1
|
Wiener EA, Ewald JM, LeFevre GH. Fungal diversity and key functional gene abundance in Iowa bioretention cells: implications for stormwater remediation potential. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2024; 26:1796-1810. [PMID: 39192758 DOI: 10.1039/d4em00275j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
Stormwater bioretention cells are green stormwater infrastructure systems that can help mitigate flooding and remove contaminants. Plants and bacteria improve nutrient removal and degrade organic contaminants; however, the roles of fungi in bioretention cells are less known. Although mycorrhizal fungi aid in plant growth/improve nutrient uptake, there is a notable lack of research investigating fungal diversity in bioretention cells. Other types of fungi could benefit bioretention cells (e.g., white rot fungi degrade recalcitrant contaminants). This study addresses the knowledge gap of fungal function and diversity within stormwater bioretention cells. We collected multiple soil samples from 27 different bioretention cells in temperate-climate eastern Iowa USA, characterized soil physicochemical parameters, sequenced the internal transcribed spacer (ITS) amplicon to identify fungal taxa from extracted DNA, and measured functional gene abundances for two fungal laccases (Cu1, Cu1A) and a fungal nitrite reductase gene (nirKf). Fungal biodegradation functional genes were present in bioretention soils (mean copies per g: 7.4 × 105nirKf, 3.2 × 106Cu1, 4.0 × 108Cu1A), with abundance of fungal laccase and fungal nitrite reductase genes significantly positively correlated with soil pH and organic matter (Pearson's R: >0.39; rho < 0.05). PERMANOVA analysis determined soil characteristics were not significant explanatory variables for community composition (beta diversity). In contrast, planting specifications significantly impacted fungal diversity; the presence/absence of a few planting types and predominant vegetation type in the cell explained 89% of variation in fungal diversity. These findings further emphasize the importance of plants and media as key design parameters for bioretention cells, with implications for fungal bioremediation of captured stormwater contaminants.
Collapse
Affiliation(s)
- Erica A Wiener
- Department of Civil & Environmental Engineering, University of Iowa, 4105 Seamans Center, Iowa City, IA 52242, USA.
- IIHR-Hydroscience &Engineering, 100 C. Maxwell Stanley Hydraulics Laboratory, Iowa City, IA 52242, USA
| | - Jessica M Ewald
- Department of Civil & Environmental Engineering, University of Iowa, 4105 Seamans Center, Iowa City, IA 52242, USA.
- IIHR-Hydroscience &Engineering, 100 C. Maxwell Stanley Hydraulics Laboratory, Iowa City, IA 52242, USA
| | - Gregory H LeFevre
- Department of Civil & Environmental Engineering, University of Iowa, 4105 Seamans Center, Iowa City, IA 52242, USA.
- IIHR-Hydroscience &Engineering, 100 C. Maxwell Stanley Hydraulics Laboratory, Iowa City, IA 52242, USA
| |
Collapse
|
2
|
Hao Y, Lu C, Xiang Q, Sun A, Su JQ, Chen QL. Unveiling the overlooked microbial niches thriving on building exteriors. ENVIRONMENT INTERNATIONAL 2024; 187:108649. [PMID: 38642506 DOI: 10.1016/j.envint.2024.108649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 04/07/2024] [Accepted: 04/09/2024] [Indexed: 04/22/2024]
Abstract
Rapid urbanization in the Asia-Pacific region is expected to place two-thirds of its population in concrete-dominated urban landscapes by 2050. While diverse architectural facades define the unique appearance of these urban systems. There remains a significant gap in our understanding of the composition, assembly, and ecological potential of microbial communities on building exteriors. Here, we examined bacterial and protistan communities on building surfaces along an urbanization gradient (urban, suburban and rural regions), investigating their spatial patterns and the driving factors behind their presence. A total of 55 bacterial and protist phyla were identified. The bacterial community was predominantly composed of Proteobacteria (33.7% to 67.5%). The protistan community exhibited a prevalence of Opisthokonta and Archaeplastida (17.5% to 82.1% and 1.8% to 61.2%, respectively). The composition and functionality of bacterial communities exhibited spatial patterns correlated with urbanization. In urban buildings, factors such as facade type, light exposure, and building height had comparatively less impact on bacterial composition compared to suburban and rural areas. The highest bacterial diversity and lowest Weighted Average Community Identity (WACI) were observed on suburban buildings, followed by rural buildings. In contrast, protists did not show spatial distribution characteristics related to facade type, light exposure, building height and urbanization level. The distinct spatial patterns of protists were primarily shaped by community diffusion and the bottom-up regulation exerted by bacterial communities. Together, our findings suggest that building exteriors serve as attachment points for local microbial metacommunities, offering unique habitats where bacteria and protists exhibit independent adaptive strategies closely tied to the overall ecological potential of the community.
Collapse
Affiliation(s)
- Yilong Hao
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, China
| | - Changyi Lu
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, China
| | - Qian Xiang
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, China
| | - Anqi Sun
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, China
| | - Jian-Qiang Su
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Qing-Lin Chen
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, China.
| |
Collapse
|
3
|
Zhang B, Chen L, Guo Q, Zhang Z, Lian J. Characteristics of nitrogen distribution and its response to microecosystem changes in green infrastructure with different woody plants. CHEMOSPHERE 2023; 313:137371. [PMID: 36436579 DOI: 10.1016/j.chemosphere.2022.137371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 11/21/2022] [Accepted: 11/22/2022] [Indexed: 06/16/2023]
Abstract
With the acceleration of urbanization, N pollution in rainfall runoff has become the primary cause of eutrophication. In order to control N pollution in rainfall runoff, green infrastructure (GI) has been widely implemented. However, little is known about the process through which plants, especially woody plants, affect N distribution and the microecosystem in GI. Limited information suggests that woody plants mainly affect N distribution and alter the microecosystem through the influence of their roots. Therefore, laboratory tests were conducted to investigate the roles of the taproot plant Sophora japonica and the fibrous root plant Malus baccata and the resultant changes at the microecosystem level regarding N removal in a column-scale GI. After one year of growth, analysis of the morphological traits of the roots revealed that the average root length and diameter of S. japonica were approximately 2.3 and 1.8 times greater than those of M. baccata, respectively. An investigation of microbial diversity revealed that in comparison to the control GI system without plants, the GI systems with S. japonica and M. baccata hosted 45.68% and 59.88% more Actinobacteria, respectively. Further, the soil urease (S-UE) activities in the GI systems with S. japonica and M. baccata were 13.6% and 98.8% higher than that in the control, respectively, and the soil acid protease (S-ALPT) activities were 20.5% and 25.4% higher than that in the control, respectively. Compared to the control and the S. japonica GI system, the NH3-N content in the soil of the M. baccata GI was 94.4% and 15.2% lower, respectively, and the NO3-N content was 57.3% and 12.7% lower, respectively. The M. baccata GI system had the lowest NH3-N and NO3-N contents because it was most abundant in Actinobacteria and Arthrobacter and had the highest S-UE and S-ALPT activities. The results may be useful for improving N removal in GI containing different woody plants, and by extension for improving control of N pollution from rainfall runoff.
Collapse
Affiliation(s)
- Bei Zhang
- State Key Laboratory of Hydraulic Engineering Simulation and Safety, Tianjin University, Tianjin, 300072, PR China; School of Civil Engineering, Tianjin University, Tianjin, 300072, PR China
| | - Liang Chen
- State Key Laboratory of Hydraulic Engineering Simulation and Safety, Tianjin University, Tianjin, 300072, PR China; School of Civil Engineering, Tianjin University, Tianjin, 300072, PR China.
| | - Qizhong Guo
- Department of Civil and Environmental Engineering, Rutgers University-New Brunswick, Piscataway, NJ, 08854, USA
| | - Zhaoxin Zhang
- Institute of Land Engineering and Technology, Shaanxi Provincial Land Engineering Construction Group Co., Ltd., Xi'an, 710075, PR China
| | - Jijian Lian
- State Key Laboratory of Hydraulic Engineering Simulation and Safety, Tianjin University, Tianjin, 300072, PR China; School of Civil Engineering, Tianjin University, Tianjin, 300072, PR China
| |
Collapse
|
4
|
Marczak D, Lejcuś K, Kulczycki G, Misiewicz J. Towards circular economy: Sustainable soil additives from natural waste fibres to improve water retention and soil fertility. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 844:157169. [PMID: 35798103 DOI: 10.1016/j.scitotenv.2022.157169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 06/30/2022] [Accepted: 06/30/2022] [Indexed: 06/15/2023]
Abstract
Human activity is accompanied by the introduction of excessive amounts of artificial materials, including geosynthetics, into the environment, causing global environmental pollution. Moreover, climate change continues to negatively affect global water resources. With the intensification of environmental problems, material reusability and water consumption limitations have been proposed. This study replaced synthetic soil additives with biodegradable materials and analysed the potential and sustainable processing of natural fibrous materials, which form problematic waste. Waste fibres are the basis of innovative soil water storage technologies in the form of biodegradable and water-absorbing geocomposites (BioWAG). We analysed the influence of BioWAGs on plant vegetation and the environment through a three-year field experiment. Furthermore, biomass increases, drought effect reductions, and biodegradation mechanisms were analysed. Natural waste fibres had a positive influence, as they released easily accessible nutrients into the soil during biodegradation. BioWAGs had a positive influence on the biometric parameters of grass, increasing biomass growth by 430 %. Our results indicated that this is an effective method of waste fibre management that offers the possibility to manufacture innovative, environmentally friendly materials in compliance with the objectives of circular economy and the expectations of users.
Collapse
Affiliation(s)
- Daria Marczak
- Wrocław University of Environmental and Life Sciences, Institute of Environmental Engineering, Wrocław 50-363, Poland
| | - Krzysztof Lejcuś
- Wrocław University of Environmental and Life Sciences, Institute of Environmental Engineering, Wrocław 50-363, Poland.
| | - Grzegorz Kulczycki
- Wrocław University of Environmental and Life Sciences, Department of Plant Nutrition, Wrocław 50-363, Poland
| | - Jakub Misiewicz
- Wrocław University of Environmental and Life Sciences, Institute of Environmental Engineering, Wrocław 50-363, Poland
| |
Collapse
|
5
|
Pereira P, Baró F. Greening the city: Thriving for biodiversity and sustainability. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 817:153032. [PMID: 35007590 DOI: 10.1016/j.scitotenv.2022.153032] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Urban population and urbanisation are increasing rapidly, mainly in developing countries, usually at the expense of green and blue areas. This trend will decrease the ecosystems' capacity to supply ecosystem services (ES) and threaten human wellbeing. Therefore, it is key to establish greening policies in urbanising areas, which are essential to improve the liveability of cities. Restoring and developing green and blue infrastructures using nature-based solutions is vital to improving urban biodiversity and urban ecosystems. Healthy urban ecosystems have a high capacity to supply regulating (e.g., air, noise, climate and water regulation), provisioning (e.g., food, medicinal plants, biomass) and cultural (e.g., recreation, landscape aesthetics, social cohesion) ES. This multifunctionality can provide diverse environmental, social and economic benefits to urban residents, hence contributing to the sustainability of urban areas. However, urban green and blue areas are also associated with ecosystem disservices (e.g., plant allergies or poisoning, emission of biogenic volatile organic compounds, unpleasant smells), tradeoffs (e.g., increased water consumption, wildfire risk, associated management costs) and implementation barriers (e.g., political motivation, lack of knowledge, time and workload). Overall, the SI published 8 articles from different parts of the world, such as China, the USA, Italy or Spain, focused on important aspects of greening the city (e.g., green roofs, green walls, green infrastructures, sustainable mobility).
Collapse
Affiliation(s)
- Paulo Pereira
- Environmental Management Center, Mykolas Romeris University, Ateities street, 20, Vilnius 08303, Lithuania.
| | - Francesc Baró
- Vrije Universiteit Brussel (VUB), Geography Department, Pleinlaan 2, B-1050 Brussels, Belgium; Vrije Universiteit Brussel (VUB), Sociology Department, Pleinlaan 2, B-1050 Brussels, Belgium; Institute of Environmental Science and Technology (ICTA), Universitat Autònoma de Barcelona (UAB), Edifici Z (ICTA-ICP), Carrer de les Columnes s/n, Campus de la UAB, 08193 Bellaterra, Cerdanyola del Vallès, Spain
| |
Collapse
|
6
|
Buzzard V, Thorne D, Gil-Loaiza J, Cueva A, Meredith LK. Sensitivity of soil hydrogen uptake to natural and managed moisture dynamics in a semiarid urban ecosystem. PeerJ 2022; 10:e12966. [PMID: 35317075 PMCID: PMC8934528 DOI: 10.7717/peerj.12966] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 01/28/2022] [Indexed: 01/11/2023] Open
Abstract
The North American Monsoon season (June-September) in the Sonoran Desert brings thunderstorms and heavy rainfall. These rains bring cooler temperature and account for roughly half of the annual precipitation making them important for biogeochemical processes. The intensity of the monsoon rains also increase flooding in urban areas and rely on green infrastructure (GI) stormwater management techniques such as water harvesting and urban rain gardens to capture runoff. The combination of increased water availability during the monsoon and water management provide a broad moisture regime for testing responses in microbial metabolism to natural and managed soil moisture pulses in drylands. Soil microbes rely on atmospheric hydrogen (H2) as an important energy source in arid and semiarid landscapes with low soil moisture and carbon availability. Unlike mesic ecosystems, transient water availability in arid and semiarid ecosystems has been identified as a key limiting driver of microbe-mediated H2 uptake. We measured soil H2 uptake in rain gardens exposed to three commonly used water harvesting practices during the monsoon season in Tucson AZ, USA. In situ static chamber measurements were used to calculate H2 uptake in each of the three water harvesting treatments passive (stormwater runoff), active (stored rooftop runoff), and greywater (used laundry water) compared to an unaltered control treatment to assess the effects of water management practices on soil microbial activity. In addition, soils were collected from each treatment and brought to the lab for an incubation experiment manipulating the soil moisture to three levels capturing the range observed from field samples. H2 fluxes from all treatments ranged between -0.72 nmol m-2 s-1 and -3.98 nmol m-2 s-1 over the monsoon season. Soil H2 uptake in the greywater treatment was on average 53% greater than the other treatments during pre-monsoon, suggesting that the increased frequency and availability of water in the greywater treatment resulted in higher H2 uptake during the dry season. H2 uptake was significantly correlated with soil moisture (r = -0.393, p = 0.001, df = 62) and temperature (r = 0.345, p = 0.005, df = 62). Our findings suggest that GI managed residential soils can maintain low levels of H2 uptake during dry periods, unlike unmanaged systems. The more continuous H2 uptake associated with GI may help reduce the impacts of drought on H2 cycling in semiarid urban ecosystems.
Collapse
Affiliation(s)
- Vanessa Buzzard
- School of Natural Resources and the Environment, University of Arizona, Tucson, Arizona, United States
| | - Dana Thorne
- School of Natural Resources and the Environment, University of Arizona, Tucson, Arizona, United States
| | - Juliana Gil-Loaiza
- School of Natural Resources and the Environment, University of Arizona, Tucson, Arizona, United States
| | - Alejandro Cueva
- Biosphere2, University of Arizona, Oracle, Arizona, United States
| | - Laura K. Meredith
- School of Natural Resources and the Environment, University of Arizona, Tucson, Arizona, United States,BIO5 Institute, University of Arizona, Tucson, Arizona, United States
| |
Collapse
|