction, and reduced atrial contraction. In contrast, early Phe exposure did not have an effect on cardiac development and function. This temporal difference was not as evident in the Nic treatment. Early Nic exposure created similar morphological phenotypes to the late Phe exposure. The two treatments (early Nic and late Phe) also shared a cardiofunctional phenotype, comprised of eliminated ventricular, and reduced atrial, contraction. These data suggest that extracardiac abnormalities, such as the craniofacial deformities seen after late embryonic exposure to cardiotoxic oil components and mixtures, are mostly downstream effects of cardiac dysfunction.
Collapse
Affiliation(s)
- Elin Sørhus
- Institute of Marine Research, Department of Marine Toxicology, Bergen, Norway.
| | | | - Carey E Donald
- Institute of Marine Research, Department of Marine Toxicology, Bergen, Norway
| | - Daniel M Ripley
- University of Manchester, Division of Cardiovascular Sciences, United Kingdom of Great Britain and Northern Ireland
| | - Holly A Shiels
- University of Manchester, Division of Cardiovascular Sciences, United Kingdom of Great Britain and Northern Ireland
| | - Sonnich Meier
- Institute of Marine Research, Department of Marine Toxicology, Bergen, Norway
| |
Collapse
|
7
|
Nahrgang J, Granlund C, Bender ML, Sørensen L, Greenacre M, Frantzen M. No observed developmental effects in early life stages of capelin (Mallotus villosus) exposed to a water-soluble fraction of crude oil during embryonic development. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2023; 86:404-419. [PMID: 37171367 DOI: 10.1080/15287394.2023.2209115] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
The rise in offshore oil and gas operations, maritime shipping, and tourism in northern latitudes enhances the risk of oil spills to sub-Arctic and Arctic coastal environments. Therefore, there is a need to understand the potential adverse effects of petroleum on key species in these areas. Here, we investigated the effects of oil exposure on the early life stages of capelin (Mallotus villosus), an ecologically and commercially important Barents Sea forage fish species that spawns along the coast of Northern Norway. Capelin embryos were exposed to five different concentrations (corresponding to 0.5-19 µg/L total PAHs) of water-soluble fraction (WSF) of crude oil from 6 days post fertilization (dpf) until hatch (25 dpf), and development of larvae in clean seawater was monitored until 52 dpf. None of the investigated endpoints (embryo development, larval length, heart rate, arrhythmia, and larval mortality) showed any effects. Our results suggest that the early life stages of capelin may be more robust to crude oil exposure than similar life stages of other fish species.
Collapse
Affiliation(s)
- Jasmine Nahrgang
- Department of Arctic and Marine Biology, UiT The Arctic University of Norway, Tromsø, Norway
| | - Cassandra Granlund
- Department of Arctic and Marine Biology, UiT The Arctic University of Norway, Tromsø, Norway
| | - Morgan Lizabeth Bender
- Department of Arctic and Marine Biology, UiT The Arctic University of Norway, Tromsø, Norway
- Akvaplan-niva, Fram Centre, Tromsø, Norway
- Owl Ridge Natural Resource Consultants, Inc, Anchorage, USA
| | | | - Michael Greenacre
- Department of Economics and Business, Universitat Pompeu Fabra, and Barcelona School of Management, Barcelona, Spain
| | | |
Collapse
|
8
|
Donald CE, Nakken CL, Sørhus E, Perrichon P, Jørgensen KB, Bjelland HK, Stølen C, Kancherla S, Mayer P, Meier S. Alkyl-phenanthrenes in early life stage fish: differential toxicity in Atlantic haddock ( Melanogrammus aeglefinus) embryos. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2023; 25:594-608. [PMID: 36727431 DOI: 10.1039/d2em00357k] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Tricyclic polycyclic aromatic hydrocarbons (PAHs) are believed to be the primary toxic components of crude oil. Such compounds including phenanthrene are known to have direct effects on cardiac tissue, which lead to malformations during organogenesis in early life stage fish. We tested a suite of 13 alkyl-phenanthrenes to compare uptake and developmental toxicity in early life stage haddock (Melanogrammus aeglefinus) embryos during gastrulation/organogenesis beginning at 2 days post fertilization via passive dosing. The alkyl-phenanthrenes were tested at their solubility limits, and three of them also at lower concentrations. Measured body burdens were linearly related to measured water concentrations. All compounds elicited one or more significant morphological defects or functional impairment, such as decreased length, smaller eye area, shorter jaw length, and increased incidence of body axis deformities and eye deformities. The profile of developmental toxicities appeared unrelated to the position of alkyl substitution, and gene expression of cytochrome 1 a (cyp1a) was low regardless of alkylation. Mortality and sublethal effects were observed below the expected range for baseline toxicity, thus indicating excess toxicity. Additionally, PAH concentrations that resulted in toxic effects here were far greater than when measured in whole crude oil exposures that cause toxicity. This work demonstrates that, while these phenanthrenes are toxic to early life stage fish, they cannot individually account for most of the developmental toxicity of crude oil, and that other compounds and/or mixture effects should be given more consideration.
Collapse
Affiliation(s)
| | - Charlotte L Nakken
- Institute of Marine Research, 5817 Bergen, Norway.
- Department of Chemistry, University of Bergen, 5020 Bergen, Norway
| | - Elin Sørhus
- Institute of Marine Research, 5817 Bergen, Norway.
| | - Prescilla Perrichon
- Institute of Marine Research, Austevoll Research Station, 5392 Storebø, Norway
| | - Kåre B Jørgensen
- Department of Chemistry, Bioscience, and Environmental Engineering, Faculty of Science and Technology, University of Stavanger, 4036 Stavanger, Norway
| | - Hege K Bjelland
- Department of Chemistry, Bioscience, and Environmental Engineering, Faculty of Science and Technology, University of Stavanger, 4036 Stavanger, Norway
| | - Christine Stølen
- Department of Chemistry, Bioscience, and Environmental Engineering, Faculty of Science and Technology, University of Stavanger, 4036 Stavanger, Norway
| | - Sindhu Kancherla
- Department of Chemistry, Bioscience, and Environmental Engineering, Faculty of Science and Technology, University of Stavanger, 4036 Stavanger, Norway
| | - Philipp Mayer
- Department of Environmental and Resource Engineering, Technical University of Denmark, Bygningstorvet 115, 2800 Kgs. Lyngby, Denmark
| | | |
Collapse
|
9
|
Sørhus E, Donald CE, Nakken CL, Perrichon P, Durif CMF, Shema S, Browman HI, Skiftesvik AB, Lie KK, Rasinger JD, Müller MHB, Meier S. Co-exposure to UV radiation and crude oil increases acute embryotoxicity and sublethal malformations in the early life stages of Atlantic haddock (Melanogrammus aeglefinus). THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 859:160080. [PMID: 36375555 DOI: 10.1016/j.scitotenv.2022.160080] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 10/28/2022] [Accepted: 11/05/2022] [Indexed: 06/16/2023]
Abstract
Crude oil causes severe abnormalities in developing fish. Photomodification of constituents in crude oil increases its toxicity several fold. We report on the effect of crude oil, in combination with ultraviolet (UV) radiation, on Atlantic haddock (Melanogrammus aeglefinus) embryos. Accumulation of crude oil on the eggshell makes haddock embryos particularly susceptible to exposure. At high latitudes, they can be exposed to UV radiation many hours a day. Haddock embryos were exposed to crude oil (5-300 μg oil/L nominal loading concentrations) for three days in the presence and absence of UV radiation (290-400 nm). UV radiation partly degraded the eggs' outer membrane resulting in less accumulation of oil droplets in the treatment with highest oil concentration (300 μg oil/L). The co-exposure treatments resulted in acute toxicity, manifested by massive tissue necrosis and subsequent mortality, reducing LC50 at hatching stage by 60 % to 0.24 μg totPAH/L compared to 0.62 μg totPAH/L in crude oil only. In the treatment with nominal low oil concentrations (5-30 μg oil/L), only co-exposure to UV led to sublethal morphological heart defects. Including phototoxicity as a parameter in risk assessments of accidental oil spills is recommended.
Collapse
Affiliation(s)
- Elin Sørhus
- Institute of Marine Research, Marine Toxicology Group, Nordnesgaten 50, 5005 Bergen, Norway.
| | - Carey E Donald
- Institute of Marine Research, Marine Toxicology Group, Nordnesgaten 50, 5005 Bergen, Norway
| | - Charlotte L Nakken
- University of Bergen, Department of Chemistry, Allégaten 41, 5020 Bergen, Norway
| | - Prescilla Perrichon
- Institute of Marine Research, Reproduction and Developmental Biology, Austevoll Research Station, Sauganeset 16, 5392 Storebø, Norway
| | - Caroline M F Durif
- Institute of Marine Research, Ecosystem Acoustics Group, Austevoll Research Station, Sauganeset 16, 5392 Storebø, Norway
| | - Steven Shema
- Grótti ehf, Melabraut 22, 220 Hafnarfirði, Iceland
| | - Howard I Browman
- Institute of Marine Research, Ecosystem Acoustics Group, Austevoll Research Station, Sauganeset 16, 5392 Storebø, Norway
| | - Anne Berit Skiftesvik
- Institute of Marine Research, Ecosystem Acoustics Group, Austevoll Research Station, Sauganeset 16, 5392 Storebø, Norway
| | - Kai K Lie
- Institute of Marine Research, Marine Toxicology Group, Nordnesgaten 50, 5005 Bergen, Norway
| | - Josef D Rasinger
- Institute of Marine Research, Marine Toxicology Group, Nordnesgaten 50, 5005 Bergen, Norway
| | - Mette H B Müller
- Norwegian University of Life Sciences, Section for Experimental Biomedicine, Universitetstunet 3, 1433 Ås, Norway
| | - Sonnich Meier
- Institute of Marine Research, Marine Toxicology Group, Nordnesgaten 50, 5005 Bergen, Norway
| |
Collapse
|
10
|
Wang W, Li Z, Zhang X, Zhang J, Ru S. Bisphenol S Impairs Behaviors through Disturbing Endoplasmic Reticulum Function and Reducing Lipid Levels in the Brain of Zebrafish. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:582-594. [PMID: 36520979 DOI: 10.1021/acs.est.2c07828] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The number of neurotoxic pollutants is increasing, but their mechanism of action is unclear. Here, zebrafish were exposed to 0, 1, 10, and 100 μg/L bisphenol S (BPS) for different durations beginning at 2 h postfertilization (hpf) to explore the neurotoxic mechanisms of BPS. Zebrafish larvae exposed to BPS displayed abnormal neurobehaviors. At 48 and 120 hpf, BPS inhibited yolk lipid consumption and reduced the lipid distribution in the zebrafish brain. Moreover, BPS downregulated the mRNA levels of genes involved in fatty acid elongation in the endoplasmic reticulum (ER) and activated ER stress pathways at 48 and 120 hpf, and KEGG analysis after RNA-seq showed that the protein processing pathway in the ER was significantly enriched after BPS exposure. Exposure to ER toxicants (thapsigargin and tunicamycin), two positive controls, induced neurotoxic effects on zebrafish embryos and larvae similar to those of BPS exposure. These data suggested that BPS and ER toxicants disturbed ER function and reduced brain lipid levels. Continued exposure to BPS into adulthood not only inhibited brain fatty acid elongation and ER function but also caused abnormal swelling of the ER in zebrafish. Our data provide new insights into the neurotoxic mechanism of BPS.
Collapse
Affiliation(s)
- Weiwei Wang
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Ze Li
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Xiaona Zhang
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Jie Zhang
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Shaoguo Ru
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| |
Collapse
|
11
|
Eriksson ANM, Rigaud C, Rokka A, Skaugen M, Lihavainen JH, Vehniäinen ER. Changes in cardiac proteome and metabolome following exposure to the PAHs retene and fluoranthene and their mixture in developing rainbow trout alevins. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 830:154846. [PMID: 35351515 DOI: 10.1016/j.scitotenv.2022.154846] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 03/11/2022] [Accepted: 03/23/2022] [Indexed: 06/14/2023]
Abstract
Exposure to polycyclic aromatic hydrocarbons (PAHs) is known to affect developing organisms. Utilization of different omics-based technologies and approaches could therefore provide a base for the discovery of novel mechanisms of PAH induced development of toxicity. To this aim, we investigated how exposure towards two PAHs with different toxicity mechanisms: retene (an aryl hydrocarbon receptor 2 (Ahr2) agonist), and fluoranthene (a weak Ahr2 agonist and cytochrome P450 inhibitor (Cyp1a)), either alone or as a mixture, affected the cardiac proteome and metabolome in newly hatched rainbow trout alevins (Oncorhynchus mykiss). In total, we identified 65 and 82 differently expressed proteins (DEPs) across all treatments compared to control (DMSO) after 7 and 14 days of exposure. Exposure to fluoranthene altered the expression of 11 and 19 proteins, retene 29 and 23, while the mixture affected 44 and 82 DEPs by Days 7 and 14, respectively. In contrast, only 5 significantly affected metabolites were identified. Pathway over-representation analysis identified exposure-specific activation of phase II metabolic processes, which were accompanied with exposure-specific body burden profiles. The proteomic data highlights that exposure to the mixture increased oxidative stress, altered iron metabolism and impaired coagulation capacity. Additionally, depletion of several mini-chromosome maintenance components, in combination with depletion of several intermediate filaments and microtubules, among alevins exposed to the mixture, suggests compromised cellular integrity and reduced rate of mitosis, whereby affecting heart growth and development. Furthermore, the combination of proteomic and metabolomic data indicates altered energy metabolism, as per amino acid catabolism among mixture exposed alevins; plausibly compensatory mechanisms as to counteract reduced absorption and consumption of yolk. When considered as a whole, proteomic and metabolomic data, in relation to apical effects on the whole organism, provides additional insight into PAH toxicity and the effects of exposure on heart structure and molecular processes.
Collapse
Affiliation(s)
- Andreas N M Eriksson
- Department of Biological and Environmental Science, University of Jyväskylä, P.O. Box 35, FI-40014, Finland.
| | - Cyril Rigaud
- Department of Biological and Environmental Science, University of Jyväskylä, P.O. Box 35, FI-40014, Finland.
| | - Anne Rokka
- Turku Proteomics Facility, Turku University, Tykistökatu 6, 20520 Turku, Finland.
| | - Morten Skaugen
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Campus Ås, Universitetstunet 3, 1430 Ås, Norway.
| | - Jenna H Lihavainen
- Umeå Plant Science Centre, Umeå University, KB. K3 (Fys. Bot.), Artedigränd 7, Fysiologisk botanik, UPSC, KB. K3 (B3.44.45) Umeå universitet, 901 87 Umeå, Sweden.
| | - Eeva-Riikka Vehniäinen
- Department of Biological and Environmental Science, University of Jyväskylä, P.O. Box 35, FI-40014, Finland.
| |
Collapse
|