1
|
Liu Y, Lv J, Guo C, Jin X, Zuo D, Xu J. Environmental behavior, risks, and management of antidepressants in the aquatic environment. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2025; 27:1196-1228. [PMID: 40293178 DOI: 10.1039/d4em00793j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/30/2025]
Abstract
Antidepressants are increasingly detected in aquatic environments due to their incomplete removal in wastewater treatment, raising significant concerns about their ecological impacts. This review focuses on the three most widely used classes of antidepressants-tricyclic antidepressants (TCAs), selective serotonin reuptake inhibitors (SSRIs), and serotonin-norepinephrine reuptake inhibitors (SNRIs). It systematically explores their physicochemical properties and how these properties influence their environmental fate, including sorption, mobility, and bioaccumulation in aquatic ecosystems. The sublethal effects of these antidepressants on aquatic organisms, particularly their impacts on behavior, reproduction, and development, are critically analyzed, highlighting potential threats to biodiversity and ecological stability. Key knowledge gaps are identified, including the long-term impacts of chronic low-dose exposure, the role of bioactive metabolites, and the combined toxicity of antidepressants with other contaminants. The review underscores the importance of advanced wastewater treatment technologies, environmentally mindful prescribing practices, and public awareness campaigns as essential measures to mitigate these risks. By addressing these challenges, this study aims to inform future research and guide sustainable environmental management strategies.
Collapse
Affiliation(s)
- Yingying Liu
- College of Water Sciences, Beijing Normal University, Beijing 100875, China
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| | - Jiapei Lv
- College of Water Sciences, Beijing Normal University, Beijing 100875, China
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| | - Changsheng Guo
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| | - Xiaowei Jin
- China National Environmental Monitoring Centre, Beijing, 100012, China
| | - Depeng Zuo
- College of Water Sciences, Beijing Normal University, Beijing 100875, China
| | - Jian Xu
- College of Water Sciences, Beijing Normal University, Beijing 100875, China
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| |
Collapse
|
2
|
Miroglio R, Nugnes R, Zanetti L, Faimali M, Gambardella C. Environmental concentrations of fluoxetine antidepressant affect early development of sea urchin Paracentrotus lividus. MARINE ENVIRONMENTAL RESEARCH 2025; 207:107080. [PMID: 40090285 DOI: 10.1016/j.marenvres.2025.107080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 02/28/2025] [Accepted: 03/09/2025] [Indexed: 03/18/2025]
Abstract
Fluoxetine (FLX), one of the most widely prescribed selective serotonin reuptake inhibitors, is frequently detected in the aquatic environment. In this study we assessed the ecotoxicological effects of FLX on the early life-stages of the sea urchin Paracentrotus lividus, a key species in the Mediterranean Sea. Fertilization rate, developmental anomalies and behavioural alterations were evaluated up to 72 h by exposing gametes, zygotes, and embryos (gastrula) to environmental (0.001, 0.01 mg/L) and high concentrations (0.1, 1, 10 mg/L). Further, the different types and frequency of morphological anomalies at larval level were classified to estimate the Index of Contaminant Impact (ICI) at relevant and high concentrations. The ICI was applied to predict which FLX concentrations may pose a risk to sea urchins. Although FLX did not affect fertilization, significant skeletal anomalies and behavioural alterations were found in plutei from each exposed stage. Based on EC50 values, the sensitivity level ranks as follows: zygote > gastrula > sperm. The ICI values indicated high and moderate impacts only at high concentrations. However, a slight impact was also found in plutei from zygote exposure at relevant environmental concentrations, highlighting a potential risk for sea urchin early development. Considering increasing FLX consumption, we suggest to include this PC in monitoring plans, to not exceed levels that may impair and severely affect the early developmental stages of echinoderms. In addition, our findings promote the use of ICI as a novel tool for FLX impact assessment.
Collapse
Affiliation(s)
- Roberta Miroglio
- National Research Council, Institute of the Anthropic Impact and Sustainability in the marine environment (CNR-IAS), via de Marini 16, 16149, Genova, Italy.
| | - Roberta Nugnes
- National Research Council, Institute of the Anthropic Impact and Sustainability in the marine environment (CNR-IAS), via de Marini 16, 16149, Genova, Italy
| | - Lisa Zanetti
- National Research Council, Institute of the Anthropic Impact and Sustainability in the marine environment (CNR-IAS), via de Marini 16, 16149, Genova, Italy
| | - Marco Faimali
- National Research Council, Institute of the Anthropic Impact and Sustainability in the marine environment (CNR-IAS), via de Marini 16, 16149, Genova, Italy
| | - Chiara Gambardella
- National Research Council, Institute of the Anthropic Impact and Sustainability in the marine environment (CNR-IAS), via de Marini 16, 16149, Genova, Italy
| |
Collapse
|
3
|
Lu Y, Wang S, Shen Y. Theoretical insights of the pharmaceutical compound fluoxetine in water: Role in direct photolysis and indirect photolysis by free radicals. J Environ Sci (China) 2024; 142:269-278. [PMID: 38527892 DOI: 10.1016/j.jes.2023.07.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 07/03/2023] [Accepted: 07/18/2023] [Indexed: 03/27/2024]
Abstract
The frequent detection of pharmaceutical compounds in the environment has led to a growing awareness, which may pose a major threat to the aquatic environment. In this study, photodegradation (direct and indirect photolysis) of two different dissociation states of fluoxetine (FLU) was investigated in water, mainly including the determination of photolytic transition states and products, and the mechanisms of indirect photodegradation with ·OH, CO3*- and NO3*. The main direct photolysis pathways are defluorination and C-C bond cleavage. In addition, the indirect photodegradation of FLU in water is mainly through the reactions with ·OH and NO3*, and the photodegradation reaction with CO3*- is relatively difficult to occur in the water environment. Our results provide a theoretical basis for understanding the phototransformation process of FLU in the water environment and assessing its potential risk.
Collapse
Affiliation(s)
- Ying Lu
- School of Environmental Science and Engineering, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Se Wang
- School of Environmental Science and Engineering, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Nanjing University of Information Science and Technology, Nanjing 210044, China.
| | - Yifan Shen
- School of Environmental Science and Engineering, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Nanjing University of Information Science and Technology, Nanjing 210044, China
| |
Collapse
|
4
|
Li Z, Gaitan-Espitia JD. Temperature-dependent toxicity of fluoxetine alters the thermal plasticity of marine diatoms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 926:172146. [PMID: 38569963 DOI: 10.1016/j.scitotenv.2024.172146] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 03/15/2024] [Accepted: 03/30/2024] [Indexed: 04/05/2024]
Abstract
Anthropogenic activities have led to the emergence of pharmaceutical pollution in marine ecosystems, posing a significant threat to biodiversity in conjunction with global climate change. While the ecotoxicity of human drugs on aquatic organisms is increasingly recognized, their interactions with environmental factors, such as temperature, remain understudied. This research investigates the physiological effects of the selective serotonin reuptake inhibitor (SSRI), fluoxetine, on two diatom species, Phaeodactylum tricornutum and Thalassiosira weissflogii. Results demonstrate that fluoxetine significantly reduces growth rate and biomass production, concurrently affecting pigment contents and the thermal performance curve (TPC) of the diatoms. Fluoxetine reduces the synthesis of chlorophyll a (Chl a) and carotenoid (Car), indicating inhibition of photosynthesis and photoprotection. Furthermore, fluoxetine decreases the maximum growth rate (μmax) while increasing the optimum temperature (Topt) in both species, suggesting an altered thermal plasticity. This shift is attributed to the observed decrease in the inhibition rate of fluoxetine with rising temperatures. These findings emphasize the physiological impacts and ecological implications of fluoxetine on phytoplankton and underscore the significance of considering interactions between multiple environmental drivers when accessing the ecotoxicity of potential pollutants. The present study provides insights into crucial considerations for evaluating the impacts of pharmaceutical pollution on marine primary producers.
Collapse
Affiliation(s)
- Zhenzhen Li
- The SWIRE Institute of Marine Science and School of Biological Sciences, The University of Hong Kong, Hong Kong
| | - Juan Diego Gaitan-Espitia
- The SWIRE Institute of Marine Science and School of Biological Sciences, The University of Hong Kong, Hong Kong.
| |
Collapse
|
5
|
Fung CW, Chau KY, Tong DCS, Knox C, Tam SST, Tan SY, Loi DSC, Leung Z, Xu Y, Lan Y, Qian PY, Chan KYK, Wu AR. Parentage influence on gene expression under acidification revealed through single-embryo sequencing. Mol Ecol 2023; 32:6796-6808. [PMID: 37888909 DOI: 10.1111/mec.17148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 09/06/2023] [Accepted: 09/18/2023] [Indexed: 10/28/2023]
Abstract
The dissolution of anthropogenic carbon dioxide (CO2 ) in seawater has altered its carbonate chemistry in the process of ocean acidification (OA). OA affects the viability of marine species. In particular, calcifying organisms and their early planktonic larval stages are considered vulnerable. These organisms often utilize energy reserves for metabolism rather than growth and calcification as supported by bulk RNA-sequencing (RNA-seq) experiments. Yet, transcriptomic profiling of a bulk sample reflects the average gene expression of the population, neglecting the variations between individuals, which forms the basis for natural selection. Here, we used single-embryo RNA-seq on larval sea urchin Heliocidaris crassispina, which is a commercially and ecologically valuable species in East Asia, to document gene expression changes to OA at an individual and family level. Three paternal half-sibs groups were fertilized and exposed to 3 pH conditions (ambient pH 8.0, 7.7 and 7.4) for 12 h prior to sequencing and oxygen consumption assay. The resulting transcriptomic profile of all embryos can be distinguished into four clusters, with differences in gene expressions that govern biomineralization, cell differentiation and patterning, as well as metabolism. While these responses were influenced by pH conditions, the male identities also had an effect. Specifically, a regression model and goodness of fit tests indicated a significant interaction between sire and pH on the probability of embryo membership in different clusters of gene expression. The single-embryo RNA-seq approach is promising in climate stressor research because not only does it highlight potential impacts before phenotypic changes were observed, but it also highlights variations between individuals and lineages, thus enabling a better determination of evolutionary potential.
Collapse
Affiliation(s)
- Cheuk Wang Fung
- Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Kin Yung Chau
- Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Daniel Chun Sang Tong
- Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Claire Knox
- Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Sindy Sing Ting Tam
- Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Sin Yen Tan
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Danson Shek Chun Loi
- Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Ziuwin Leung
- Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Ying Xu
- Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Yi Lan
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
- Department of Ocean Science, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Pei-Yuan Qian
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
- Department of Ocean Science, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Kit Yu Karen Chan
- Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong SAR, China
- Biology Department, Swarthmore College, Swarthmore, Pennsylvania, USA
| | - Angela Ruohao Wu
- Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong SAR, China
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Hong Kong SAR, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
- Center for Aging Science, The Hong Kong University of Science and Technology, Hong Kong SAR, China
- State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| |
Collapse
|
6
|
Bethke K, Kropidłowska K, Stepnowski P, Caban M. Review of warming and acidification effects to the ecotoxicity of pharmaceuticals on aquatic organisms in the era of climate change. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 877:162829. [PMID: 36924950 DOI: 10.1016/j.scitotenv.2023.162829] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 02/17/2023] [Accepted: 03/09/2023] [Indexed: 05/06/2023]
Abstract
An increase in the temperature and the acidification of the aquatic environment are among the many consequences of global warming. Climate change can also negatively affect aquatic organisms indirectly, by altering the toxicity of pollutants. Models of climate change impacts on the distribution, fate and ecotoxicity of persistent pollutants are now available. For pharmaceuticals, however, as new environmental pollutants, there are no predictions on this issue. Therefore, this paper organizes the existing knowledge on the effects of temperature, pH and both stressors combined on the toxicity of pharmaceuticals on aquatic organisms. Besides lethal toxicity, the molecular, physiological and behavioral biomarkers of sub-lethal stress were also assessed. Both acute and chronic toxicity, as well as bioaccumulation, were found to be affected. The direction and magnitude of these changes depend on the specific pharmaceutical, as well as the organism and conditions involved. Unfortunately, the response of organisms was enhanced by combined stressors. We compare the findings with those known for persistent organic pollutants, for which the pH has a relatively low effect on toxicity. The acid-base constant of molecules, as assumed, have an effect on the toxicity change with pH modulation. Studies with bivalves have been were overrepresented, while too little attention was paid to producers. Furthermore, the limited number of pharmaceuticals have been tested, and metabolites skipped altogether. Generally, the effects of warming and acidification were rather indicated than explored, and much more attention needs to be given to the ecotoxicology of pharmaceuticals in climate change conditions.
Collapse
Affiliation(s)
- Katarzyna Bethke
- University of Gdansk, Faculty of Chemistry, Department of Environmental Analysis, ul. Wita Stwosza 63, 80-308 Gdańsk, Poland
| | - Klaudia Kropidłowska
- University of Gdansk, Faculty of Chemistry, Department of Environmental Analysis, ul. Wita Stwosza 63, 80-308 Gdańsk, Poland
| | - Piotr Stepnowski
- University of Gdansk, Faculty of Chemistry, Department of Environmental Analysis, ul. Wita Stwosza 63, 80-308 Gdańsk, Poland
| | - Magda Caban
- University of Gdansk, Faculty of Chemistry, Department of Environmental Analysis, ul. Wita Stwosza 63, 80-308 Gdańsk, Poland.
| |
Collapse
|
7
|
Diaz-Camal N, Cardoso-Vera JD, Islas-Flores H, Gómez-Oliván LM, Mejía-García A. Consumption and ocurrence of antidepressants (SSRIs) in pre- and post-COVID-19 pandemic, their environmental impact and innovative removal methods: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 829:154656. [PMID: 35318057 DOI: 10.1016/j.scitotenv.2022.154656] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 03/14/2022] [Accepted: 03/14/2022] [Indexed: 06/14/2023]
Abstract
Selective serotonin reuptake inhibitors (SSRIs) are pharmaceuticals whose consumption has increased significantly. They are prescribed as first-line treatment in mental disorders such as depression, obsessive-compulsive disorder, phobias, and anxiety; also, they are indicated as adjuvants in diseases such as fibromyalgia and bulimia nervosa. In addition to being linked to the illegal market to be consumed as recreational drugs. The relevance of this review lies in the fact that worldwide consumption has increased significantly during the COVID-19 pandemic, due to the depression and anxiety that originated in the population. As a consequence of this increase in consumption, concentrations of SSRIs in the environment have increased, and these have become a relevant issue for toxicologists due to the effects that they could generate in different organisms, both aquatic and terrestrial. For this reason, the objective of this article was to do a critical evaluation of the existing data on the characteristics and physicochemical properties of SSRIs, consumption data during the COVID-19 pandemic, its occurrence in the environment and the reports of toxic effects that have been generated in different organisms; we also conclude with an updated review of different methods that have been used for their removal. With this analysis, it can be concluded that, despite SSRIs are pharmaceutical products widely studied since their launching to the market, still currently under investigation to clarify their mechanisms of action to understand the different effects on the organisms, adverse reactions, as well as possible toxicological effects on non-target organisms. On the other hand, it has been proven that although it is already possible to eliminate a significant percentage of SSRIs in the laboratory, due to their physicochemical characteristics and their behavior in complex mixtures in the environment, they have not yet been eradicated, showing a persistence in the soil, subsoil and surface waters of the entire planet that may represent a future risk.
Collapse
Affiliation(s)
- Nidya Diaz-Camal
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón intersección Paseo Tollocan s/n, Col. Residencial Colón, 50120 Toluca, Estado de México, Mexico
| | - Jesús Daniel Cardoso-Vera
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón intersección Paseo Tollocan s/n, Col. Residencial Colón, 50120 Toluca, Estado de México, Mexico
| | - Hariz Islas-Flores
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón intersección Paseo Tollocan s/n, Col. Residencial Colón, 50120 Toluca, Estado de México, Mexico.
| | - Leobardo Manuel Gómez-Oliván
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón intersección Paseo Tollocan s/n, Col. Residencial Colón, 50120 Toluca, Estado de México, Mexico
| | - Alejandro Mejía-García
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón intersección Paseo Tollocan s/n, Col. Residencial Colón, 50120 Toluca, Estado de México, Mexico
| |
Collapse
|
8
|
Almeida Â, Calisto V, Esteves VI, Schneider RJ, Soares AMVM, Freitas R. Responses of Ruditapes philippinarum to contamination by pharmaceutical drugs under ocean acidification scenario. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 824:153591. [PMID: 35122849 DOI: 10.1016/j.scitotenv.2022.153591] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 12/20/2021] [Accepted: 01/28/2022] [Indexed: 06/14/2023]
Abstract
In coastal systems, organisms are exposed to a multitude of stressors whose interactions and effects are poorly studied. Pharmaceutical drugs and Climate Change consequences, such as lowered pH, are examples of stressors affecting marine organisms, as bivalves. Although a vast literature is available for the effects of these stressors when acting individually, very limited information exists on the impacts that the combination of both can have on marine bivalves. For this reason, this study aimed to evaluate the impacts of a simulated ocean acidification scenario (control pH, 8.0; lowered pH, pH 7.6) on the effects of the antiepileptic carbamazepine (CBZ, 1 μg/L) and the antihistamine cetirizine (CTZ, 0.6 μg/L), when acting individually and combined (CBZ + CTZ), on the edible clam Ruditapes philippinarum. After 28 days of exposure, drug concentrations, bioconcentration factors and biochemical parameters related to the clams' metabolic capacity and oxidative stress were evaluated. The results showed that R. philippinarum clams responded differently to pharmaceutical drugs depending on the pH tested, influencing both bioconcentration and biological responses. In general, drug combined treatments showed fewer impacts than drugs acting alone, and acidification seemed to activate at a higher extension the elimination processes that were not activated under control pH. Also, lowered pH per se exerted negative impacts (e.g., cellular damage) on R. philippinarum and the combination with pharmaceutical drugs did not enhance the toxicity.
Collapse
Affiliation(s)
- Ângela Almeida
- Biology Department & CESAM, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Vânia Calisto
- Chemistry Department & CESAM, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Valdemar I Esteves
- Chemistry Department & CESAM, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Rudolf J Schneider
- BAM Federal Institute for Materials Research and Testing, Richard-Willstaetter -Str. 11, D-12489 Berlin, Germany
| | | | - Rosa Freitas
- Biology Department & CESAM, University of Aveiro, 3810-193 Aveiro, Portugal.
| |
Collapse
|