1
|
Praeg N, Steinwandter M, Urbach D, Snethlage MA, Alves RP, Apple ME, Bilovitz P, Britton AJ, Bruni EP, Chen TW, Dumack K, Fernandez-Mendoza F, Freppaz M, Frey B, Fromin N, Geisen S, Grube M, Guariento E, Guisan A, Ji QQ, Jiménez JJ, Maier S, Malard LA, Minor MA, Mc Lean CC, Mitchell EAD, Peham T, Pizzolotto R, Taylor AFS, Vernon P, van Tol JJ, Wu D, Wu Y, Xie Z, Weber B, Illmer P, Seeber J. Biodiversity in mountain soils above the treeline. Biol Rev Camb Philos Soc 2025. [PMID: 40369817 DOI: 10.1111/brv.70028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 04/04/2025] [Accepted: 04/17/2025] [Indexed: 05/16/2025]
Abstract
Biological diversity in mountain ecosystems has been increasingly studied over the last decade. This is also the case for mountain soils, but no study to date has provided an overall synthesis of the current state of knowledge. Here we fill this gap with a first global analysis of published research on cryptogams, microorganisms, and fauna in mountain soils above the treeline, and a structured synthesis of current knowledge. Based on a corpus of almost 1400 publications and the expertise of 37 mountain soil scientists worldwide, we summarise what is known about the diversity and distribution patterns of each of these organismal groups, specifically along elevation, and provide an overview of available knowledge on the drivers explaining these patterns and their changes. In particular, we document an elevation-dependent decrease in faunal diversity above the treeline, while for cryptogams there is an initial increase above the treeline, followed by a decrease towards the nival belt. Thus, our data confirm the key role that elevation plays in shaping the biodiversity and distribution of these organisms in mountain soils. The response of prokaryote diversity to elevation, in turn, was more diverse, whereas fungal diversity appeared to be substantially influenced by plants. As far as available, we describe key characteristics, adaptations, and functions of mountain soil species, and despite a lack of ecological information about the uncultivated majority of prokaryotes, fungi, and protists, we illustrate the remarkable and unique diversity of life forms and life histories encountered in alpine mountain soils. By applying rule- as well as pattern-based literature-mining approaches and semi-quantitative analyses, we identified hotspots of mountain soil research in the European Alps and Central Asia and revealed significant gaps in taxonomic coverage, particularly among biocrusts, soil protists, and soil fauna. We further report thematic priorities for research on mountain soil biodiversity above the treeline and identify unanswered research questions. Building upon the outcomes of this synthesis, we conclude with a set of research opportunities for mountain soil biodiversity research worldwide. Soils in mountain ecosystems above the treeline fulfil critical functions and make essential contributions to life on land. Accordingly, seizing these opportunities and closing knowledge gaps appears crucial to enable science-based decision making in mountain regions and formulating laws and guidelines in support of mountain soil biodiversity conservation targets.
Collapse
Affiliation(s)
- Nadine Praeg
- Department of Microbiology, Universität Innsbruck, Technikerstrasse 25d, Innsbruck, 6020, Austria
| | - Michael Steinwandter
- Institute for Alpine Environment, Eurac Research, Viale Druso 1, Bozen/Bolzano, 39100, Italy
| | - Davnah Urbach
- Global Mountain Biodiversity Assessment (GMBA), University of Bern, Altenbergrain 21, Bern, 3013, Switzerland
- Institute of Plant Sciences, University of Bern, Altenbergrain 21, Bern, 3013, Switzerland
- Centre Interdisciplinaire de Recherche sur la Montagne, University of Lausanne, Ch. de l'Institut 18, Bramois/Sion, 1967, Switzerland
| | - Mark A Snethlage
- Global Mountain Biodiversity Assessment (GMBA), University of Bern, Altenbergrain 21, Bern, 3013, Switzerland
- Institute of Plant Sciences, University of Bern, Altenbergrain 21, Bern, 3013, Switzerland
- Centre Interdisciplinaire de Recherche sur la Montagne, University of Lausanne, Ch. de l'Institut 18, Bramois/Sion, 1967, Switzerland
| | - Rodrigo P Alves
- Institute of Biology, Division of Plant Sciences, University of Graz, Holteigasse 6, Graz, 8010, Austria
| | - Martha E Apple
- Department of Biological Sciences, Montana Technological University, Butte, 59701, MT, USA
| | - Peter Bilovitz
- Institute of Biology, Division of Plant Sciences, University of Graz, Holteigasse 6, Graz, 8010, Austria
| | - Andrea J Britton
- Ecological Sciences, The James Hutton Institute, Craigiebuckler, Aberdeen, AB15 8QH, Scotland, UK
| | - Estelle P Bruni
- Laboratory of Soil Biodiversity, University of Neuchâtel, Rue Emile-Argand 11, Neuchâtel, 2000, Switzerland
| | - Ting-Wen Chen
- Biology Centre of the Czech Academy of Sciences, Institute of Soil Biology and Biogeochemistry, Na Sádkách 702/7, České Budějovice, 37005, Czech Republic
- J.F. Blumenbach Institute of Zoology and Anthropology, University of Göttingen, Untere Karspüle 2, Göttingen, 37073, Germany
| | - Kenneth Dumack
- Terrestrial Ecology, Cologne Biocenter, University of Cologne, Zülpicher Strasse 47b, Cologne, 50674, Germany
| | - Fernando Fernandez-Mendoza
- Institute of Biology, Division of Plant Sciences, University of Graz, Holteigasse 6, Graz, 8010, Austria
| | - Michele Freppaz
- Department of Agricultural, Forest and Food Sciences, University of Turin, Largo Paolo Braccini 2, Grugliasco, 10095, Italy
- Research Center on Natural Risks in Mountain and Hilly Environments, University of Turin, Largo Paolo Braccini 2, Grugliasco, 10095, Italy
| | - Beat Frey
- Forest Soils and Biogeochemistry, Swiss Federal Research Institute WSL, Birmensdorf, 8903, Switzerland
| | - Nathalie Fromin
- CEFE, Univ Montpellier, CNRS, EPHE, IRD, Univ Paul Valéry Montpellier 3, Route de Mende 34199, Montpellier Cedex 5, France
| | - Stefan Geisen
- Laboratory of Nematology, Wageningen University and Research, Droevendaalsesteeg 1, Wageningen 6708PB, The Netherlands
| | - Martin Grube
- Institute of Biology, Division of Plant Sciences, University of Graz, Holteigasse 6, Graz, 8010, Austria
| | - Elia Guariento
- Institute for Alpine Environment, Eurac Research, Viale Druso 1, Bozen/Bolzano, 39100, Italy
| | - Antoine Guisan
- Department of Ecology and Evolution (DEE), University of Lausanne, Biophore, Lausanne, 1015, Switzerland
- Institute of Earth Surface Dynamics (IDYST), University of Lausanne, Géopolis, Lausanne, 1015, Switzerland
| | - Qiao-Qiao Ji
- Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, 4888 Shengbei Street, Changchun, 130102, China
| | - Juan J Jiménez
- Instituto Pirenaico de Ecología (IPE), Consejo Superior de Investigaciones Cientificas (CSIC), Avda. Ntra. Sra. de la Victoria 16, Jaca, 22700, Huesca, Spain
| | - Stefanie Maier
- Institute of Biology, Division of Plant Sciences, University of Graz, Holteigasse 6, Graz, 8010, Austria
| | - Lucie A Malard
- Department of Ecology and Evolution (DEE), University of Lausanne, Biophore, Lausanne, 1015, Switzerland
| | - Maria A Minor
- School of Food Technology and Natural Sciences, Massey University, Riddett Road, Palmerston North, 4410, New Zealand
| | - Cowan C Mc Lean
- Department of Soil, Crop and Climate Sciences, University of the Free State, 205 Nelson Mandela Drive, Bloemfontein, 9300, South Africa
| | - Edward A D Mitchell
- Laboratory of Soil Biodiversity, University of Neuchâtel, Rue Emile-Argand 11, Neuchâtel, 2000, Switzerland
| | - Thomas Peham
- Department of Ecology, Universität Innsbruck, Technikerstrasse 25, Innsbruck, 6020, Austria
| | - Roberto Pizzolotto
- Dipartimento di Biologia, Ecologia e Scienze della Terra, University of Calabria, Ponte Pietro Bucci 4b, Rende, 87036, Italy
| | - Andy F S Taylor
- Ecological Sciences, The James Hutton Institute, Craigiebuckler, Aberdeen, AB15 8QH, Scotland, UK
| | - Philippe Vernon
- UMR 6553 EcoBio CNRS, University of Rennes, Biological Station, Paimpont, 35380, France
| | - Johan J van Tol
- Department of Soil, Crop and Climate Sciences, University of the Free State, 205 Nelson Mandela Drive, Bloemfontein, 9300, South Africa
| | - Donghui Wu
- Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, 4888 Shengbei Street, Changchun, 130102, China
- Key Laboratory of Vegetation Ecology, Ministry of Education, Northeast Normal University, 2555 Jingyue Street, Changchun, 130117, China
| | - Yunga Wu
- Key Laboratory of Vegetation Ecology, Ministry of Education, Northeast Normal University, 2555 Jingyue Street, Changchun, 130117, China
| | - Zhijing Xie
- Key Laboratory of Vegetation Ecology, Ministry of Education, Northeast Normal University, 2555 Jingyue Street, Changchun, 130117, China
| | - Bettina Weber
- Institute of Biology, Division of Plant Sciences, University of Graz, Holteigasse 6, Graz, 8010, Austria
| | - Paul Illmer
- Department of Microbiology, Universität Innsbruck, Technikerstrasse 25d, Innsbruck, 6020, Austria
| | - Julia Seeber
- Institute for Alpine Environment, Eurac Research, Viale Druso 1, Bozen/Bolzano, 39100, Italy
- Department of Ecology, Universität Innsbruck, Technikerstrasse 25, Innsbruck, 6020, Austria
| |
Collapse
|
2
|
Zhou L, Zhang L, Dang R, Han G, Liu J, Zhou M, Xiao L. Microbiota-induced asymmetry in coastal methane emission potential under experimental precipitation gradients. ENVIRONMENTAL RESEARCH 2025; 266:120601. [PMID: 39672497 DOI: 10.1016/j.envres.2024.120601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 12/05/2024] [Accepted: 12/09/2024] [Indexed: 12/15/2024]
Abstract
Climate models predict that the frequency and intensity of extreme precipitation events will increase globally. Despite carbon budget in coastal wetlands is known to be sensitive to precipitation variability, in where CH4 productions and potential mechanisms remain poorly understood. We investigated CH4 emission potential and its drivers after 7-year of field experiments with five precipitation gradients (-60%, -40%, ambient condition, +40%, +60%) in Yellow River Delta, China. The response of CH4 emission potential to precipitation gradients exhibited significant asymmetry, with the highest emission potential occurring under +40% precipitation. 13C-isotope tracing experiment discovered the primary contribution of acetoclastic methanogenic pathway. +40% precipitation significantly improved the accumulation of aboveground biomass, soil organic carbon and total nitrogen. Microbial community abundance, but not composition, referring to metagenome-assembled genomes also actively responded to precipitation changes. For example, +40% precipitation increased the relative abundance of Methanosarcinia and Methanobacteria. Furthermore, CH4 emission potential was also promoted by higher microbial enzyme activity. Collectively, CH4 emission potential in response to 7-year experimental precipitations was regulated by microbiota-driven, showing obvious asymmetry.
Collapse
Affiliation(s)
- Lifeng Zhou
- School of Geography and Environment, Liaocheng University, Liaocheng, 252059, PR China; CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, PR China
| | - Lirong Zhang
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, PR China
| | - Run Dang
- School of Geography and Environment, Liaocheng University, Liaocheng, 252059, PR China; CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, PR China
| | - Guangxuan Han
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, PR China; The Yellow River Delta Ecological Research Station of Coastal Wetland, Chinese Academy of Sciences, Yantai, PR China; Shandong Key Laboratory of Coastal Environmental Processes, Yantai, PR China
| | - Jian Liu
- Shandong Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou, 253023, PR China
| | - Meng Zhou
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, 150081, PR China
| | - Leilei Xiao
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, PR China; The Yellow River Delta Ecological Research Station of Coastal Wetland, Chinese Academy of Sciences, Yantai, PR China; Shandong Key Laboratory of Coastal Environmental Processes, Yantai, PR China.
| |
Collapse
|
3
|
Wang P, Wang J, Wang S, D'Imperio L, Elberling B, Ambus P, Zhang Z, Ito A, Li Y, Pan J, Song L, Liu N, Zhang R, Chen W, Niu S. Soil Moisture Threshold of Methane Uptake in Alpine Grassland Ecosystems. GLOBAL CHANGE BIOLOGY 2025; 31:e70062. [PMID: 39905848 DOI: 10.1111/gcb.70062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 12/31/2024] [Accepted: 01/12/2025] [Indexed: 02/06/2025]
Abstract
Methane (CH4) uptake in alpine ecosystems is an important component of the global CH4 sink. However, large uncertainties remain regarding the magnitude and spatial patterns of CH4 uptake, owing to its extensive spatial variability, diverse controlling factors, and limited regional-scale observations. Here, we investigated field ecosystem CH4 uptake along a 3200-km transect across various alpine grasslands on the Qinghai-Tibetan Plateau (QTP). We found a substantial spatial variation in in situ CH4 uptake among alpine grasslands, with the highest rates in drier regions of the mid-western QTP. Soil moisture was the most important factor controlling CH4 uptake, exhibiting a remarkably low threshold of 6.2 ± 0.1 v/v %. Below this threshold, CH4 uptake was constrained by soil moisture, moisture-induced nitrogen limitation, and high temperatures. Above this threshold, CH4 uptake was mainly limited by gas diffusion and low temperatures. By integrating grid predictors with a random forest model trained on 1851 field measurements encompassing both our observations and a regional synthesis across the QTP, we estimated a regional CH4 uptake of 0.88 ± 0.020 Tg CH4 year-1 from all alpine grasslands on the QTP. This higher estimate, primarily driven by alpine steppes, was significantly greater than current regional estimates from global CH4 models. Our findings highlight the importance of CH4 sink in dry alpine ecosystems characterized by low soil moisture, suggesting that the contribution of CH4 sink in drylands may have been substantially underestimated in the current global CH4 budget.
Collapse
Affiliation(s)
- Peiyan Wang
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China
- Center for Permafrost (CENPERM), Department of Geosciences and Natural Resource Management, University of Copenhagen, Copenhagen, Denmark
| | - Jinsong Wang
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Song Wang
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Ludovica D'Imperio
- Department of Geosciences and Natural Resource Management, University of Copenhagen, Frederiksberg C, Denmark
| | - Bo Elberling
- Center for Permafrost (CENPERM), Department of Geosciences and Natural Resource Management, University of Copenhagen, Copenhagen, Denmark
| | - Per Ambus
- Center for Permafrost (CENPERM), Department of Geosciences and Natural Resource Management, University of Copenhagen, Copenhagen, Denmark
- Center for Landscape Research in Sustainable Agricultural Futures (Land-CRAFT), Department of Geosciences and Natural Resource Management, University of Copenhagen, Copenhagen, Denmark
| | - Zhen Zhang
- National Tibetan Plateau Data Center (TPDC), State Key Laboratory of Tibetan Plateau Earth System, Environment and Resource (TPESER), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, China
| | - Akihiko Ito
- Graduate School of Life and Agricultural Sciences, The University of Tokyo, Tokyo, Japan
| | - Yang Li
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China
| | - Junxiao Pan
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China
| | - Lei Song
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China
| | - Ning Liu
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Ruiyang Zhang
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China
| | - Weinan Chen
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Shuli Niu
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
4
|
Li L, Wang X, Yang Y, Wang S, Chen K, Zhang N. The Response Mechanism of the cbbM Carbon Sequestration Microbial Community in the Alpine Wetlands of Qinghai Lake to Changes in Precipitation. BIOLOGY 2024; 13:1090. [PMID: 39765757 PMCID: PMC11673386 DOI: 10.3390/biology13121090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 12/21/2024] [Accepted: 12/22/2024] [Indexed: 01/11/2025]
Abstract
The dramatic changes in precipitation patterns on the Tibetan Plateau affected the carbon-sequestering microbial communities within wetland ecosystems, which were closely related to the responses and adaptation mechanisms of alpine wetland ecosystems to climate change. This study focused on wetland soils subjected to different precipitation gradient treatments and employed high-throughput sequencing technology to analyze the soil cbbM carbon-sequestering microbial communities. The results indicated that Proteobacteria were the dominant microbial community responsible for carbon sequestration in the Wayan Mountain wetland. A 50% increase in precipitation significantly raised the soil moisture content, while a 50% reduction and a 25% increase in precipitation notably enhanced the total soil carbon content. The 25% reduction in precipitation increased the differences in microbial community composition, whereas both the 50% increase and the 50% reduction in precipitation decreased these differences. The soil pH and temperature had the most significant impact on the carbon-sequestering microbial communities. In conclusion, changes in precipitation affect the cbbM carbon sequestration characteristics of soil microbial communities, and a moderate reduction in water input benefited carbon sequestration in wetlands.
Collapse
Affiliation(s)
- Lin Li
- College of Life Sciences, Qinghai Normal University, Xining 810008, China; (L.L.); (X.W.); (S.W.)
- Qinghai Province Key Laboratory of Physical Geography and Environmental Process, College of Geographical Science, Qinghai Normal University, Xining 810008, China;
- Key Laboratory of Surface Processes and Ecological Conservation on the Tibetan Plateau, Qinghai Normal University, Xining 810008, China
- National Positioning Observation and Research Station of Qinghai Lake Wetland Ecosystem in Qinghai, National Forestry and Grassland Administration, Haibei 812300, China
- Academy of Plateau Science and Sustainability, Plateau Soil Information Science Research Team, Xining 810008, China
| | - Xia Wang
- College of Life Sciences, Qinghai Normal University, Xining 810008, China; (L.L.); (X.W.); (S.W.)
- Qinghai Province Key Laboratory of Physical Geography and Environmental Process, College of Geographical Science, Qinghai Normal University, Xining 810008, China;
- Key Laboratory of Surface Processes and Ecological Conservation on the Tibetan Plateau, Qinghai Normal University, Xining 810008, China
- National Positioning Observation and Research Station of Qinghai Lake Wetland Ecosystem in Qinghai, National Forestry and Grassland Administration, Haibei 812300, China
- Academy of Plateau Science and Sustainability, Plateau Soil Information Science Research Team, Xining 810008, China
| | - Yanli Yang
- Qinghai Province Key Laboratory of Physical Geography and Environmental Process, College of Geographical Science, Qinghai Normal University, Xining 810008, China;
- Key Laboratory of Surface Processes and Ecological Conservation on the Tibetan Plateau, Qinghai Normal University, Xining 810008, China
- National Positioning Observation and Research Station of Qinghai Lake Wetland Ecosystem in Qinghai, National Forestry and Grassland Administration, Haibei 812300, China
- Academy of Plateau Science and Sustainability, Plateau Soil Information Science Research Team, Xining 810008, China
| | - Siyu Wang
- College of Life Sciences, Qinghai Normal University, Xining 810008, China; (L.L.); (X.W.); (S.W.)
- Qinghai Province Key Laboratory of Physical Geography and Environmental Process, College of Geographical Science, Qinghai Normal University, Xining 810008, China;
- Key Laboratory of Surface Processes and Ecological Conservation on the Tibetan Plateau, Qinghai Normal University, Xining 810008, China
- National Positioning Observation and Research Station of Qinghai Lake Wetland Ecosystem in Qinghai, National Forestry and Grassland Administration, Haibei 812300, China
- Academy of Plateau Science and Sustainability, Plateau Soil Information Science Research Team, Xining 810008, China
| | - Kelong Chen
- Qinghai Province Key Laboratory of Physical Geography and Environmental Process, College of Geographical Science, Qinghai Normal University, Xining 810008, China;
- Key Laboratory of Surface Processes and Ecological Conservation on the Tibetan Plateau, Qinghai Normal University, Xining 810008, China
- National Positioning Observation and Research Station of Qinghai Lake Wetland Ecosystem in Qinghai, National Forestry and Grassland Administration, Haibei 812300, China
- Academy of Plateau Science and Sustainability, Plateau Soil Information Science Research Team, Xining 810008, China
| | - Ni Zhang
- Qinghai Province Key Laboratory of Physical Geography and Environmental Process, College of Geographical Science, Qinghai Normal University, Xining 810008, China;
- Key Laboratory of Surface Processes and Ecological Conservation on the Tibetan Plateau, Qinghai Normal University, Xining 810008, China
- National Positioning Observation and Research Station of Qinghai Lake Wetland Ecosystem in Qinghai, National Forestry and Grassland Administration, Haibei 812300, China
- Academy of Plateau Science and Sustainability, Plateau Soil Information Science Research Team, Xining 810008, China
| |
Collapse
|
5
|
Wang X, Li Y, Hao Y, Kang E, Han J, Zhang X, Li M, Zhang K, Yan L, Yang A, Niu Y, Kang X, Yan Z. Soil temperature and fungal diversity jointly modulate soil heterotrophic respiration under short-term warming in the Zoige alpine peatland. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:122778. [PMID: 39393334 DOI: 10.1016/j.jenvman.2024.122778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 02/26/2024] [Accepted: 09/29/2024] [Indexed: 10/13/2024]
Abstract
Global warming has changed carbon cycling in terrestrial ecosystems, but it remains unclear how climate warming affects soil heterotrophic respiration (Rh). We conducted a field experiment in the Zoige alpine peatland to investigate the mechanism of how short-term warming affects Rh by examining the relationships between plant biomass, soil properties, soil microbial diversity, and functional groups and Rh. Our results showed that warming increased Rh after one growing season of warming. However, warming barely changed the bacterial functional groups involved in the carbon cycle predicted by the functional annotation analysis. According to the Mantel test, NO3- was found to be the primary determinant for bacterial and fungal communities. The results of the Structural Equation Model (SEM) indicate that soil temperature and fungal diversity jointly modulate Rh, suggesting that short-term warming may not affect Rh by altering the structural and functional composition of microorganisms, which provides new insight into the mechanisms of the effects of warming on Rh in terrestrial ecosystems.
Collapse
Affiliation(s)
- Xiaodong Wang
- Wetland Research Center, Institute of Ecological Conservation and Restoration, Chinese Academy of Forestry, Beijing, China, 100091, China; Beijing Key Laboratory of Wetland Services and Restoration, Beijing, 100091, China; Sichuan Zoige Wetland Ecosystem Research Station, Tibetan Autonomous Prefecture of Aba, 624500, China
| | - Yong Li
- Wetland Research Center, Institute of Ecological Conservation and Restoration, Chinese Academy of Forestry, Beijing, China, 100091, China; Beijing Key Laboratory of Wetland Services and Restoration, Beijing, 100091, China; Sichuan Zoige Wetland Ecosystem Research Station, Tibetan Autonomous Prefecture of Aba, 624500, China
| | - Yanbin Hao
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Enze Kang
- University of Chinese Academy of Sciences, Beijing, 100049, China; State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Jinfeng Han
- The Management Bureau of Zoige Wetland National Nature Reserve, Zoige, 624500, China
| | - Xiaodong Zhang
- Wetland Research Center, Institute of Ecological Conservation and Restoration, Chinese Academy of Forestry, Beijing, China, 100091, China; Beijing Key Laboratory of Wetland Services and Restoration, Beijing, 100091, China; Sichuan Zoige Wetland Ecosystem Research Station, Tibetan Autonomous Prefecture of Aba, 624500, China
| | - Meng Li
- Wetland Research Center, Institute of Ecological Conservation and Restoration, Chinese Academy of Forestry, Beijing, China, 100091, China; Beijing Key Laboratory of Wetland Services and Restoration, Beijing, 100091, China; Sichuan Zoige Wetland Ecosystem Research Station, Tibetan Autonomous Prefecture of Aba, 624500, China
| | - Kerou Zhang
- Wetland Research Center, Institute of Ecological Conservation and Restoration, Chinese Academy of Forestry, Beijing, China, 100091, China; Beijing Key Laboratory of Wetland Services and Restoration, Beijing, 100091, China; Sichuan Zoige Wetland Ecosystem Research Station, Tibetan Autonomous Prefecture of Aba, 624500, China
| | - Liang Yan
- Wetland Research Center, Institute of Ecological Conservation and Restoration, Chinese Academy of Forestry, Beijing, China, 100091, China; Beijing Key Laboratory of Wetland Services and Restoration, Beijing, 100091, China; Sichuan Zoige Wetland Ecosystem Research Station, Tibetan Autonomous Prefecture of Aba, 624500, China
| | - Ao Yang
- Wetland Research Center, Institute of Ecological Conservation and Restoration, Chinese Academy of Forestry, Beijing, China, 100091, China; Beijing Key Laboratory of Wetland Services and Restoration, Beijing, 100091, China; Sichuan Zoige Wetland Ecosystem Research Station, Tibetan Autonomous Prefecture of Aba, 624500, China
| | - Yuechuan Niu
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaoming Kang
- Wetland Research Center, Institute of Ecological Conservation and Restoration, Chinese Academy of Forestry, Beijing, China, 100091, China; Beijing Key Laboratory of Wetland Services and Restoration, Beijing, 100091, China; Sichuan Zoige Wetland Ecosystem Research Station, Tibetan Autonomous Prefecture of Aba, 624500, China.
| | - Zhongqing Yan
- Wetland Research Center, Institute of Ecological Conservation and Restoration, Chinese Academy of Forestry, Beijing, China, 100091, China; Beijing Key Laboratory of Wetland Services and Restoration, Beijing, 100091, China; Sichuan Zoige Wetland Ecosystem Research Station, Tibetan Autonomous Prefecture of Aba, 624500, China.
| |
Collapse
|
6
|
Zhang N, Chen K, Chen J, Ji W, Yang Z, Chen Z. Response Characteristics and Community Assembly Mechanisms of nirS-Type Denitrifiers in the Alpine Wetland under Simulated Precipitation Conditions. BIOLOGY 2024; 13:596. [PMID: 39194534 DOI: 10.3390/biology13080596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 07/18/2024] [Accepted: 08/06/2024] [Indexed: 08/29/2024]
Abstract
The nitrogen cycling process in alpine wetlands is profoundly affected by precipitation changes, yet the dynamic response mechanism of denitrifiers to long-term precipitation shifts in the alpine wetland of the Qinghai-Tibet Plateau remains enigmatic. Utilizing high-throughput sequencing analysis of nirS-type functional genes, this study delved into the dynamic response mechanism of nirS-type denitrifiers to precipitation changes in the alpine wetland of Qinghai Lake. The findings revealed that nirS-type denitrifiers in the alpine wetland of Qinghai Lake were primarily Proteobacteria, and Alpha diversity exhibited a negative correlation with the precipitation gradient, with deterministic processes predominating in the community assembly of denitrifying microbes. A 50% increase in rainfall shifted the community assembly process of denitrifiers from deterministic to stochastic. Dominant microflora at the genus level responded significantly to precipitation changes, with aerobic bacteria comprising the majority of differentially abundant taxa (55.56%). As precipitation increased, the complexity of the microbial interaction network decreased, and a 25% reduction in precipitation notably elevated the relative abundance of three key functional groups: chemoheterotrophic, aerobic chemoheterotrophic, and nitrogen fixation. Precipitation notably emerged as the primary regulator of nirS-type denitrifiers in the alpine wetland of Qinghai Lake, accounting for 51% of the variation in community composition. In summary, this study offers a fresh perspective for investigating the ecological processes of nitrogen cycling in alpine ecosystems by examining the diversity and community composition of nirS-type denitrifiers in response to precipitation changes.
Collapse
Affiliation(s)
- Ni Zhang
- Qinghai Province Key Laboratory of Physical Geography and Environmental Process, College of Geographical Science, Qinghai Normal University, Xining 810008, China
- Key Laboratory of Tibetan Plateau Land Surface Processes and Ecological Conservation (Ministry of Education), Qinghai Normal University, Xining 810008, China
- National Positioning Observation and Research Station of Qinghai Lake Wetland Ecosystem in Qinghai, National Forestry and Grassland Administration, Haibei 812300, China
| | - Kelong Chen
- Qinghai Province Key Laboratory of Physical Geography and Environmental Process, College of Geographical Science, Qinghai Normal University, Xining 810008, China
- Key Laboratory of Tibetan Plateau Land Surface Processes and Ecological Conservation (Ministry of Education), Qinghai Normal University, Xining 810008, China
- National Positioning Observation and Research Station of Qinghai Lake Wetland Ecosystem in Qinghai, National Forestry and Grassland Administration, Haibei 812300, China
| | - Ji Chen
- State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China
- Department of Earth and Environmental Science, Institute of Global Environmental Change, School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, Xi'an 710061, China
- Guanzhong Plain Ecological Environment Change and Comprehensive Treatment National Observation and Research Station, Xi'an 710061, China
| | - Wei Ji
- Qinghai Province Key Laboratory of Physical Geography and Environmental Process, College of Geographical Science, Qinghai Normal University, Xining 810008, China
- Key Laboratory of Tibetan Plateau Land Surface Processes and Ecological Conservation (Ministry of Education), Qinghai Normal University, Xining 810008, China
- National Positioning Observation and Research Station of Qinghai Lake Wetland Ecosystem in Qinghai, National Forestry and Grassland Administration, Haibei 812300, China
| | - Ziwei Yang
- Qinghai Province Key Laboratory of Physical Geography and Environmental Process, College of Geographical Science, Qinghai Normal University, Xining 810008, China
- Key Laboratory of Tibetan Plateau Land Surface Processes and Ecological Conservation (Ministry of Education), Qinghai Normal University, Xining 810008, China
- National Positioning Observation and Research Station of Qinghai Lake Wetland Ecosystem in Qinghai, National Forestry and Grassland Administration, Haibei 812300, China
| | - Zhirong Chen
- College of Resources, Environment and Life Sciences, Ningxia Normal University, Guyuan 756099, China
| |
Collapse
|
7
|
Yan J, Hu X, Qian L, Fu X, Wang L. Tidal organic input restricts CO 2 sequestration capacity of estuarine wetlands. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:63580-63591. [PMID: 37055687 DOI: 10.1007/s11356-023-26642-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 03/21/2023] [Indexed: 04/15/2023]
Abstract
The inland and estuary wetlands that characterized by different natural environment perform distinctly in soil carbon (C) sink. It was deemed that estuary wetland has a higher organic C accumulation rate than inland wetland, due to its higher primary production and tidal organics input, thus having higher organic C sink capacity. While from CO2 budge in view, whether does the large organic input from tide restrict CO2 sequestration capacity of estuary wetland has not been discussed comparing with inland wetland. In this study, inland and estuary wetlands were selected to study the potential of CO2 sequestration capacity. It was found that inland wetland had most of soil organic carbon (SOC) derived from plant C, which brought remarkable organic C content and nourished higher microbial biomass, dehydrogenase, and β_glucosidase than estuary wetland. The estuary wetland instead accumulated less SOC, a considerable proportion of which came from tidal waters, therefore supporting lower microbial biomass and enzyme activities than that in inland wetland. However, estuary wetland was evaluated having higher capability in SOC mineralization than inland wetland in consideration of soil respiration (SR) and SR quotient. It was concluded that tidal organic C accelerated the SOC mineralization in estuarine wetland, thus weakening the CO2 sequestration. These results implied the importance of pollution control for reservation CO2 sink function in estuarine wetland.
Collapse
Affiliation(s)
- Jianfang Yan
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, Zhejiang, 321004, China
- Key Laboratory of Watershed Earth Surface Processes and Ecological Security, Zhejiang Normal University, Jinhua, Zhejiang, 321004, China
| | - Xin Hu
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, Zhejiang, 321004, China
- Key Laboratory of Watershed Earth Surface Processes and Ecological Security, Zhejiang Normal University, Jinhua, Zhejiang, 321004, China
| | - Liwei Qian
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Xiaohua Fu
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Lei Wang
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China.
| |
Collapse
|
8
|
Williamson M, Ball BA. Soil biogeochemical responses to multiple co-occurring forms of human-induced environmental change. Oecologia 2023; 201:1109-1121. [PMID: 36928931 DOI: 10.1007/s00442-023-05360-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 03/07/2023] [Indexed: 03/18/2023]
Abstract
Human activities cause a multitude of environmental issues, including increased temperatures and altered precipitation patterns associated with climate change, air pollution, and other impacts of urbanization. One area highly affected by these issues is the Sonoran Desert, specifically the Phoenix metropolitan area where urbanization is among the most rapid in the United States. Most studies investigate these multiple environmental change factors independently or sometimes in pairs, but rarely all together as co-occurring forms of change. We examined how the simultaneous manipulation of increasing temperatures, altered precipitation patterns, nitrogen deposition, and urbanization influenced soil respiration and mineral N pools in the Sonoran Desert. Soil was collected from urban and exurban sites, from both nitrogen-fertilized and control plots. To simulate projected climate change, the soils were incubated in microcosm at the annual average Phoenix temperature as well a 2 ℃ increase under a factorial precipitation treatment of decreased frequency and increased pulse size. Our results show that C and N dynamics were altered by all four forms of environmental change. However, the dominance of significant 3- and 4-way interactions among the four environmental factors for both respiration and mineral N pools demonstrates that the impact of any given form of environmental change will depend on the levels of the other environmental factors. In other words, the cumulative effect of altered precipitation, fertilization, temperature, and urbanization on soil biogeochemical processes is not necessarily predictable from their individual impact.
Collapse
Affiliation(s)
- Maya Williamson
- School of Mathematical and Natural Sciences, Arizona State University at the West Campus, 1407 W. Thunderbird Rd., Glendale, AZ, 85306, USA
| | - Becky A Ball
- School of Mathematical and Natural Sciences, Arizona State University at the West Campus, 1407 W. Thunderbird Rd., Glendale, AZ, 85306, USA.
| |
Collapse
|
9
|
Berlinches de Gea A, Hautier Y, Geisen S. Interactive effects of global change drivers as determinants of the link between soil biodiversity and ecosystem functioning. GLOBAL CHANGE BIOLOGY 2023; 29:296-307. [PMID: 36281756 DOI: 10.1111/gcb.16471] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 09/20/2022] [Accepted: 09/20/2022] [Indexed: 06/16/2023]
Abstract
Biodiversity, both aboveground and belowground, is negatively affected by global changes such as drought or warming. This loss of biodiversity impacts Earth's ecosystems, as there is a positive relationship between biodiversity and ecosystem functioning (BEF). Even though soils host a large fraction of biodiversity that underlies major ecosystem functions, studies exploring the relationship between soil biodiversity and ecosystem functioning (sBEF) as influenced by global change drivers (GCDs) remain scarce. Here we highlight the need to decipher sBEF relationships under the effect of interactive GCDs that are intimately connected in a changing world. We first state that sBEF relationships depend on the type of function (e.g., C cycling or decomposition) and biodiversity facet (e.g., abundance, species richness, or biomass) considered. Then, we shed light on the impact of single and interactive GCDs on soil biodiversity and sBEF and show that results from scarce studies studying interactive effects range from antagonistic to additive to synergistic when two individual GCDs cooccur. This indicates the need for studies quantitatively accounting for the impacts of interactive GCDs on sBEF relationships. Finally, we provide guidelines for optimized methodological and experimental approaches to study sBEF in a changing world that will provide more valuable information on the real impact of (interactive) GCDs on sBEF. Together, we highlight the need to decipher the sBEF relationship in soils to better understand soil functioning under ongoing global changes, as changes in sBEF are of immediate importance for ecosystem functioning.
Collapse
Affiliation(s)
| | - Yann Hautier
- Ecology and Biodiversity Group, Department of Biology, Utrecht University, Utrecht, The Netherlands
| | - Stefan Geisen
- Laboratory of Nematology, Wageningen University & Research, Wageningen, The Netherlands
| |
Collapse
|
10
|
Ke M, Wang W, Zhou Q, Wang Y, Liu Y, Yu Y, Chen Y, Peng Z, Mo Q. Response of leaf functional traits to precipitation change: A case study from tropical woody tree. Glob Ecol Conserv 2022. [DOI: 10.1016/j.gecco.2022.e02152] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
11
|
Lin Z, Liu Y, Zhang Z, Yao J. Preparation and Characterization of OH/SiO2-TiO2/PES Composite Hollow Fiber Membrane Using Gas-liquid Membrane Contactor for CO2/CH4 Separation. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.120551] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|