1
|
García-Garcinuño R, Marcé RM, Vallecillos L, Borrull F. Passive sampling of high production volume chemicals and polycyclic aromatic hydrocarbons in urban atmospheres near petrochemical sites: Uptake rate determination and application. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 361:124697. [PMID: 39122175 DOI: 10.1016/j.envpol.2024.124697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 07/22/2024] [Accepted: 08/06/2024] [Indexed: 08/12/2024]
Abstract
This study describes the use of passive sampling followed by pressurised liquid extraction and gas chromatography-mass spectrometry for monitoring high production volume chemicals (HPVCs), such as benzothiazoles, benzesulfonamides, phthalate esters (PAEs), organophosphate esters, ultraviolet stabilizers, and phenolic antioxidants and polycyclic aromatic hydrocarbons (PAHs) in urban atmospheres close to a petrochemical area. To obtain accurate results when applying passive sampling, the uptake rates of each target compound for the sampling time applied must be known. Firstly, passive sampling was calibrated for two months and uptake rates of HPVCs and PAHs in an urban atmosphere determined using active sampling as the reference method. The obtained results showed experimental diffusive uptake rates between 1.6 m3 day-1 and 27 m3 day-1 for 32 of the target compounds that will allow enable cost-effective long-term monitoring campaigns of HPVCs to be performed. Secondly, the experimentally obtained uptake rates were used to monitor the concentrations of HPVCs and PAHs at six urban sampling sites close to the two petrochemicals parks in Tarragona (Spain) during a period the two months. Regardless of the sampling campaign, PAEs and PAHs were the families of compounds found at the highest concentration levels, with a sum of their mean values of 23 ng m-3 and 20 ng m-3, respectively.
Collapse
Affiliation(s)
- Reyes García-Garcinuño
- Universitat Rovira i Virgili, Department of Analytical Chemistry and Organic Chemistry, Campus Sescelades, Marcel·lí Domingo, 1, Tarragona, 43007, Spain
| | - Rosa Maria Marcé
- Universitat Rovira i Virgili, Department of Analytical Chemistry and Organic Chemistry, Campus Sescelades, Marcel·lí Domingo, 1, Tarragona, 43007, Spain
| | - Laura Vallecillos
- Universitat Rovira i Virgili, Department of Analytical Chemistry and Organic Chemistry, Campus Sescelades, Marcel·lí Domingo, 1, Tarragona, 43007, Spain.
| | - Francesc Borrull
- Universitat Rovira i Virgili, Department of Analytical Chemistry and Organic Chemistry, Campus Sescelades, Marcel·lí Domingo, 1, Tarragona, 43007, Spain
| |
Collapse
|
2
|
Aretaki MA, Desmet J, Viana M, van Drooge BL. Comprehensive methodology for semi-volatile organic compound determination in ambient air with emphasis on polycyclic aromatic hydrocarbons analysis by GC-MS/MS. J Chromatogr A 2024; 1730:465086. [PMID: 38941797 DOI: 10.1016/j.chroma.2024.465086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/24/2024] [Accepted: 06/11/2024] [Indexed: 06/30/2024]
Abstract
Polycyclic aromatic hydrocarbons are air pollutants that affect the human health and the environment, and their accurate determination in outdoor and indoor environments is important. This study presents a methodology for sampling and analysis of semi-volatile compounds in ambient air with emphasis on the polycyclic aromatic hydrocarbons, collected with low-volume pumps (4.8 m3) in unconditioned solid phase extraction cartridges (Isolute ENV+). Sampling in SPE cartridges with low-volume pumps allows the collection of both gas and particulate phase compounds in indoor as well as outdoor environments, and reduces the number of extraction steps required as well as the solvent volume used for extraction. Analysis of the 16 US-EPA priority PAHs after extraction was conducted by GC-MS/MS with recoveries of the PAHs 40-118 %. No breakthrough was detected during sampling. Moreover, the methodology includes storage test to assess the conservation of PAHs in the SPE cartridges in heat-sealable Kapac bags; simulating transport from sampling sites to laboratory, and storage under room, cold and frozen conditions at different time-intervals, up to 3 months after sampling. The results showed that concentration levels remained constant across various storage time intervals and temperatures, with naphthalene and acenaphthylene being the only exceptions, showing high blank levels for the first and losses at room temperature for the later. The method quantification limits, including sampling, storage and GC-MS/MS analysis ranged from 2000 pg m-3 for naphthalene and 300 pg m-3 for phenanthrene to less than 20.0 pg m-3 for higher molecular and less volatile PAHs, such as benzo[a]pyrene (LOQ = 8.0 pg m-3). The feasibility of the method was tested by sampling indoors under urban background air conditions, showing individual PAH concentrations 4 to 10 times higher than their method quantification limits.
Collapse
Affiliation(s)
- Maria A Aretaki
- Institute for Environmental Assessment and Water Research (IDÆA-CSIC), Jordi Girona, 18, Barcelona, 08034, Spain; Department of Analytical Chemistry and the Environment, PhD program of University of Barcelona (UB), Martí I Franqués 1-11, Barcelona, 08028, Spain
| | - Judith Desmet
- Institute for Environmental Assessment and Water Research (IDÆA-CSIC), Jordi Girona, 18, Barcelona, 08034, Spain; Department of Analytical Chemistry and the Environment, PhD program of University of Barcelona (UB), Martí I Franqués 1-11, Barcelona, 08028, Spain
| | - Mar Viana
- Institute for Environmental Assessment and Water Research (IDÆA-CSIC), Jordi Girona, 18, Barcelona, 08034, Spain
| | - Barend L van Drooge
- Institute for Environmental Assessment and Water Research (IDÆA-CSIC), Jordi Girona, 18, Barcelona, 08034, Spain.
| |
Collapse
|
3
|
An T, Li Y, Wang R, Jing S, Gao Y, Liu S, Huang D, Zhou M, Dai H, Huang C, Lu J, Wang H, Fu Q. Characteristics of typical intermediate and semi volatile organic compounds in Shanghai during China International Import Expo event. CHEMOSPHERE 2024; 355:141779. [PMID: 38537709 DOI: 10.1016/j.chemosphere.2024.141779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 03/16/2024] [Accepted: 03/22/2024] [Indexed: 04/01/2024]
Abstract
To ensure good air quality during the China International Import Expo (CIIE) event, stringent emission-reduction measures were implemented in Shanghai. To assess the efficacy of these measures, this study measured typical categories of intermediate/semi volatile organic compounds (I/SVOCs), including alkanes (C10-C26 n-alkanes and pristane), EPA-priority polycyclic aromatic hydrocarbons (PAHs), alkylnaphthalenes, benzothiazole (BTH) and chlorobenzenes (CBs), at an urban site of Shanghai before and during two CIIE events (2019 and 2020; non-CIIE versus CIIE). The average concentrations of alkanes and PAHs during both 2019 and 2020 CIIE events decreased by approximately 41% and 17%, respectively, compared to non-CIIE periods. However, the decline in BTH and CBs was only observed during CIIE-2019. Secondary organic aerosol (SOA) formation from alkanes, PAHs and BTH was evaluated under atmospheric conditions, revealing considerable SOA contributions from dimethylnaphthalenes and BTH. Positive matrix factorization (PMF) analysis further revealed that life-related sources, such as cooking and residential emissions, make a noticeable contribution (21.6%) in addition to the commonly concerned gasoline-vehicle sources (31.5%), diesel-related emissions (20.8%), industrial emissions (18.6%) and ship emissions (7.5%). These findings provide valuable insights into the efficacy of the implemented measures in reducing atmospheric I/SVOCs levels. Moreover, our results highlight the significance of exploring additional individual species of I/SVOCs and life-related sources for further research and policy development.
Collapse
Affiliation(s)
- Taikui An
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, China; State Environmental Protection Key Laboratory of Formation and Prevention of Urban Air Pollution Complex, Shanghai Academy of Environmental Sciences, Shanghai 200233, China
| | - Yingjie Li
- State Environmental Protection Key Laboratory of Formation and Prevention of Urban Air Pollution Complex, Shanghai Academy of Environmental Sciences, Shanghai 200233, China.
| | - Rui Wang
- State Environmental Protection Key Laboratory of Formation and Prevention of Urban Air Pollution Complex, Shanghai Academy of Environmental Sciences, Shanghai 200233, China
| | - Sheng'ao Jing
- State Environmental Protection Key Laboratory of Formation and Prevention of Urban Air Pollution Complex, Shanghai Academy of Environmental Sciences, Shanghai 200233, China
| | - Yaqin Gao
- State Environmental Protection Key Laboratory of Formation and Prevention of Urban Air Pollution Complex, Shanghai Academy of Environmental Sciences, Shanghai 200233, China; Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Shuyu Liu
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, China.
| | - Dandan Huang
- State Environmental Protection Key Laboratory of Formation and Prevention of Urban Air Pollution Complex, Shanghai Academy of Environmental Sciences, Shanghai 200233, China
| | - Min Zhou
- State Environmental Protection Key Laboratory of Formation and Prevention of Urban Air Pollution Complex, Shanghai Academy of Environmental Sciences, Shanghai 200233, China
| | - Haixia Dai
- State Environmental Protection Key Laboratory of Formation and Prevention of Urban Air Pollution Complex, Shanghai Academy of Environmental Sciences, Shanghai 200233, China
| | - Cheng Huang
- State Environmental Protection Key Laboratory of Formation and Prevention of Urban Air Pollution Complex, Shanghai Academy of Environmental Sciences, Shanghai 200233, China
| | - Jun Lu
- State Environmental Protection Key Laboratory of Formation and Prevention of Urban Air Pollution Complex, Shanghai Academy of Environmental Sciences, Shanghai 200233, China
| | - Hongli Wang
- State Environmental Protection Key Laboratory of Formation and Prevention of Urban Air Pollution Complex, Shanghai Academy of Environmental Sciences, Shanghai 200233, China
| | - Qingyan Fu
- State Environmental Protection Key Laboratory of Formation and Prevention of Urban Air Pollution Complex, Shanghai Academy of Environmental Sciences, Shanghai 200233, China
| |
Collapse
|
4
|
García-Garcinuño R, Vallecillos L, Marcé RM, Borrull F. Occurrence of high production volume chemicals and polycyclic aromatic hydrocarbons in urban sites close to industrial areas. Human exposure and risk assessment. CHEMOSPHERE 2024; 351:141167. [PMID: 38218240 DOI: 10.1016/j.chemosphere.2024.141167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 01/05/2024] [Accepted: 01/08/2024] [Indexed: 01/15/2024]
Abstract
Evaluating the occurrence of high production volume chemicals (HPVCs) and polycyclic aromatic hydrocarbons (PAHs) in the air is important because they carry a carcinogenic risk and can lead to respiratory or endocrine problems. Examples of HPVCs are organophosphate esters, benzosulfonamides, benzothiazoles, phthalate esters (PAEs), phenolic antioxidants and ultraviolet stabilizers. In this paper we develop a multi-residue method for determining HPVCs and PAHs in air samples via pressurized liquid extraction followed by gas chromatography-mass spectrometry. Air samples were collected by active sampling with high volume samplers using quartz fiber filter for the particulate matter (PM10) and polyurethane foams for gas phase. The compounds found at the highest concentrations were PAEs, with a concentration of up to 24 ng m-3 of DEHP in gas phase and up to 109 ng m-3 of DEHA in PM10. Non-carcinogenic risk assessment results ranged from 9.7E-05 to 9.5E-03 for most of the compounds studied. On the other hand, the results for carcinogenic risk showed that PAHs made the highest contribution.
Collapse
Affiliation(s)
- Reyes García-Garcinuño
- Universitat Rovira I Virgili, Department of Analytical Chemistry and Organic Chemistry, Campus Sescelades, Marcel·lí Domingo, 1, Tarragona, 43007, Spain
| | - Laura Vallecillos
- Universitat Rovira I Virgili, Department of Analytical Chemistry and Organic Chemistry, Campus Sescelades, Marcel·lí Domingo, 1, Tarragona, 43007, Spain
| | - Rosa Maria Marcé
- Universitat Rovira I Virgili, Department of Analytical Chemistry and Organic Chemistry, Campus Sescelades, Marcel·lí Domingo, 1, Tarragona, 43007, Spain.
| | - Francesc Borrull
- Universitat Rovira I Virgili, Department of Analytical Chemistry and Organic Chemistry, Campus Sescelades, Marcel·lí Domingo, 1, Tarragona, 43007, Spain
| |
Collapse
|
5
|
Keshavarz MH, Shirazi Z, Jafari M, Jannesari F. The use of simple structural parameters of organic compounds to assess their PUF-air partition coefficients. CHEMOSPHERE 2024; 349:140855. [PMID: 38048827 DOI: 10.1016/j.chemosphere.2023.140855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 11/24/2023] [Accepted: 11/28/2023] [Indexed: 12/06/2023]
Abstract
A novel approach is introduced for the reliable prediction of PUF-air partition coefficients of organic compounds, which can determine the environmental fate of organic compounds during interactions with air, soil, and water. The biggest accessible measured data of PUF-air partition coefficients for 170 chemicals are used to develop and test the novel model. In comparison to available quantitative structure-property relationship (QSPR) methods for the prediction of PUF-air partition coefficients that need complex descriptors, the here used descriptors are simpler. The assessed various statistical factors of the simple method containing 147 (training) and 23 (test) organic compounds can verify the external and internal cross-validations. Various statistical parameters confirm the high reliability of the novel model as compared with the outputs of complex multiple linear regression (MLR), artificial neural network (ANN) and support vector machine (SVM) methods. The values of R-squared (R2), and root mean square error (RMSE) of the new model are for training/test sets are 0.924/0.894 and 0.374/0.318, respectively. Meanwhile, R2 and RMSE values for three comparative models training/test sets are (i) MLR: 0.848/0.670 (R2) and 0.531/0.573 (RMSE); (ii) ANN: 0.902/0.664 (R2) and 0.425/0.560 (RMSE); (iii) SVM: 0.935/0.794 (R2) and 0.351/0.419 (RMSE). Thus, the new model the simplest approach with higher reliability in comparison to the best available methods.
Collapse
Affiliation(s)
| | - Zeinab Shirazi
- Faculty of Applied Sciences, Malek Ashtar University of Technology, Iran
| | - Mohammad Jafari
- Faculty of Applied Sciences, Malek Ashtar University of Technology, Iran
| | | |
Collapse
|
6
|
Jaén C, Titos G, Castillo S, Casans A, Rejano F, Cazorla A, Herrero J, Alados-Arboledas L, Grimalt JO, van Drooge BL. Diurnal source apportionment of organic and inorganic atmospheric particulate matter at a high-altitude mountain site under summer conditions (Sierra Nevada; Spain). THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:167178. [PMID: 37730028 DOI: 10.1016/j.scitotenv.2023.167178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 09/08/2023] [Accepted: 09/16/2023] [Indexed: 09/22/2023]
Abstract
High-altitude mountain areas are sentinel ecosystems for global environmental changes such as anthropogenic pollution. In this study, we report a source apportionment of particulate material with an aerodynamic diameter smaller than 10 μm (PM10) in a high-altitude site in southern Europe (Sierra Nevada Station; SNS (2500 m a.s.l.)) during summer 2021. The emission sources and atmospheric secondary processes that determine the composition of aerosol particles in Sierra Nevada National Park (Spain) are identified from the concentrations of organic carbon (OC), elemental carbon (EC), 12 major inorganic compounds, 18 trace elements and 44 organic molecular tracer compounds in PM10 filter samples collected during day- and nighttime. The multivariate analysis of the joint dataset resolved five main PM10 sources: 1) Saharan dust, 2) advection from the urbanized valley, 3) local combustion, 4) smoke from a fire-event, and 5) aerosol from regional recirculation with high contribution of particles from secondary inorganic and organic aerosol formation processes. PM sources were clearly associated with synoptic meteorological conditions, and day- and nighttime circulation patterns typical of mountainous areas. Although a local pollution source was identified, the contribution of this source to PM10, OC and EC was small. Our results evidence the strong influence of middle- and long-range transport of aerosols, mainly from anthropogenic origin, on the aerosol chemical composition at this remote site.
Collapse
Affiliation(s)
- Clara Jaén
- Institute of Environmental Assessment and Water Research (IDAEA-CSIC), c/Jordi Girona 18-26, 08034 Barcelona, Spain
| | - Gloria Titos
- Andalusian Institute for Earth System Research (IISTA), University of Granada, Avenida del Mediterráneo sn, 18071 Granada, Spain; Department of Applied Physics, Sciences Faculty, University of Granada, Avenida Fuentenueva sn, 18071 Granada, Spain
| | - Sonia Castillo
- Andalusian Institute for Earth System Research (IISTA), University of Granada, Avenida del Mediterráneo sn, 18071 Granada, Spain; Department of Applied Physics, Sciences Faculty, University of Granada, Avenida Fuentenueva sn, 18071 Granada, Spain
| | - Andrea Casans
- Andalusian Institute for Earth System Research (IISTA), University of Granada, Avenida del Mediterráneo sn, 18071 Granada, Spain; Department of Applied Physics, Sciences Faculty, University of Granada, Avenida Fuentenueva sn, 18071 Granada, Spain
| | - Fernando Rejano
- Andalusian Institute for Earth System Research (IISTA), University of Granada, Avenida del Mediterráneo sn, 18071 Granada, Spain; Department of Applied Physics, Sciences Faculty, University of Granada, Avenida Fuentenueva sn, 18071 Granada, Spain
| | - Alberto Cazorla
- Andalusian Institute for Earth System Research (IISTA), University of Granada, Avenida del Mediterráneo sn, 18071 Granada, Spain; Department of Applied Physics, Sciences Faculty, University of Granada, Avenida Fuentenueva sn, 18071 Granada, Spain
| | - Javier Herrero
- Andalusian Institute for Earth System Research (IISTA), University of Granada, Avenida del Mediterráneo sn, 18071 Granada, Spain; Department of Applied Physics, Sciences Faculty, University of Granada, Avenida Fuentenueva sn, 18071 Granada, Spain
| | - Lucas Alados-Arboledas
- Andalusian Institute for Earth System Research (IISTA), University of Granada, Avenida del Mediterráneo sn, 18071 Granada, Spain; Department of Applied Physics, Sciences Faculty, University of Granada, Avenida Fuentenueva sn, 18071 Granada, Spain
| | - Joan O Grimalt
- Institute of Environmental Assessment and Water Research (IDAEA-CSIC), c/Jordi Girona 18-26, 08034 Barcelona, Spain
| | - Barend L van Drooge
- Institute of Environmental Assessment and Water Research (IDAEA-CSIC), c/Jordi Girona 18-26, 08034 Barcelona, Spain.
| |
Collapse
|
7
|
Moran IL, Tidwell L, Barton M, Kile M, Miller P, Rohlman D, Seguinot-Medina S, Ungwiluk B, Waghiyi V, Anderson K. Diffusive fluxes of persistent organic pollutants between Arctic atmosphere, surface waters and sediments. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 892:164566. [PMID: 37270011 PMCID: PMC10330832 DOI: 10.1016/j.scitotenv.2023.164566] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 05/06/2023] [Accepted: 05/28/2023] [Indexed: 06/05/2023]
Abstract
Arctic communities are disproportionately exposed to pollutants from sources including global atmospheric transport and formerly used defense sites (FUDS). The effects of climate change and increasing development in the Arctic have the potential to exacerbate this problem. Yupik People of Sivuqaq, or St Lawrence Island, Alaska are one such community with documented exposures to pollutants from FUDS, and their traditional lipid-rich foods such as blubber and rendered oils of marine mammals. Troutman Lake, adjacent to the Yupik community of Gambell, Alaska, was used as a disposal site during the decommission of the adjacent FUDS, leading to community concern about exposure to military pollution and intrusion from historic local dump sites. In collaboration with a local community group, this study utilized passive sampling devices deployed in Troutman Lake. Air, water and sediment deployed samplers were analyzed for unsubstituted and alkylated polycyclic aromatic hydrocarbons (PAHs), brominated and organophosphate flame retardants and polychlorinated biphenyls (PCBs). PAH concentrations were low and comparable to other remote/rural locations. PAHs were generally in deposition from the overlying atmosphere into Troutman Lake. Of the flame retardants, brominated diphenyl ether-47 was detected in all surface water samplers while triphenyl phosphate was detected in all environmental compartments. Both were at concentrations equivalent or lower than other remote locations. Of particular interest, we measured higher atmospheric concentrations of tris(2-chloroethyl) phosphate (TCEP) (0.75-2.8 ng/m3) than previously reported in the literature for remote Arctic sites (<0.017-0.56 ng/m3). TCEP was found to be in deposition to Troutman Lake at magnitudes from 290 to 1300 ng/m2/day. No PCBs were detected in this study. Our findings demonstrate the relevance of both modern and legacy chemicals from local and global sources. These results help us to understand the fate of anthropogenic contaminants in dynamic Arctic systems providing valuable data for communities, policy makers and scientists.
Collapse
Affiliation(s)
- Ian L Moran
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR, USA
| | - Lane Tidwell
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR, USA
| | - Michael Barton
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR, USA
| | - Molly Kile
- College of Public Health and Human Sciences, Oregon State University, Corvallis, OR, USA
| | - Pamela Miller
- Alaska Community Action on Toxics, Anchorage, AK, USA
| | - Diana Rohlman
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR, USA; College of Public Health and Human Sciences, Oregon State University, Corvallis, OR, USA
| | | | | | - Vi Waghiyi
- Alaska Community Action on Toxics, Anchorage, AK, USA
| | - Kim Anderson
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR, USA.
| |
Collapse
|
8
|
Zeng X, Hu Q, Zhang J, Song Q, Xu L, Liang Y, Wu Y, Yu Z. Regional Distribution of Atmospheric Organophosphate Tri-/Diesters in the Pearl River Delta: Possible Emission, Photo-degradation, and Atmospheric Transportation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:4415-4423. [PMID: 36883959 DOI: 10.1021/acs.est.2c06735] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The regional characteristics of atmospheric organophosphate triesters (OPEs) and organophosphate diesters (Di-OPs) in the Pearl River Delta (PRD) were investigated by passive air samplers mounting quartz fiber filters. The analytes were found on a regional scale. Atmospheric OPEs, semi-quantified using sampling rates of particulate-bonded PAHs, were in the range of 537-2852 pg/m3 in spring and in the range of 106-2055 pg/m3 in summer, with tris(2-chloroethyl)phosphate (TCEP) and tris(2-chloroisopropyl)phosphate as the main components. While atmospheric Di-OPs were semi-quantified using sampling rates of SO42-, in the range of 22.5-5576 pg/m3 in spring and in the range of 66.9-1019 pg/m3 in summer, with di-n-butyl phosphate and diphenyl phosphate (DPHP) being the main Di-OPs. Our results indicated that OPEs were mainly distributed in the central part of the region, which might be ascribed to the distribution of industry related to OPE-containing products. In contrast, Di-OPs were scattered in the PRD, suggesting local emission from their direct industrial application. Significantly lower levels of TCEP, triphenyl phosphate (TPHP), and DPHP were detected in summer than in spring, implying that these compounds might be partitioned off particles as the temperature increased and due to possible photo-transformation of TPHP and DPHP. The results also suggested the long-distance atmospheric transportation potential of Di-OPs.
Collapse
Affiliation(s)
- Xiangying Zeng
- State Key Laboratory of Organic Geochemistry, Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
- CAS Center for Excellence in Deep Earth Science, Guangzhou 510640, China
| | - Qiongpu Hu
- State Key Laboratory of Organic Geochemistry, Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jiawen Zhang
- State Key Laboratory of Organic Geochemistry, Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
- CAS Center for Excellence in Deep Earth Science, Guangzhou 510640, China
| | - Qian Song
- State Key Laboratory of Organic Geochemistry, Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
- CAS Center for Excellence in Deep Earth Science, Guangzhou 510640, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Liang Xu
- State Key Laboratory of Organic Geochemistry, Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
- Jiangxi Academy of Eco-environmental Sciences and Planning, Nanchang 330029, China
| | - Yi Liang
- State Key Laboratory of Organic Geochemistry, Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
- CAS Center for Excellence in Deep Earth Science, Guangzhou 510640, China
| | - Yang Wu
- State Key Laboratory of Organic Geochemistry, Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
- CAS Center for Excellence in Deep Earth Science, Guangzhou 510640, China
| | - Zhiqiang Yu
- State Key Laboratory of Organic Geochemistry, Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
- CAS Center for Excellence in Deep Earth Science, Guangzhou 510640, China
| |
Collapse
|
9
|
Prats RM, van Drooge BL, Fernández P, Grimalt JO. Passive water sampling and air-water diffusive exchange of long-range transported semi-volatile organic pollutants in high-mountain lakes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 860:160509. [PMID: 36436648 DOI: 10.1016/j.scitotenv.2022.160509] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 10/20/2022] [Accepted: 11/22/2022] [Indexed: 06/16/2023]
Abstract
The concentrations of legacy and currently emitted organic pollutants were determined in the freely dissolved phase of water from six high-mountain lakes in the Pyrenees (1619-2453 m) by passive water sampling. Low-density polyethylene (LDPE) and silicone rubber (SR) sheets were exposed for three consecutive periods lasting each one year between 2017 and 2020 for the study of polychlorinated biphenyls (PCBs), organophosphate esters (OPEs), polycyclic aromatic hydrocarbons (PAHs), and other organochlorine compounds (e.g., hexachlorobenzene, HCB). HCB concentrations (1.0-14 pg L-1) remained essentially the same as those measured with pumping systems over two decades ago in the same area. ƩPAHs (35-920 pg L-1) were around half of those observed in the past, which agrees with reductions in European atmospheric emissions. ƩPCB concentrations (1.2-2.2 pg L-1) were substantially lower, although unexpectedly large differences could be due to comparing yearly averages from the present study to seasonally variable (i.e., affected by snowmelt, stratification, and colloidal organic matter) episodic pumping measurements from previous studies. ƩOPEs (139-2849 pg L-1) were measured for the first time in this area and were found at high concentrations in some sites. Concentrations of most compounds obtained with LDPE and SR samplers agreed with each other by ratios generally lower than three or four times, except for a few PAHs and OPEs. Diffusive exchange flux calculations between the atmospheric gas phase and the freely dissolved water phase revealed net deposition of pollutants from air to water, except for some OPEs and PCBs presenting equilibrium conditions, and HCB with volatilization fluxes. Atmospheric degradation fluxes of PAHs and OPEs pointed at competing removal mechanisms that support the air-to-water direction of their diffusive exchange, while PCBs and organochlorines were not affected by photodegradation. In their current state, these remote lakes accumulate many emerging and legacy pollutants subject to long-range atmospheric transport.
Collapse
Affiliation(s)
- Raimon M Prats
- Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Jordi Girona 18, 08034 Barcelona, Catalonia, Spain.
| | - Barend L van Drooge
- Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Jordi Girona 18, 08034 Barcelona, Catalonia, Spain
| | - Pilar Fernández
- Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Jordi Girona 18, 08034 Barcelona, Catalonia, Spain
| | - Joan O Grimalt
- Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Jordi Girona 18, 08034 Barcelona, Catalonia, Spain
| |
Collapse
|
10
|
Avila BS, Mendoza DP, Ramírez A, Peñuela GA. Occurrence and distribution of persistent organic pollutants (POPs) in the atmosphere of the Andean city of Medellin, Colombia. CHEMOSPHERE 2022; 307:135648. [PMID: 35839990 DOI: 10.1016/j.chemosphere.2022.135648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 06/30/2022] [Accepted: 07/05/2022] [Indexed: 06/15/2023]
Abstract
Passive air sampling (PAS) was used to evaluate organochlorine pesticides, polychlorinated biphenyls, polybrominated diphenyl ethers, polybrominated biphenyl, hexabromocyclododecane, polychlorinated dibenzo-p-dioxins, polychlorinated dibenzofurans, and perfluoroalkane substances in the atmosphere of Medellin, Colombia. PAS was carried out for three months (four quarters per year) over two consecutive years (2017 and 2018). This study allowed establishing the baseline of some pollutants in the city against which future temporal trends can be assessed. Furthermore, monitoring results suggested releases of DDT in the city or surrounding areas despite this pollutant was banned many years ago in the country. Moreover, this study evidenced the limited scope of the national laboratories to analyze persistent organic pollutants, specially brominated and fluorinated contaminants. However, there is an installed capacity to analyze organochlorine pesticide and indicator PCB in future national monitoring plans. Therefore, it is essential to realize efforts to improve the analytical capacity and increase the scope of the national laboratories. Furthermore, the PAS strategy was valuable for monitoring these pollutants in air. Finally, the results provide an overall view of persistent organic pollutants levels and represent an initial attempt to monitor and surveillance the releases of these pollutants in the city.
Collapse
Affiliation(s)
- Boris Santiago Avila
- Universidad de Antioquia, Facultad de Ingeniería, Sede de Investigación Universitaria, Grupo Diagnóstico y Control de la Contaminación - GDCON, Calle 70 No 52 -21, Postal Code: 050010, Medellín, Colombia.
| | - Diana Pemberthy Mendoza
- Universidad de Antioquia, Facultad de Ingeniería, Sede de Investigación Universitaria, Grupo Diagnóstico y Control de la Contaminación - GDCON, Calle 70 No 52 -21, Postal Code: 050010, Medellín, Colombia
| | - Andrés Ramírez
- Programa de las Naciones Unidas para El Desarrollo, Proyecto PNUD-COL 98842/94749, Bogotá DC, Colombia
| | - Gustavo A Peñuela
- Universidad de Antioquia, Facultad de Ingeniería, Sede de Investigación Universitaria, Grupo Diagnóstico y Control de la Contaminación - GDCON, Calle 70 No 52 -21, Postal Code: 050010, Medellín, Colombia
| |
Collapse
|
11
|
Prats RM, van Drooge BL, Fernández P, Grimalt JO. Changes and distribution of gas-phase polycyclic aromatic hydrocarbons and organochlorine compounds in a high-mountain gradient over a three-year period (Pyrenees, 2017-2020). THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 829:154602. [PMID: 35306068 DOI: 10.1016/j.scitotenv.2022.154602] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/11/2022] [Accepted: 03/12/2022] [Indexed: 06/14/2023]
Abstract
The atmospheric gas-phase concentrations of several polychlorinated biphenyls (PCBs), polycyclic aromatic hydrocarbons (PAHs), hexachlorobenzene (HCB), and pentachlorobenzene (PeCB) were measured in six high-mountain sites in the Pyrenees (1619-2453 m). Polyurethane foam passive air samplers were used for this purpose, providing continuous records spanning over three years (2017-2020). The mean concentrations of ∑PCBs, HCB, and PeCB, 13 ± 4 pg m-3, 44 ± 18 pg m-3, and 23 ± 20 pg m-3, respectively, were of the order of those reported in other mountain sites and similar to those measured 20 years ago in the same area, evidencing the persistence of these compounds despite the international regulatory actions. The mean concentration of ∑PAHs was 631 ± 238 pg m-3, representing between two- and three-times lower values than 20 years ago in the same area, but still in the range of other mountain regions. Statistically significant increases in gas-phase concentrations at higher temperatures were observed for most compounds. The experimental phase-change pseudo-enthalpies calculated from the slopes of the regressions between the natural logarithm of the concentrations and the reciprocal of temperature were lower than the reference values for nearly all compounds. This difference suggested a main contribution of long-range atmospheric transport of the gas-phase PAH and organochlorine concentrations in this mountain area. However, the less volatile compounds such as benz[a]anthracene, PCB138, and PCB180 showed a closer similarity between experimental and laboratory enthalpies, indicating that a significant portion of the variations in concentration of these compounds originated from temperature-dependent diffusive exchange by re-volatilization from local surfaces. The concentrations found in these sentinel ecosystems demonstrate that long-range transport of organic pollutants remains a risk in remote continental environments.
Collapse
Affiliation(s)
- Raimon M Prats
- Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Jordi Girona 18, 08034 Barcelona, Catalonia, Spain.
| | - Barend L van Drooge
- Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Jordi Girona 18, 08034 Barcelona, Catalonia, Spain
| | - Pilar Fernández
- Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Jordi Girona 18, 08034 Barcelona, Catalonia, Spain
| | - Joan O Grimalt
- Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Jordi Girona 18, 08034 Barcelona, Catalonia, Spain
| |
Collapse
|