1
|
Wu R, Shi X, Kang X, Zhang S, Zhao S, Liu Y, Sun B, Lu J, Yu H, Wang S, Pan X, Shen K, Arvola L, Yan J, Hao R, Shi R. Characteristics of nitrogen and phosphorus migration at sediment-water interface in seasonal frozen lakes and the mechanism of microbial driven cycling: a case study of Lake Daihai. JOURNAL OF CONTAMINANT HYDROLOGY 2025; 273:104598. [PMID: 40382897 DOI: 10.1016/j.jconhyd.2025.104598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 04/02/2025] [Accepted: 05/03/2025] [Indexed: 05/20/2025]
Abstract
Nitrogen and phosphorus play pivotal roles in determining the eutrophic conditions and nutrient provision in lakes. However, the mechanisms and processes of nutrient release at the sediment-water interface of shallow lakes in cold regions remain unclear, especially under the complex environmental conditions of freezing and open-water periods. Therefore, Diffusive Gradients in Thin-films (DGT) and High-resolution Peeper technologies (HR-Peeper) were used to investigate the nitrogen and phosphorus characteristics of the sediment water interface, and the process of bacteria affecting the nitrogen and phosphorus cycle was clarified by the high-throughput sequencing technology. The results indicated that sediment phosphorus (PO43-) flux ranged from -1.39 to 3.6 mg/m2·d, with the interstitial water-Soluble Reactive PO43- presenting notable fluidity and potential bioavailability. The ammonia nitrogen (NH4+-N) flux varied from -4.71 to 3.65 mg/m2·d. The nitrate nitrogen (NO3--N) flux varied from -11.64 to 1.18 mg/m2·d, exhibiting an opposite trend to NH4+-N, which was released into water bodies during the freezing period and migrated to the sediments in the open water period. Common metabolic pathways and functional genes for nitrogen and phosphorus were identified in Methylomicrobium, Marinobacter, and Psychrobacter. The dissimilatory nitrate reduction to ammonium (DNRA) facilitated the transformation of polyphosphates and the release of phosphorus. Water temperature indirectly regulated the fluxes of nitrogen and phosphorus at the sediment-water interface (SWI) by modulating the microbial abundance and dissolved oxygen (DO) content.
Collapse
Affiliation(s)
- Rong Wu
- Water Conservancy and Civil Engineering College, Inner Mongolia Agricultural University, Hohhot 010018, China; Ordos City water resources protection and utilization center, Ordos 017200, China
| | - Xiaohong Shi
- Water Conservancy and Civil Engineering College, Inner Mongolia Agricultural University, Hohhot 010018, China; State Gauge and Research Station of Wetland Ecosystem, Wuliangsuhai Lake, Inner Mongolia, China
| | - Xueer Kang
- Grassland Research Institute, Chinese Academy of Agricultural Sciences, Hohhot 010010, China.
| | - Sheng Zhang
- Water Conservancy and Civil Engineering College, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Shengnan Zhao
- Water Conservancy and Civil Engineering College, Inner Mongolia Agricultural University, Hohhot 010018, China; State Gauge and Research Station of Wetland Ecosystem, Wuliangsuhai Lake, Inner Mongolia, China
| | - Yu Liu
- Water Conservancy and Civil Engineering College, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Biao Sun
- Water Conservancy and Civil Engineering College, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Junping Lu
- Water Conservancy and Civil Engineering College, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Haifeng Yu
- Water Conservancy and Civil Engineering College, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Shihuan Wang
- Water Conservancy and Civil Engineering College, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Xueru Pan
- Water Conservancy and Civil Engineering College, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Kaiqi Shen
- Department of Hydrology and Water Resources, Hohai University, Nanjing 210098, China
| | - Lauri Arvola
- Faculty of Biological and Environmental Sciences, Ecosystems and Environment Research Programme, Lammi Biological Station, University of Helsinki, Lammi FI 16900, Finland
| | - Jianghong Yan
- Ordos City water resources protection and utilization center, Ordos 017200, China
| | - Rong Hao
- Ordos City water resources protection and utilization center, Ordos 017200, China
| | - Ruijia Shi
- Ordos City water resources protection and utilization center, Ordos 017200, China
| |
Collapse
|
2
|
Wang QG, Guo BX, Ai JY, Shi WY, Zhang KJ, Wang P, Wang WH. Synchronous control of nitrogen and phosphorus release from sediments in shallow lakes under wind disturbance by modified zeolite and Ca/Al-based sludge combination. ENVIRONMENTAL RESEARCH 2025; 264:120448. [PMID: 39586516 DOI: 10.1016/j.envres.2024.120448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 10/01/2024] [Accepted: 11/22/2024] [Indexed: 11/27/2024]
Abstract
To inhibit eutrophication caused by endogenous pollutants release, the experiment explored the efficiency and mechanism of the synchronous control of nitrogen (N) and phosphorus (P) release from sediments in shallow lakes under wind disturbance by modified Ca/Al-based sludge (MS) and modified zeolite (MZ). High-temperature calcination and NaCl impregnation increased the pore volume of MS and Na+ content of MZ, and the adsorption capacity of MS for PO43--P and MZ for NH4+-N was as high as 42.01 and 20.28 mg g-1. The results of a 90-day incubation experiment showed that the addition of MS and MZ increased the abundance of Thauera, Nitrospira, Denitratisoma, and Clostridium, while decreasing the proportion of Proteus Hauser and Saccharimonadales, thereby reducing the active N and P contents in sediments through microbial transformation. At the same time, the efficient adsorption performance of the MS and MZ resulted in a significant decrease in pollutants in the interstitial water and sediments. In addition, sediment resuspension caused by wind disturbance increased the contact between sediments and remediation agents, resulting in the action depth of covering materials exceeding 100 mm. Compared to adding MS or MZ alone, the combination of the two (MSZG) could synchronously, efficiently, and stably inhibit N and P release. Under the coupling effects of physical interception, physicochemical adsorption, and biotransformation, the average TN, NH4+-N, TP, and PO43--P in the overlying water of the MSZG decreased by 72.13%, 88.92%, 69.28%, and 81.26%, respectively, compared to Control, which satisfying the Class III standard for surface water. Therefore, this study could provide reference for controlling endogenous release, improving eutrophication in shallow lakes under wind disturbance, and recycling residual sludge from sewage plants.
Collapse
Affiliation(s)
- Qiu-Gang Wang
- College of Water Conservancy and Architectural Engineering, Shihezi University, Shihezi, Xinjiang, 832000, PR China; Key Laboratory of Cold and Arid Regions Eco-Hydraulic Engineering of Xinjiang Production & Construction Corps, Shihezi, Xinjiang, 832000, PR China
| | - Bing-Xu Guo
- College of Water Conservancy and Architectural Engineering, Shihezi University, Shihezi, Xinjiang, 832000, PR China; Key Laboratory of Cold and Arid Regions Eco-Hydraulic Engineering of Xinjiang Production & Construction Corps, Shihezi, Xinjiang, 832000, PR China
| | - Jun-Yu Ai
- College of Water Conservancy and Architectural Engineering, Shihezi University, Shihezi, Xinjiang, 832000, PR China; Key Laboratory of Cold and Arid Regions Eco-Hydraulic Engineering of Xinjiang Production & Construction Corps, Shihezi, Xinjiang, 832000, PR China
| | - Wei-Yi Shi
- College of Water Conservancy and Architectural Engineering, Shihezi University, Shihezi, Xinjiang, 832000, PR China; Key Laboratory of Cold and Arid Regions Eco-Hydraulic Engineering of Xinjiang Production & Construction Corps, Shihezi, Xinjiang, 832000, PR China
| | - Ke-Jia Zhang
- College of Water Conservancy and Architectural Engineering, Shihezi University, Shihezi, Xinjiang, 832000, PR China; Key Laboratory of Cold and Arid Regions Eco-Hydraulic Engineering of Xinjiang Production & Construction Corps, Shihezi, Xinjiang, 832000, PR China
| | - Pu Wang
- College of Environment and Ecology, Chongqing University, Chongqing, 400044, PR China
| | - Wen-Huai Wang
- College of Water Conservancy and Architectural Engineering, Shihezi University, Shihezi, Xinjiang, 832000, PR China; Key Laboratory of Cold and Arid Regions Eco-Hydraulic Engineering of Xinjiang Production & Construction Corps, Shihezi, Xinjiang, 832000, PR China.
| |
Collapse
|
3
|
Zang Y, Yan P, Ren T, Ding S, Sun S, Shen J, Wang X, He S. Enhanced in-situ sediment remediation by calcium peroxide coupled with zero-valent iron: Simultaneous nitrogen removal and phosphorus stabilization. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 956:177327. [PMID: 39486532 DOI: 10.1016/j.scitotenv.2024.177327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 10/23/2024] [Accepted: 10/29/2024] [Indexed: 11/04/2024]
Abstract
As the potential causes of eutrophication, nitrogen (N) and phosphorus (P) in sediments have received wide attention. However, few of the in-situ sediment remediation methods can achieve simultaneous N removal and P stabilization in sediments. In this study, different impacts on N, P and organic matter (OM) properties of sediments and overlying water with different proportions of calcium peroxide (CaO2) coupling with zero-valent iron (ZVI) were explored through incubation experiments. Compared with CaO2 or ZVI alone, the total nitrogen (TN) removal ratios in the whole system at 0.6 g/kg CaO2 coupled with 40 g/kg ZVI increased by 167.91% and 152.04%, respectively. Due to the enhancement of oxidation, the removal efficiency of OM from sediments increased by 118.51%. Meanwhile, the genera related to denitrification (e.g., Anaerobacillus, Haloplasma, and Clostridium_sensu_stricto_8) were also enriched in this coupling group, which was due to the enhanced decomposition of OM and the electron donation of ZVI. In addition, CaO2 coupled with ZVI stabilized P through chemical precipitation, which converted organic phosphorus (Org-P) into more stable calcium bounded P (Ca-P) in sediments. Hence the coupling effectively increased total P (TP) content in sediments and reduced P concentration in water.
Collapse
Affiliation(s)
- Yue Zang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China; Yunnan Dali Research Institute of Shanghai Jiao Tong University, Dali 671000, PR China
| | - Pan Yan
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Tongtong Ren
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Shaoxuan Ding
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Shanshan Sun
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Jian Shen
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China; Yunnan Dali Research Institute of Shanghai Jiao Tong University, Dali 671000, PR China; National Observation and Research Station of Erhai Lake Ecosystem in Yunnan, Dali 671000, PR China
| | - Xinze Wang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China; Yunnan Dali Research Institute of Shanghai Jiao Tong University, Dali 671000, PR China; National Observation and Research Station of Erhai Lake Ecosystem in Yunnan, Dali 671000, PR China
| | - Shengbing He
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China; Yunnan Dali Research Institute of Shanghai Jiao Tong University, Dali 671000, PR China.
| |
Collapse
|
4
|
Wang A, Zhang S, Liang Z, Zeng Z, Ma Y, Zhang Z, Yang Y, He Z, Yu G, Liang Y. Response of microbial communities to exogenous nitrate nitrogen input in black and odorous sediment. ENVIRONMENTAL RESEARCH 2024; 248:118137. [PMID: 38295972 DOI: 10.1016/j.envres.2024.118137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 12/30/2023] [Accepted: 01/05/2024] [Indexed: 02/10/2024]
Abstract
Since nitrate nitrogen (NO3--N) input has proved an effective approach for the treatment of black and odorous river waterbody, it was controversial whether the total nitrogen concentration standard should be raised when the effluent from the sewage treatment plant is discharged into the polluted river. To reveal the effect of exogenous nitrate (NO3--N) on black odorous waterbody, sediments with different features from contaminated rivers were collected, and the changes of physical and chemical characteristics and microbial community structure in sediments before and after the addition of exogenous NO3--N were investigated. The results showed that after the input of NO3--N, reducing substances such as acid volatile sulfide (AVS) in the sediment decreased by 80 % on average, ferrous (Fe2+) decreased by 50 %, yet the changing trend of ammonia nitrogen (NH4+-N) in some sediment samples increased while others decreased. High-throughput sequencing results showed that the abundance of Thiobacillus at most sites increased significantly, becoming the dominant genus in the sediment, and the abundance of functional genes in the metabolome increased, such as soxA, soxX, soxY, soxZ. Network analysis showed that sediment microorganisms evolved from a single sulfur oxidation ecological function to diverse ecological functions, such as nitrogen cycle nirB, nirD, nirK, nosZ, and aerobic decomposition. In summary, inputting an appropriate amount of exogenous NO3--N is beneficial for restoring and maintaining the oxidation states of river sediment ecosystems.
Collapse
Affiliation(s)
- Ao Wang
- Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China
| | - Shengrui Zhang
- Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China
| | - Ziyang Liang
- Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China
| | - Zhanqin Zeng
- Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China
| | - Yingshi Ma
- Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China
| | - Zhiang Zhang
- Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China
| | - Ying Yang
- Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China
| | - Zihao He
- Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China
| | - Guangwei Yu
- Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China; Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming, 525000, China.
| | - Yuhai Liang
- Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China; Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming, 525000, China.
| |
Collapse
|
5
|
Gao Z, Zhang Q, Wang Y, Jv X, Dzakpasu M, Wang XC. Evolution of water quality in rainwater harvesting systems during long-term storage in non-rainy seasons. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:168784. [PMID: 38000760 DOI: 10.1016/j.scitotenv.2023.168784] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 11/19/2023] [Accepted: 11/20/2023] [Indexed: 11/26/2023]
Abstract
The development of rainwater utilization strategies has relied on rainwater harvesting (RWH) systems for centuries to alleviate the pressure on water resources. However, there are still significant knowledge gaps regarding the changes in water quality in RWH systems during long-term storage in non-rainy seasons. This study evaluated the water quality processes in RWH systems through static rainwater storage experiments for approximately 60 days. The results revealed that nutrients in rainwater accumulated in sediment during storage. Disturbance and redox conditions at the rainwater-sediment interface contribute to the release of sedimentary facies materials. The rainwater showed distinct DO stratification, with the biochemical reactions of sedimentary facies being the primary factor driving oxygen consumption. ORP and turbidity showed positive correlations with COD (r = 0.582; 0.572), TOC (r = 0.678; 0.681), TN (r = 0.452; 0.439), and NH4+-N (r = 0.502; 0.553) (P < 0.05). The regulation of water quality and extension of the usage cycle were identified as critical factors influenced by DO. In addition, bacteria share similar ecological niche preferences. These findings provide scientific evidence for the high-quality reuse of rainwater in decentralized RWH systems during long-term storage in non-rainy seasons.
Collapse
Affiliation(s)
- Zan Gao
- Key Lab of Northwest Water Resource, Environment, and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Qionghua Zhang
- Key Lab of Northwest Water Resource, Environment, and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an 710055, China; International Science & Technology Cooperation Center for Urban Alternative Water Resources Development, Xi'an 710055, China.
| | - Yufei Wang
- Key Lab of Northwest Water Resource, Environment, and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Xinyue Jv
- Key Lab of Northwest Water Resource, Environment, and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Mawuli Dzakpasu
- International Science & Technology Cooperation Center for Urban Alternative Water Resources Development, Xi'an 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Xiaochang C Wang
- Key Lab of Northwest Water Resource, Environment, and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an 710055, China; International Science & Technology Cooperation Center for Urban Alternative Water Resources Development, Xi'an 710055, China
| |
Collapse
|
6
|
Duan P, Ding S, Jiao L, Wang M, Zhang Y, Qian C. Simultaneous immobilization of ammonia and phosphorous by thermally treated sediment co-modified with hydrophilic organic matter and zeolite. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 339:117800. [PMID: 37030239 DOI: 10.1016/j.jenvman.2023.117800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 03/20/2023] [Accepted: 03/22/2023] [Indexed: 05/03/2023]
Abstract
The use of calcined sediments (CS) for thin-layer capping is an environment-friendly technology for controlling nitrogen (N) or phosphorus (P) release. However, the effects of CS derived materials and efficiency in controlling the sedimentary N/P ratio have not been thoroughly investigated. While zeolite-based materials have been proven efficient to remove ammonia, it is limited by the low adsorption capacity of PO43-. Herein, CS co-modified with zeolite and hydrophilic organic matter (HIM) was synthesized to simultaneously immobilize ammonium-N (NH4+-N) and remove P, due to the superior ecological security of natural HIM. Studies on the influences of calcination temperature and composition ratio indicated that 600 °C and 40% zeolite were the optimal parameters leading to the highest adsorption capacity and lowest equilibrium concentration. Compared with doping with polyaluminum chloride, doping with HIM not only enhanced P removal but also achieved higher NH4+-N immobilization efficacy. The efficiency of zeolite/CS/HIM capping and amendment in prohibiting the discharge of N/P from sediments was assessed via simulation experiments, and the relevant control mechanism was studied at the molecular level. The results indicated that zeolite/CS/HIM can reduce 49.98% and 72.27% of the N flux and 32.10% and 76.47% of the P flux in slightly and highly polluted sediments, respectively. Capping and incubation with zeolite/CS/HIM simultaneously resulted in substantial reductions in NH4+-N and dissolved total P in overlying water and pore water. Chemical state analysis indicated that HIM enhanced the NH4+-N adsorption ability of CS owing to its abundant carbonyl groups and indirectly increased P adsorption by protonating mineral surface groups. This research provides a novel strategy to control sedimentary nutrient release by adopting an efficient and ecologically secure remediation method to rehabilitate eutrophic lake systems.
Collapse
Affiliation(s)
- Pingzhou Duan
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, People's Republic of China; Institute of Water Environment Research, Chinese Research Academy of Environmental Sciences, Beijing, 100012, People's Republic of China
| | - Shuai Ding
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, People's Republic of China; Environmental Standard Institute, Ministry of Ecology and Environment of the People's Republic of China, Beijing, 100012, People's Republic of China
| | - Lixin Jiao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, People's Republic of China; Institute of Water Environment Research, Chinese Research Academy of Environmental Sciences, Beijing, 100012, People's Republic of China.
| | - Miao Wang
- Leping Branch of Jingdezhen Ecological Environment Bureau, Jiangxi, Leping, 333300, People's Republic of China
| | - Yun Zhang
- Coal Mining Geological Engineering Consulting and Geological Environment Monitoring Center, Guizhou, 550002, People's Republic of China
| | - Chang Qian
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, People's Republic of China; Institute of Water Environment Research, Chinese Research Academy of Environmental Sciences, Beijing, 100012, People's Republic of China
| |
Collapse
|
7
|
Han T, Zhou K, Li J, Chen T, Xu X, Zhang S, Chao J, Kong M. The spatial distribution and characterization of phosphorus and nitrogen in a water-carrying lake: a case study of Lake Jiaogang, China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:18674-18684. [PMID: 36217052 DOI: 10.1007/s11356-022-23475-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 10/03/2022] [Indexed: 06/16/2023]
Abstract
The sources of P and N in water-carrying lakes include exogenous input and endogenous release. However, the influence of pollution from different sources on the dynamic distribution of N and P at the sediment-water interface in water-carrying lakes remains unclear. The objectives of this study were to investigate the differences in dynamic distribution characteristics of P compounds and N elements in Lake Jiaogang, a major water-carrying lake in eastern China. Four functional regions with different types of pollutant sources and different kinds of aquatic plants were selected to study the distribution of total P (TP), inorganic P, organic P, ammonium (NH4+-N), and nitrate (NO3--N). The results revealed that regions with internal-source pollutants contained the highest concentration of TP, Ca-P, and Fe-P with high concentrations. L-P, Al-P, mostly organic P, and soluble reactive phosphorous (SRP), the region with internal-source pollutants were lower than that with the imported-source pollutant. The concentration of dissolved NH4+-N showed high in regions with imported-source pollutants, however, in regions with internal-source pollutants, the dissolved NO3--N was with the highest concentration. Overall, P from upstream was still dominant in the sediments despite uptake by the aquatic plants. SRP showed high concentration in regions with imported-source pollutants due to the imported pollution and the improved bioavailability by plant root exudates. Feces and feed residues from aquatic livestock breeding resulted in the highest concentration of TN, NH4+-N, and dissolved NO3--N in the sediments of the region with internal-source pollutants. High concentrations of dissolved NH4+-N were due to the input of N from imported source pollutants. This study provides insights into the contributions of P and N to the eutrophication of the water-carrying lake.
Collapse
Affiliation(s)
- Tianlun Han
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing, 210042, China
| | - Kang Zhou
- Chinese Research Academy of Environmental Sciences, National Engineering Laboratory for Lake Pollution, Control and Ecological Restoration, Beijing, 100012, China
| | - Jiuling Li
- Australian Centre for Water and Environmental Biotechnology, The University of Queensland, St Lucia, Brisbane, QLD, 4072, Australia
| | - Ting Chen
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing, 210042, China
| | - Xueting Xu
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing, 210042, China
| | - Shuai Zhang
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control (AEMPC), Collaborative Innovation Center of Atmospheric Environment and Equipment Technology (CIC-AEET), School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing, 210044, China
| | - Jianying Chao
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing, 210042, China
| | - Ming Kong
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing, 210042, China.
| |
Collapse
|
8
|
Zhu Z, Wang Y, Han XY, Wang WH, Li HM, Yue ZQ, Chen W, Xue FR. Strengthen the purification of eutrophic water and improve the characteristics of sediment by functional ecological floating bed suspended calcium peroxide and sponge iron jointly. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 325:116610. [PMID: 36323121 DOI: 10.1016/j.jenvman.2022.116610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 10/15/2022] [Accepted: 10/21/2022] [Indexed: 06/16/2023]
Abstract
To overcome the shortcomings of conventional ecological floating bed (CEFB) in purifying landscape water, this study constructed a functional ecological floating bed (FEFB) through the suspension of calcium peroxide (CP) and sponge iron (SI) jointly below the CEFB. The purification effect of water quality and influence of sediment were compared in control check, CEFB, and FEFB systems, which were loaded the same sediment and reclaimed water in a field experiment. Results showed that the FEFB suspended with CP and SI had evident purification effect on the quality of landscape water supplied with reclaimed water and can maintain stably the nutrient status of the water body at mesotrophic levels and low turbidity. The FEFB promoted the degradation of humus, thus eliminating the chroma risk in water body caused by the decay of plants from the CEFB. Moreover, the FEFB can control the sediment mass produced, reduce the total nitrogen (TN) mass of sediment, and decrease the transformable TN (TTN) content in the sediment. The FEFB enhanced the stability of phosphorus (P) in the sediment, where the relative content of Ca-P and stable P reached 42.18% and 64.27%, respectively. To sum up, the FEFB suspended with SI and CP can not only effectively control the eutrophication and sensory index of landscape water but also change the TTN content and P forms in sediment, making the sediment more stable. Thus, the FEFB provides an innovative approach to reduce endogenous nutrient release for landscape water along with recharging with reclaimed water.
Collapse
Affiliation(s)
- Zheng Zhu
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, China; Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, China.
| | - Yi Wang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, China; Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, China.
| | - Xue-Yi Han
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, China; Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, China.
| | - Wen-Huai Wang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, China; Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, China.
| | - Hao-Min Li
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, China; Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, China.
| | - Zi-Qi Yue
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, China; Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, China.
| | - Wei Chen
- Xi'an City Wall Management Committee, China.
| | - Fu-Rong Xue
- Xi'an City Wall Management Committee, China.
| |
Collapse
|
9
|
Hung CM, Huang CP, Hsieh SL, Chen YT, Chen CW, Dong CD. The remediation of di-(2-ethylhexyl) phthalate-contaminated sediments by water hyacinth biochar activation of calcium peroxide and its effect on cytotoxicity. ENVIRONMENTAL RESEARCH 2023; 216:114656. [PMID: 36341791 DOI: 10.1016/j.envres.2022.114656] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 09/28/2022] [Accepted: 10/22/2022] [Indexed: 06/16/2023]
Abstract
The presence of di-(2-ethylhexyl) phthalate (DEHP) in the aquatic systems, specifically marine sediments has attracted considerable attention worldwide, as it enters the food chain and adversely affects the aquatic environment and subsequently human health. This study reports an efficient carbocatalytic activation of calcium peroxide (CP) using water hyacinth biochar (WHBC) toward the efficient remediation of DEHP-contaminated sediments and offer insights into biochar-mediated cellular cytotoxicity, using a combination of chemical and bioanalytical methods. The pyrolysis temperature (300-900 °C) for WHBC preparation significantly controlled catalytic capacity. Under the experimental conditions studied, the carbocatalyst exhibited 94% of DEHP removal. Singlet oxygen (1O2), the major active species in the WHBC/CP system and electron-rich carbonyl functional groups of carbocatalyst, played crucial roles in the non-radical activation of CP. Furthermore, cellular toxicity evaluation indicated lower cytotoxicity in hepatocarcinoma cells (HepG2) after exposure to WHBC (25-1000 μg mL-1) for 24 h and that WHBC induced cell cycle arrest at the G2/M phase. Findings clearly indicated the feasibility of the WHBC/CP process for the restoration of contaminated sediment and contributing to understanding the mechanisms of cytotoxic effects and apoptotic of carbocatalyst on HepG2.
Collapse
Affiliation(s)
- Chang-Mao Hung
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
| | - Chin-Pao Huang
- Department of Civil and Environmental Engineering, University of Delaware, Newark, USA
| | - Shu-Ling Hsieh
- Department of Seafood Science, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
| | - Ya-Ting Chen
- Department of Seafood Science, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
| | - Chiu-Wen Chen
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan.
| | - Cheng-Di Dong
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan.
| |
Collapse
|