1
|
Acheampong A, Bondzie-Quaye P, Fetisoa MR, Huang Q. Applications of low-temperature plasma technology in microalgae cultivation and mutant breeding: A comprehensive review. BIORESOURCE TECHNOLOGY 2025; 419:132019. [PMID: 39725362 DOI: 10.1016/j.biortech.2024.132019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 12/16/2024] [Accepted: 12/22/2024] [Indexed: 12/28/2024]
Abstract
Low-temperature plasma (LTP) has gained significant attention recently due to its unique properties and potentially wide applications in agriculture, medicine, and food industry. Microalgae have become important to human life since they provide raw materials and bioactive products to industries. This review especially examines how LTP technology can be utilized to enhance microalgae growth and production of various metabolites and bioactive compounds such as astaxanthin, biofuel, lipid, proteins, and polysaccharides through mutagenesis and/or stimulation. Also, this review suggests that LTP may be combined with multi-omics tools such as proteomics, transcriptome, metabolomics and advanced methods such as single-cell analysis techniques to provide a promising strategy for acquiring desirable strains in algal mutant breeding and for enhancing the production of bioactive compounds in the microalgae. By shedding light on the benefits and applications of LTP, we hope to inspire new solutions to the challenges of commercial-scale microalgae development.
Collapse
Affiliation(s)
- Adolf Acheampong
- CAS Key Laboratory of High Magnetic Field and Iron Beam Physical Biology, Institute of Intelligent Machines, Hefei Institute of Physical Sciences, Chinese Academy of Sciences, Hefei 230031, China; Science Island Branch of Graduate School, University of Science and Technology of China, Hefei 230026, China
| | - Precious Bondzie-Quaye
- CAS Key Laboratory of High Magnetic Field and Iron Beam Physical Biology, Institute of Intelligent Machines, Hefei Institute of Physical Sciences, Chinese Academy of Sciences, Hefei 230031, China; Science Island Branch of Graduate School, University of Science and Technology of China, Hefei 230026, China
| | - Monia Ravelonandrasana Fetisoa
- CAS Key Laboratory of High Magnetic Field and Iron Beam Physical Biology, Institute of Intelligent Machines, Hefei Institute of Physical Sciences, Chinese Academy of Sciences, Hefei 230031, China; Science Island Branch of Graduate School, University of Science and Technology of China, Hefei 230026, China
| | - Qing Huang
- CAS Key Laboratory of High Magnetic Field and Iron Beam Physical Biology, Institute of Intelligent Machines, Hefei Institute of Physical Sciences, Chinese Academy of Sciences, Hefei 230031, China; Science Island Branch of Graduate School, University of Science and Technology of China, Hefei 230026, China.
| |
Collapse
|
2
|
Li P, Wang D, Hou Y, Hu Z, Song C. Effect of phytohormones on the carbon sequestration performance of CO 2 absorption-microalgae conversion system under low light restriction. ENVIRONMENTAL RESEARCH 2024; 262:119984. [PMID: 39270957 DOI: 10.1016/j.envres.2024.119984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 08/26/2024] [Accepted: 09/10/2024] [Indexed: 09/15/2024]
Abstract
Microalgae have the potential to fix CO2 into valuable compounds. Low photosynthetic efficiency caused by low light was one of the challenges faced by microalgae carbon sequestration. In this study, Melatonin (MT) and indole-propionic acid (IPA) were used to alleviate the growth inhibition of Spirulina in CAMC system under low light restriction. The results showed that MT and IPA increased biomass and carbon fixation capacity. 10 mg/L IPA group achieved the maximum biomass and carbon fixation capacity, which were 17.11% and 21.46% higher than control. MT and IPA promoted the synthesis of chlorophyll, which in turn captured more light energy for microalgae growth. The increase of superoxide dismutase (SOD), catalase (CAT) and glutathione reductase (GR) activities enhanced the resistance of microalgae to low light stress. MT and IPA promoted the secretion of extracellular polymeric substances (EPS) which was benefit to protect cells. The maximum phycocyanin content and yield was found in 10 mg-IPA group, which was 20.67% and 46.67% higher than control. MT and IPA improved the synthesis of carbohydrates and proteins and increased carbohydrates and proteins yield. This indicated that adding phytohormones was an effective method to alleviate the growth of microalgae restricted by low light stress, which provided a theoretical guidance for the application of CAMC system in CO2 capture and resource utilization.
Collapse
Affiliation(s)
- Pengcheng Li
- Tianjin Key Laboratory of Indoor Air Environmental Quality Control, School of Environmental Science and Engineering, Tianjin University, 92 Weijin Road, Nankai District, Tianjin, 300072, PR China
| | - Dantong Wang
- Tianjin Key Laboratory of Indoor Air Environmental Quality Control, School of Environmental Science and Engineering, Tianjin University, 92 Weijin Road, Nankai District, Tianjin, 300072, PR China
| | - Yaoqi Hou
- Tianjin Key Laboratory of Indoor Air Environmental Quality Control, School of Environmental Science and Engineering, Tianjin University, 92 Weijin Road, Nankai District, Tianjin, 300072, PR China
| | - Zhan Hu
- Tianjin Key Laboratory of Indoor Air Environmental Quality Control, School of Environmental Science and Engineering, Tianjin University, 92 Weijin Road, Nankai District, Tianjin, 300072, PR China
| | - Chunfeng Song
- Tianjin Key Laboratory of Indoor Air Environmental Quality Control, School of Environmental Science and Engineering, Tianjin University, 92 Weijin Road, Nankai District, Tianjin, 300072, PR China.
| |
Collapse
|
3
|
Xing D, Wang H, Li S, Jin C, Zhao Y, Gao M, Guo L. Stable isotope labeling and functional gene prediction elucidate the carbon metabolism in fermentative bacteria and microalgae coupling system. WATER RESEARCH 2024; 263:122153. [PMID: 39079194 DOI: 10.1016/j.watres.2024.122153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 05/24/2024] [Accepted: 07/25/2024] [Indexed: 08/26/2024]
Abstract
The application of the fermentative bacteria and microalgae coupling system in the wastewater treatment has been studied, but there remains few knowledge regarding the organic and inorganic carbon metabolism within this system. In this study, the carbon metabolism of microalgae and fermentative bacteria was elucidated by 13C stable isotope labeling and functional gene prediction, respectively. The 13C glucose and 13C NaHCO3 were used as stable isotope tracers to clarify the organic and inorganic carbon metabolism of microalgae, indicating that approximately 71.5 % of the Acetyl-CoA in microalgae was synthesized from organic carbon sources, while 26.8 % was synthesized through the utilization of inorganic carbon sources. Inorganic carbon sources can enhance the activity of photosynthetic system and facilitate the Calvin cycle. Considering the adequate organic carbon sources and insufficient inorganic carbon sources in the fermentative bacteria and microalgae coupling system, NaHCO3 was added to improve carbon utilization of microalgae. The maximum microalgal lipid yield reached 1130.37 mg/L with 1000 mg/L NaHCO3 supplementation. Functional gene prediction was used to analysis the effect of various carbon composition on the bacterial carbon metabolism. Notably, the additional inorganic carbon sources increased the abundance of bacterial functional genes associated with the fermentation and acetic acids synthesis, which was advantageous for VFAs production and further promoted microalgae growth. This study can gain a deeper understanding of microbial metabolic mechanisms during the operation of fermentative bacteria and microalgae system, and improve its sustained operational stability.
Collapse
Affiliation(s)
- Dongxu Xing
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Hutao Wang
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Shangzong Li
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Chunji Jin
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Yangguo Zhao
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Mengchun Gao
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Liang Guo
- Key Laboratory of Marine Environmental and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, China.
| |
Collapse
|
4
|
Qu R, Liu N, Wen Q, Guo J, Ge F. Molecular mechanism of dissolvable metal nanoparticles-enhanced CO 2 fixation by algae: Metal-chlorophyll synthesis. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 349:123987. [PMID: 38621453 DOI: 10.1016/j.envpol.2024.123987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 04/09/2024] [Accepted: 04/13/2024] [Indexed: 04/17/2024]
Abstract
Algae-driven photosynthetic CO2 fixation is a promising strategy to mitigate global climate changes and energy crises. Yet, the presence of metal nanoparticles (NPs), particularly dissolvable NPs, in aquatic ecosystems introduces new complexities due to their tendency to release metal ions that may perturb metabolic processes related to algal CO2 fixation. This study selected six representative metal NPs (Fe3O4, ZnO, CuO, NiO, MgO, and Ag) to investigate their impacts on CO2 fixation by algae (Chlorella vulgaris). We discovered an intriguing phenomenon that bivalent metal ions released from the metal NPs, especially from ZnO NPs, substituted Mg2+ within the porphyrin ring. This interaction led to 81.8% and 76.1% increases in Zinc-chlorophyll and Magnesium-chlorophyll contents within algal cells at 0.01 mM ZnO NPs, respectively. Integrating metabolomics and transcriptomics analyses revealed that ZnO NPs mainly promoted the photosynthesis-antenna protein pathway, porphyrin and chlorophyll metabolism, and carbon fixation pathway, thereby mitigating the adverse effects of Zn2+ substitution in light harvesting and energy transfer for CO2 fixation. Ultimately, the genes encoding Rubisco large subunit (rbcL) responsible for CO2 fixation were upregulated to 2.60-fold, resulting in a 76.3% increase in carbon fixation capacity. Similar upregulations of rbcL expression (1.13-fold) and carbon fixation capacity (76.1%) were observed in algal cells even at 0.001 mM ZnO NPs, accompanied by valuable lipid accumulation. This study offers novel insights into the molecular mechanism underlying NPs on CO2 fixation by algae and potentially introduces strategies for global carbon sequestration.
Collapse
Affiliation(s)
- Ruohua Qu
- Department of Environment, College of Environment and Resources, Xiangtan University, Xiangtan, 411105, China; Key Laboratory of Environmental Eco-Health, Hunan, College of Environment and Resources, Xiangtan University, Xiangtan, 411105, China.
| | - Na Liu
- Department of Environment, College of Environment and Resources, Xiangtan University, Xiangtan, 411105, China; Key Laboratory of Environmental Eco-Health, Hunan, College of Environment and Resources, Xiangtan University, Xiangtan, 411105, China.
| | - Qiong Wen
- Department of Environment, College of Environment and Resources, Xiangtan University, Xiangtan, 411105, China; Key Laboratory of Environmental Eco-Health, Hunan, College of Environment and Resources, Xiangtan University, Xiangtan, 411105, China.
| | - Jingyi Guo
- Department of Environment, College of Environment and Resources, Xiangtan University, Xiangtan, 411105, China; Key Laboratory of Environmental Eco-Health, Hunan, College of Environment and Resources, Xiangtan University, Xiangtan, 411105, China.
| | - Fei Ge
- Department of Environment, College of Environment and Resources, Xiangtan University, Xiangtan, 411105, China; Key Laboratory of Environmental Eco-Health, Hunan, College of Environment and Resources, Xiangtan University, Xiangtan, 411105, China.
| |
Collapse
|
5
|
Li D, Shen J, Ding Q, Wu J, Chen X. Recent progress of atmospheric and room-temperature plasma as a new and promising mutagenesis technology. Cell Biochem Funct 2024; 42:e3991. [PMID: 38532652 DOI: 10.1002/cbf.3991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 03/11/2024] [Accepted: 03/11/2024] [Indexed: 03/28/2024]
Abstract
At present, atmospheric and room-temperature plasma (ARTP) is regarded as a new and powerful mutagenesis technology with the advantages of environment-friendliness, operation under mild conditions, and fast mutagenesis speed. Compared with traditional mutagenesis strategies, ARTP is used mainly to change the structure of microbial DNA, enzymes, and proteins through a series of physical, chemical, and electromagnetic effects with the organisms, leading to nucleotide breakage, conversion or inversion, causing various DNA damages, so as to screen out the microbial mutants with better biological characteristics. As a result, in recent years, ARTP mutagenesis and the combination of ARTP with traditional mutagenesis have been widely used in microbiology, showing great potential for application. In this review, the recent progress of ARTP mutagenesis in different application fields and bottlenecks of this technology are systematically summarized, with a view to providing a theoretical basis and technical support for better application. Finally, the outlook of ARTP mutagenesis is presented, and we identify the challenges in the field of microbial mutagenesis by ARTP.
Collapse
Affiliation(s)
- Dongao Li
- Institute of Plasma Physics, HFIPS, Chinese Academy of Sciences, Low Temperature Plasma Application Laboratory, Hefei, China
- Institutes of Physical Science and Information Technology, Anhui University, Hefei, China
| | - Jie Shen
- Institute of Plasma Physics, HFIPS, Chinese Academy of Sciences, Low Temperature Plasma Application Laboratory, Hefei, China
| | - Qiang Ding
- Yichang Sanxia Pharmaceutical Co., Ltd., Yichang City, Hubei Province, China
| | - Jinyong Wu
- Institute of Plasma Physics, HFIPS, Chinese Academy of Sciences, Low Temperature Plasma Application Laboratory, Hefei, China
| | - Xiangsong Chen
- Institute of Plasma Physics, HFIPS, Chinese Academy of Sciences, Low Temperature Plasma Application Laboratory, Hefei, China
| |
Collapse
|
6
|
Yang Y, Tang S, Chen JP. Carbon capture and utilization by algae with high concentration CO 2 or bicarbonate as carbon source. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 918:170325. [PMID: 38278265 DOI: 10.1016/j.scitotenv.2024.170325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 01/18/2024] [Accepted: 01/19/2024] [Indexed: 01/28/2024]
Abstract
Algae plays a key role in carbon capture and utilization (CCU) as it can capture and use the atmospheric CO2 for conversion of value-added products. Concentrated CO2 is common in flue gas and provides opportunities for algae cultivation. The drawbacks are mass transfer limitation, poor CO2 dissolution, and challenges to reach optimal levels for algal growth at given flue gas levels. Bicarbonate is flexible to be used as carbon source and owns the potential to enhance the efficiency of biological carbon fixation by algae. The requirements of algae strains are more stringent. To improve the industrial scale-up of CCU, system optimization is of great importance. More novel algal strains that can grow rapidly under harsh environment and provide valuable bio-products should be developed for large-scale production. Algae-driven CCU is promising for achieving carbon-neutrality.
Collapse
Affiliation(s)
- Yi Yang
- Faculty of Arts and Sciences/ College of Education for the Future, Beijing Normal University, Zhuhai 519087, PR China; Department of Civil and Environmental Engineering, National University of Singapore, 10 Kent Ridge, Singapore.
| | - Shuo Tang
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, PR China
| | - J Paul Chen
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, PR China; Department of Civil and Environmental Engineering, National University of Singapore, 10 Kent Ridge, Singapore.
| |
Collapse
|
7
|
Yi X, Yang D, Xu X, Wang Y, Guo Y, Zhang M, Wang Y, He Y, Zhu J. Cold plasma pretreatment reinforces the lignocellulose-derived aldehyde inhibitors tolerance and bioethanol fermentability for Zymomonas mobilis. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2023; 16:102. [PMID: 37322470 DOI: 10.1186/s13068-023-02354-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 05/29/2023] [Indexed: 06/17/2023]
Abstract
BACKGROUND Lignocellulose-derived aldehyde inhibitors seriously blocked the biorefinery of biofuels and biochemicals. To date, the economic production of lignocellulose-based products heavily relied on high productivities of fermenting strains. However, it was expensive and time-consuming for the achievable rational modification to strengthen stress tolerance robustness of aldehyde inhibitors. Here, it aimed to improve aldehyde inhibitors tolerance and cellulosic bioethanol fermentability for the chassis Zymomonas mobilis ZM4 pretreated using energy-efficient and eco-friendly cold plasma. RESULTS It was found that bioethanol fermentability was weaker in CSH (corn stover hydrolysates) than that in synthetic medium for Z. mobilis, and thus was attributed to the inhibition of the lignocellulose-derived aldehyde inhibitors in CSH. Convincingly, it further confirmed that the mixed aldehydes severely decreased bioethanol accumulation through additional aldehydes supplementary assays in synthetic medium. After assayed under different processing time (10-30 s), discharge power (80-160 W), and working pressure (120-180 Pa) using cold atmosphere plasma (CAP), it achieved the increased bioethanol fermentability for Z. mobilis after pretreated at the optimized parameters (20 s, 140 W and 165 Pa). It showed that cold plasma brought about three mutation sites including ZMO0694 (E220V), ZMO0843 (L471L) and ZMO0843 (P505H) via Genome resequencing-based SNPs (single nucleotide polymorphisms). A serial of differentially expressed genes (DEGs) were further identified as the potential contributors for stress tolerance via RNA-Seq sequencing, including ZMO0253 and ZMO_RS09265 (type I secretion outer membrane protein), ZMO1941 (Type IV secretory pathway protease TraF-like protein), ZMOr003 and ZMOr006 (16S ribosomal RNA), ZMO0375 and ZMO0374 (levansucrase) and ZMO1705 (thioredoxins). It enriched cellular process, followed by metabolic process and single-organism process for biological process. For KEGG analysis, the mutant was also referred to starch and sucrose metabolism, galactose metabolism and two-component system. Finally, but interestingly, it simultaneously achieved the enhanced stress tolerance capacity of aldehyde inhibitors and bioethanol fermentability in CSH for the mutant Z. mobilis. CONCLUSIONS Of several candidate genetic changes, the mutant Z. mobilis treated with cold plasma was conferred upon the facilitated aldehyde inhibitors tolerance and bioethanol production. This work would provide a strain biocatalyst for the efficient production of lignocellulosic biofuels and biochemicals.
Collapse
Affiliation(s)
- Xia Yi
- National-Local Joint Engineering Research Center for Biomass Refining and High-Quality Utilization, Changzhou University, Changzhou, 213164, China.
- Institute of Urban and Rural Mining, Changzhou University, Changzhou, 213164, China.
- Changzhou Key Laboratory of Biomass Green, Safe & High Value Utilization Technology, Changzhou University, Changzhou, 213164, Jiangsu, China.
| | - Dong Yang
- School of Pharmacy, Changzhou University, Changzhou, 213164, Jiangsu, China
| | - Xiaoyan Xu
- School of Pharmacy, Changzhou University, Changzhou, 213164, Jiangsu, China
| | - Youjun Wang
- School of Pharmacy, Changzhou University, Changzhou, 213164, Jiangsu, China
| | - Yan Guo
- School of Pharmacy, Changzhou University, Changzhou, 213164, Jiangsu, China
| | - Meng Zhang
- School of Pharmacy, Changzhou University, Changzhou, 213164, Jiangsu, China
| | - Yilong Wang
- School of Pharmacy, Changzhou University, Changzhou, 213164, Jiangsu, China
| | - Yucai He
- National-Local Joint Engineering Research Center for Biomass Refining and High-Quality Utilization, Changzhou University, Changzhou, 213164, China.
- School of Pharmacy, Changzhou University, Changzhou, 213164, Jiangsu, China.
| | - Jie Zhu
- National-Local Joint Engineering Research Center for Biomass Refining and High-Quality Utilization, Changzhou University, Changzhou, 213164, China.
- Institute of Urban and Rural Mining, Changzhou University, Changzhou, 213164, China.
- Changzhou Key Laboratory of Biomass Green, Safe & High Value Utilization Technology, Changzhou University, Changzhou, 213164, Jiangsu, China.
- School of Pharmacy, Changzhou University, Changzhou, 213164, Jiangsu, China.
| |
Collapse
|
8
|
Ren H, Zhou D, Lu J, Show PL, Sun FF. Mapping the field of microalgae CO 2 sequestration: a bibliometric analysis. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023:10.1007/s11356-023-27850-0. [PMID: 37311860 DOI: 10.1007/s11356-023-27850-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 05/19/2023] [Indexed: 06/15/2023]
Abstract
Microalgae CO2 sequestration has gained considerable attention in the last three decades as a promising technology to slow global warming caused by CO2 emissions. To provide a comprehensive and objective analysis of the research status, hot spots, and frontiers of CO2 fixation by microalgae, a bibliometric approach was recently chosen for review. In this study, 1561 articles (1991-2022) from the Web of Science (WOS) on microalgae CO2 sequestration were screened. A knowledge map of the domain was presented using VOSviewer and CiteSpace. It visually demonstrates the most productive journals (Bioresource Technology), countries (China and USA), funding sources, and top contributors (Cheng J, Chang JS, and their team) in the field of CO2 sequestration by microalgae. The analysis also revealed that research hotspots changed over time and that recent research has focused heavily on improving carbon sequestration efficiency. Finally, commercialization of carbon fixation by microalgae is a key hurdle, and supports from other disciplines could improve carbon sequestration efficiency.
Collapse
Affiliation(s)
- Hongyan Ren
- School of Environment Science and Civil Engineering, Jiangnan University, Wuxi, 214122, China.
- Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Wuxi, 214122, China.
| | - Duan Zhou
- School of Environment Science and Civil Engineering, Jiangnan University, Wuxi, 214122, China
- Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Wuxi, 214122, China
| | - Jiawen Lu
- School of Environment Science and Civil Engineering, Jiangnan University, Wuxi, 214122, China
- Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Wuxi, 214122, China
| | - Pau Loke Show
- Department of Chemical and Environmental Engineering, Faculty of Engineering, University of Nottingham Malaysia, 43500, Semenyih, Malaysia
| | - Fubao Fuelbiol Sun
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| |
Collapse
|
9
|
Hu W, Liu J, Liu T, Zhu C, Wu F, Jiang C, Wu Q, Chen L, Lu H, Shen G, Zheng H. Exogenous calcium regulates the growth and development of Pinus massoniana detecting by physiological, proteomic, and calcium-related genes expression analysis. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 196:1122-1136. [PMID: 36907700 DOI: 10.1016/j.plaphy.2023.03.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 03/02/2023] [Accepted: 03/05/2023] [Indexed: 06/18/2023]
Abstract
Pinus massoniana is an important industrial crop tree species commonly used for timber and wood pulp for papermaking, rosin, and turpentine. This study investigated the effects of exogenous calcium (Ca) on P. massoniana seedling growth, development, and various biological processes and revealed the underlying molecular mechanisms. The results showed that Ca deficiency led to severe inhibition of seedling growth and development, whereas adequate exogenous Ca markedly improved growth and development. Many physiological processes were regulated by exogenous Ca. The underlying mechanisms involved diverse Ca-influenced biological processes and metabolic pathways. Calcium deficiency inhibited or impaired these pathways and processes, whereas sufficient exogenous Ca improved and benefited these cellular events by regulating several related enzymes and proteins. High levels of exogenous Ca facilitated photosynthesis and material metabolism. Adequate exogenous Ca supply relieved oxidative stress that occurred at low Ca levels. Enhanced cell wall formation, consolidation, and cell division also played a role in exogenous Ca-improved P. massoniana seedling growth and development. Calcium ion homeostasis and Ca signal transduction-related gene expression were also activated at high exogenous Ca levels. Our study facilitates the elucidation of the potential regulatory role of Ca in P. massoniana physiology and biology and is of guiding significance in Pinaceae plant forestry.
Collapse
Affiliation(s)
- Wenjun Hu
- Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, Zhejiang, China.
| | - Jiyun Liu
- Key Laboratory for Subtropical Wetland Ecosystem Research of MOE, College of the Environment and Ecology, Xiamen University, Xiamen, 361005, Fujian, China.
| | - Tingwu Liu
- School of Life Science, Huaiyin Normal University, Huai'an, 223300, Jiangsu, China.
| | - Chunquan Zhu
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, Zhejiang, China.
| | - Feihua Wu
- Department of Horticulture, Foshan University, Foshan, 528051, Guangdong, China.
| | - Chenkai Jiang
- Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, Zhejiang, China.
| | - Qian Wu
- Key Laboratory for Subtropical Wetland Ecosystem Research of MOE, College of the Environment and Ecology, Xiamen University, Xiamen, 361005, Fujian, China.
| | - Lin Chen
- Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, Zhejiang, China.
| | - Hongling Lu
- Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, Zhejiang, China.
| | - Guoxin Shen
- Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, Zhejiang, China.
| | - Hailei Zheng
- Key Laboratory for Subtropical Wetland Ecosystem Research of MOE, College of the Environment and Ecology, Xiamen University, Xiamen, 361005, Fujian, China.
| |
Collapse
|
10
|
Yang HE, Yu BS, Sim SJ. Enhanced astaxanthin production of Haematococcus pluvialis strains induced salt and high light resistance with gamma irradiation. BIORESOURCE TECHNOLOGY 2023; 372:128651. [PMID: 36682476 DOI: 10.1016/j.biortech.2023.128651] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/15/2023] [Accepted: 01/17/2023] [Indexed: 06/17/2023]
Abstract
This study was conducted to increase the productivity of biomass that contains high astaxanthin content by developing a mutant Haematococcus pluvialis strain with strong environmental tolerance. H. pluvialis has a low cell-growth rate and is vulnerable to stressors such as salinity or light intensity, which may hinder large-scale commercial cultivation. A mutant M5 strain selected through 5000-Gy gamma irradiation showed improved biomass and astaxanthin production under high-salinity and high-light intensity conditions. With enhanced SOD activity and overexpressed astaxanthin biosynthesis genes (lyc, crtR-b, bkt2), M5 demonstrated an increase in biomass and astaxanthin productivity by 86.70 % and 66.15 %, respectively compared to those of untreated cells. Also, the omega-3 content of M5 increased by 149.44 % under 40 mM CaCl2 compared to the untreated cells. Finally, even when subjected to high-intensity light irradiation for the whole life cycle, the biomass and astaxanthin concentration increased by 84.99 % and 241 %, respectively, compared to the wild-type cells.
Collapse
Affiliation(s)
- Ha Eun Yang
- Department of Chemical and Biological Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Byung Sun Yu
- Department of Chemical and Biological Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Sang Jun Sim
- Department of Chemical and Biological Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea.
| |
Collapse
|
11
|
Li P, Hu Z, Yin Q, Song C. Improving the growth of Spirulina in CO 2 absorption and microalgae conversion (CAMC) system through mixotrophic cultivation: Reveal of metabolomics. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 858:159920. [PMID: 36356767 DOI: 10.1016/j.scitotenv.2022.159920] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 10/07/2022] [Accepted: 10/30/2022] [Indexed: 06/16/2023]
Abstract
Mixotrophic cultivation was proposed to enhance the biomass and carbon sequestration efficiency of Spirulina in CO2 absorption and microalgae conversion (CAMC) system, and the underlying metabolic mechanism was also explored. The result showed that mixotrophic enhanced the performance of CAMC system, the maximum biomass, total carbon conversion capacity and efficiency was obtained at 0.5 g/L acetate group, which was 60.47 %, 63.06 % and 59.77 % higher than control. Adding 0.5 g/L acetate enhanced the activities of Rubisco and Acetyl-CoA, arrived at 89.59 U/g and 5.16 nmol/g, respectively. Metabolomics analyses suggested that mixotrophic changed metabolic flux and affected intracellular composition. Mixotrophic up-regulated Calvin cycle, glycolysis, and tricarboxylic acid (TCA) cycle, induced more carbon fluxes into central carbon metabolism for the growth of Spirulina. These results suggested that mixotrophic could supply effective energy and carbon skeleton for rapid growth of Spirulina, and provided a theoretical basis for large-scale application of CAMC system.
Collapse
Affiliation(s)
- Pengcheng Li
- Tianjin Key Laboratory of Indoor Air Environmental Quality Control, School of Environmental Science and Engineering, Tianjin University, 92 Weijin Road, Nankai District, Tianjin 300072, PR China
| | - Zhan Hu
- Tianjin Key Laboratory of Indoor Air Environmental Quality Control, School of Environmental Science and Engineering, Tianjin University, 92 Weijin Road, Nankai District, Tianjin 300072, PR China
| | - Qingrong Yin
- Tianjin Key Laboratory of Indoor Air Environmental Quality Control, School of Environmental Science and Engineering, Tianjin University, 92 Weijin Road, Nankai District, Tianjin 300072, PR China
| | - Chunfeng Song
- Tianjin Key Laboratory of Indoor Air Environmental Quality Control, School of Environmental Science and Engineering, Tianjin University, 92 Weijin Road, Nankai District, Tianjin 300072, PR China.
| |
Collapse
|
12
|
Yang Y, Ge S, Pan Y, Qian W, Wang S, Zhang J, Zhuang LL. Screening of microalgae species and evaluation of algal-lipid stimulation strategies for biodiesel production. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 857:159281. [PMID: 36216060 DOI: 10.1016/j.scitotenv.2022.159281] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 09/20/2022] [Accepted: 10/02/2022] [Indexed: 06/16/2023]
Abstract
Microalgae is considered an alternative source for biodiesel production producing renewable, sustainable and carbon-neutral energy. Microalgae property changes among species, which determines the efficiency of biodiesel production. Besides the lipid content evaluation, multi-principles (including high lipid productivity, high biomass yield, pollution resistance and desired fatty acid, etc.) for superior oil-producing species screening was proposed in this review and three microalgae species (Chlorella vulgaris, Scenedesmus obliquus and Mychonastes afer) with high bio-lipid producing prospect were screened out based on big data digging and analysis. The multilateral strategies for algal-lipid stimulating were also compared, among which, nutrient restriction, temperature control, heterotrophy and chemicals addition showed high potential in enhancing lipid accumulation; while electromagnetic field showed little effect. Interestingly, it was found that the lipid accumulation was more sensitive to nitrogen (N)-limitation other than phosphorus (P). Nutrient restriction, salinity stress etc. enhanced lipid accumulation by creating a stressed environment. Hence, optimum conditions (e.g. N:15-35 mg/L and P:4-16 mg/L) should be set to balance the lipid accumulation and biomass growth, and further guarantee the algal-lipid productivity. Otherwise, two-step cultivation could be applied during all the stressed stimulation. Different from lab study, effectiveness, operability and economy should be all considered for stimulation strategy selection. Nutrient restriction, temperature control and heterotrophy were highly feasible after the multidimensional evaluation.
Collapse
Affiliation(s)
- Yanan Yang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse and Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science & Engineering, Shandong University, Qingdao 266237, China
| | - Shuhan Ge
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse and Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science & Engineering, Shandong University, Qingdao 266237, China
| | - Yitong Pan
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse and Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science & Engineering, Shandong University, Qingdao 266237, China
| | - Weiyi Qian
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse and Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science & Engineering, Shandong University, Qingdao 266237, China
| | - Shengnan Wang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse and Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science & Engineering, Shandong University, Qingdao 266237, China
| | - Jian Zhang
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao 266590, China; Shandong Key Laboratory of Water Pollution Control and Resource Reuse and Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science & Engineering, Shandong University, Qingdao 266237, China
| | - Lin-Lan Zhuang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse and Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science & Engineering, Shandong University, Qingdao 266237, China.
| |
Collapse
|
13
|
Algae processing by plasma discharge technology: A review. ALGAL RES 2023. [DOI: 10.1016/j.algal.2023.102983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
14
|
Zhang X, Wei X, Hu X, Yang Y, Chen X, Tian J, Pan T, Ding B. Effects of different concentrations of CO 2 on Scenedesmus obliquus to overcome sludge extract toxicity and accumulate biomass. CHEMOSPHERE 2022; 305:135514. [PMID: 35798159 DOI: 10.1016/j.chemosphere.2022.135514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 05/31/2022] [Accepted: 06/25/2022] [Indexed: 06/15/2023]
Abstract
Large amounts of toxic excess sludge as well as high concentrations of carbon dioxide can be produced in coal-gasification industry. Microalgae has huge potential in the use of nutrients, the removal of toxic organic matter in excess sludge and CO2 fixation. At the same time, the cultivation of the microalgae and the accumulation of high-quality biomass are also the key problems of concern. In this study, the growth and biomass synthesis of Scenedesmus obliquus cultured in sludge extract under 0%-15% (v/v) CO2 were investigated. Results indicated that the highest microalgae biomass yield of 1.609 ± 0.012 g/L can be achieved under 15% CO2 on the 30th day. The maximal photochemical efficiency of PSⅡ (Fv/Fm) decreased in the first 12 h and then increased with the culture time, and the decline amplitude decreased with the increase of the CO2 concentration, indicating that CO2 slowed down the toxic inhibition of sludge extract to Scenedesmus obliquus, which was expressed as the down-regulation of p53 signaling pathway and protein A0A383WFI7. Proteomic analysis showed that under high-concentration CO2, the protein interaction network with the protein of photosystem II assembly (A0A383VSL5) as the core protein regulated the growth of Scenedesmus obliquus in terms of energy metabolism and material transportation. On the 4th day, Methyltransf_11 domain-containing protein (A0A383VH03) was up-regulated and promoted lipid synthesis, leading to the accumulation of lipids in Scenedesmus obliquus in the early stage and the increase of polysaccharides in the later stage. Collectively, this study revealed the regulation mechanism of CO2 on toxicity removal and carbon distribution of Scenedesmus obliquus.
Collapse
Affiliation(s)
- Xinyu Zhang
- National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Xiao Wei
- National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Xueyang Hu
- National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Yingying Yang
- National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Xiurong Chen
- National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China; State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China.
| | - Jinyi Tian
- National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Tao Pan
- National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Biao Ding
- National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China
| |
Collapse
|
15
|
Li S, Li X, Ho SH. How to enhance carbon capture by evolution of microalgal photosynthesis? Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.120951] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
16
|
Li S, Li X, Ho SH. Microalgae as a solution of third world energy crisis for biofuels production from wastewater toward carbon neutrality: An updated review. CHEMOSPHERE 2022; 291:132863. [PMID: 34774903 DOI: 10.1016/j.chemosphere.2021.132863] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 10/21/2021] [Accepted: 11/08/2021] [Indexed: 06/13/2023]
Abstract
The boost of the greenhouse gases (GHGs, largely carbon dioxide - CO2) emissions owing to anthropogenic activity is one of the biggest global threats. Bio-CO2 emission reduction has received more and more attention as an environmentally sustainable approach. Microalgae are very popular in this regard because of excellent speed of growth, low costs of production, and resistance to extreme environments. Besides, most microalgae can undergo photosynthesis, where the CO2 and solar energy can be converted into sugar, and subsequently become biomass, providing a renewable and promising biofuel strategy with a few outstanding benefits. This review focuses on presenting CO2 sequestration by microalgae towards wastewater treatment and biodiesel production. First, the CO2 fixation mechanism by microalgae viz., sequestration and assimilation of CO2 in green microalgae as well as cyanobacteria were introduced. Besides, factors affecting CO2 sequestration in microalgae, containing microalgae species and cultivation conditions, such as light condition, photobioreactor, configuration, pH, CO2 concentration, temperature, and medium composition, were then comprehensively discussed. Special attention was given to the production of biodiesel as third-generation biofuel from various wastewater (CO2 biofixation), including processing steps of biodiesel production by microalgae, biodiesel production from wastewater, and improved methods. Furthermore, current life cycle assessment (LCA) and techno-economic analysis (TEA) used in biodiesel production were discussed. Finally, the research challenges and specific prospects were considered. Taken together, this review provides useful and updated information to facilitate the development of microalgal "green chemistry" and "environmental sustainability".
Collapse
Affiliation(s)
- Shengnan Li
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province, 150090, China
| | - Xue Li
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province, 150090, China
| | - Shih-Hsin Ho
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province, 150090, China.
| |
Collapse
|
17
|
Lin Z, Liu Y, Zhang Z, Yao J. Preparation and Characterization of OH/SiO2-TiO2/PES Composite Hollow Fiber Membrane Using Gas-liquid Membrane Contactor for CO2/CH4 Separation. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.120551] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
18
|
Plasma Treatment for Cellulose in Tobacco Paper-Base: The Improvement of Surface Hydrophilicity and Mechanical Property. MATERIALS 2022; 15:ma15020418. [PMID: 35057132 PMCID: PMC8777695 DOI: 10.3390/ma15020418] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/01/2022] [Accepted: 01/05/2022] [Indexed: 11/23/2022]
Abstract
This paper reports a plasma treatment (PT) method for improving the surface hydrophilicity and mechanical properties of cellulose in reconstituted tobacco paper-base. The absorption and infiltration rates of water droplets on PT-reconstituted tobacco paper-base-15 s were significantly accelerated. Notably, the increased content of methylene and alkyl groups enabled the tobacco paper-base to absorb more useful substrates in the tobacco extract after plasma treatment. In addition, the tensile mechanical performance of reconstituted tobacco was significantly improved after plasma treatment, which indicated that the content of organic matter absorbed by the tobacco paper-base sheet was increased. Moreover, tobacco extract infiltrated on the surface of PT-reconstituted tobacco paper-base reached 37.7° within 30 s, while it reached 79.9° on the reconstituted tobacco paper-base. Finally, the mechanism by which the surface hydrophilicity and mechanical properties of the cellulose in the tobacco paper-base were improved is discussed.
Collapse
|