1
|
Wang K, Mukundan R, Gelda RK, Frei A. Modeling dissolved organic carbon export from water supply catchments in the northeastern United States. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 963:178532. [PMID: 39827627 DOI: 10.1016/j.scitotenv.2025.178532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 09/30/2024] [Accepted: 01/13/2025] [Indexed: 01/22/2025]
Abstract
Natural organic matter (NOM) in rivers is an important energy source to sustain aquatic ecosystem health. However, in surface water supply systems where chlorination is often used for disinfection, NOM is also a precursor for the carcinogenic and mutagenic disinfection byproducts such as trihalomethanes and haloacetic acids. Effective management of NOM in rivers to maintain both aquatic ecosystem functions and high-quality water supply requires better understanding of the NOM transport patterns. NOM is often operationally measured by dissolved organic carbon (DOC). Challenges of using DOC data for analysis on a catchment scale largely relate to the spatial and temporal variations in DOC, and low sampling frequency which fails to capture the multi-scale transport patterns. To help improve the understanding of DOC sources and transport, we analyzed its long-term patterns in six water supply catchments in the New York City Water Supply System using monitoring data and models. We tested six empirical models for DOC prediction including linear, nonlinear and time-series based model formulations. We found that generalized additive models (GAMs) produced the most robust results across catchments. Then, we applied the calibrated GAM to predict daily DOC concentrations to estimate fluxes and analyze for trends. Finally, we compared the relationships between temporal patterns in DOC and catchment features to investigate the regional differences, focusing on the catchment mechanistic processes associated with DOC by parsing out the hydrological signals. The results showed that hydrology plays a larger role on DOC temporal patterns in three catchments where the top 5 % streamflow corresponded to nearly 50 % of the annual DOC export, whereas nutrient associated production processes were more important in others. The study presents a robust approach for DOC prediction in streams and can inform targeted monitoring strategies for DOC management in water supply source waters.
Collapse
Affiliation(s)
- Kezhen Wang
- 695 Park Avenue, The Institute for Sustainable Cities, Hunter College of the City University of New York, New York, NY 10065, United States of America.
| | - Rajith Mukundan
- 71 Smith Ave., Bureau of Water Supply, New York City Department of Environmental Protection, Kingston, NY, 12401, United States of America.
| | - Rakesh K Gelda
- 71 Smith Ave., Bureau of Water Supply, New York City Department of Environmental Protection, Kingston, NY, 12401, United States of America.
| | - Allan Frei
- 695 Park Avenue, The Institute for Sustainable Cities, Hunter College of the City University of New York, New York, NY 10065, United States of America.
| |
Collapse
|
2
|
Wang Z, Sun F, Sang Y, Wu F. Drivers analysis and future scenario-based predictions of nutrient loads in key lakes and reservoirs of the Yangtze River Catchment. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 374:124078. [PMID: 39799778 DOI: 10.1016/j.jenvman.2025.124078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 12/29/2024] [Accepted: 01/06/2025] [Indexed: 01/15/2025]
Abstract
The excessive nutrient loading in lakes and reservoirs poses significant threats to water quality and ecological health, especially under the influence of global climate change and intensified human activities. This study focuses on the long-term trends in nutrient content and ratios, as well as their driving factors in six major lakes and reservoirs (Chaohu Lake, Danjiangkou Reservoir, Dianchi Lake, Dongtinghu Lake, Poyanghu Lake, and Taihu Lake) within the Yangtze River Catchment from 2002 to 2021. Utilizing Redundancy Analysis, Random Forest and Generalized Additive Model, we identify the shifts in natural and socio-economic factors influencing nutrient concentrations and predict future trends under various scenarios. The main driving factors of nutrient content and their ratios have undergone significant changes at different historical stages, with livestock poultry breeding (LPB) and hydraulic retention time (Res_time) being consistently influential. Our findings highlight the dominant role of livestock and poultry breeding and hydraulic retention time in shaping TN content, whereas TP levels are significantly affected by both natural factors (Temperature and Rainfall) and socio-economic activities. Scenario analyses reveal that despite improvements in water management, nutrient loads remain high, posing ongoing risks of eutrophication. Future lakes nutrient content can meet existing water quality standards under socio-economic development scenarios that significantly reduce hydraulic retention time and the contributions of livestock poultry breeding and other socio-economic drivers.
Collapse
Affiliation(s)
- Ziteng Wang
- State Key Laboratory of Environment Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Fuhong Sun
- State Key Laboratory of Environment Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China.
| | - Yiwen Sang
- College of Environmental Sciences & Engineering, Beijing Forestry University, Beijing 100083, China
| | - Fengchang Wu
- State Key Laboratory of Environment Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China.
| |
Collapse
|
3
|
Mishra S, Chauhan MS, Sundaramurthy S. Assessing groundwater quality dynamics in Madhya Pradesh: Chemical contaminants and their temporal patterns. ENVIRONMENTAL RESEARCH 2024; 252:118887. [PMID: 38588910 DOI: 10.1016/j.envres.2024.118887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 04/04/2024] [Accepted: 04/05/2024] [Indexed: 04/10/2024]
Abstract
Groundwater is essential for maintaining ecosystem health and overall well-being as a pivotal resource for plants and animals. The increasing public consciousness of the deterioration of groundwater quality has emphasized the significance of undertaking extended evaluations of groundwater water quality, particularly in regions undergoing substantial hydrological alterations. This study primarily aims to investigate the spatio-temporal variations in groundwater quality and evaluate its suitability for potable purposes in the region of Madhya Pradesh. The study combines the Mann-Kendall (MK) test and Sen's Slope (SS) to analyze the changes in groundwater quality of all 51 districts of Madhya Pradesh, India, utilizing 12 water quality indices using MATLAB. Data was sourced from the Central Ground Water Board (CGWB) in India from the year 2001-2021. The data was then tested for homogeneity at all 1154 sampling stations using the software XLSTAT. Piper plot clustering characterized the state's groundwater as bicarbonate-calcium-magnesium (HCO3--Ca2+-Mg2+) type. The study found that the groundwater in the area is heavily impacted by high levels of nitrate and hardness, which is caused by an increase in multivalent cations. The water was classified as ranging from hard to extremely hard, and approximately 25.49% of the state's groundwater has nitrate levels that exceed the acceptable limits. The MK test showed a significant increasing correlation in trends for parameters such as nitrate, sulfate, fluoride, chloride, bicarbonate, total hardness, and electrical conductivity. It also showed a significant decreasing correlation for calcium, magnesium, potassium, and sodium. These results were observed at a confidence level of 95%. The analysis of trends has shown that human-related factors have a considerable effect on the characteristics of groundwater quality. It is therefore recommended that such human-related factors be taken into consideration when developing policies for managing groundwater resources. Consequently, these policies should emphasize the strict enforcement of rules and standards that limit the overuse of fertilizers, ensure the appropriate disposal of municipal solid and liquid wastes, and regulate industrial pollutants.
Collapse
Affiliation(s)
- Satyam Mishra
- Department of Civil Engineering, Maulana Azad National Institute of Technology, 462 003, Bhopal, Madhya Pradesh, India.
| | - Mrityunjay Singh Chauhan
- Department of Civil Engineering, Maulana Azad National Institute of Technology, 462 003, Bhopal, Madhya Pradesh, India.
| | - Suresh Sundaramurthy
- Department of Chemical Engineering, Maulana Azad National Institute of Technology, 462 003, Bhopal, Madhya Pradesh, India.
| |
Collapse
|
4
|
Imbrogno A, Nguyen MN, Schäfer AI. Tutorial review of error evaluation in experimental water research at the example of membrane filtration. CHEMOSPHERE 2024; 357:141833. [PMID: 38579944 DOI: 10.1016/j.chemosphere.2024.141833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 03/13/2024] [Accepted: 03/26/2024] [Indexed: 04/07/2024]
Abstract
Experimental water research lacks clear methodology to estimate experimental error. Especially when natural waters are involved, the characterization tools bear method-specific artifacts while the varying environmental conditions prevent regular repeats. This tutorial review identifies common mistakes, and proposes a practical procedure to determine experimental errors at the example of membrane filtration. Statistical analysis is often applied to an insufficient number of repeated measurements, while not all error sources and contributions are considered. This results in an underestimation of the experimental error. Variations in relevant experimental parameters need to be investigated systematically, and the related errors are quantified as a half of the variation between the max and min values when standard deviation is not applicable. Error of calculated parameters (e.g. flux, pollutant removal and mass loss) is estimated by applying error propagation, where weighing contributions of the experimental parameters are considered. Appropriate judgment and five-time repetition of a selected experiment under identical conditions are proposed to validate the propagated experimental error. For validation, the five repeated data points should lie within the estimated error range of the error bar. The proposed error evaluation procedure is adaptable in experimental water research and intended for researchers to identify the contributing factors of an experimental error and carry out appropriate error quantification and validation. The most important aim is to raise awareness of the necessity to question error methodology and reproducibility of experimental data, to produce and publish high quality research.
Collapse
Affiliation(s)
- Alessandra Imbrogno
- Institute for Advanced Membrane Technology (IAMT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Minh N Nguyen
- Institute for Advanced Membrane Technology (IAMT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Andrea I Schäfer
- Institute for Advanced Membrane Technology (IAMT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany.
| |
Collapse
|
5
|
Huang W, Wei L, Yang Y, Sun J, Ding L, Wu X, Zheng L, Huang Q. Estuarine environmental flow assessment based on the flow-ecological health index relation model: a case study in Yangtze River Estuary, China. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:348. [PMID: 38446276 DOI: 10.1007/s10661-024-12487-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 02/19/2024] [Indexed: 03/07/2024]
Abstract
Environmental flow (e-flow) is the water demand of one given ecosystem, which can become the flow regulation target for protection and restoration of river or estuarine ecosystems. In this study, an e-flow assessment based on the flow-ecological health index (EHI) relation model was conducted to improve ecosystem health of the Yangtze River Estuary (YRE). Monitoring data of hydrology, biology, and water environment in the last decades were used for the model establishment. For the description of the YRE ecosystem, an EHI system was developed by cumulative frequency distribution curves and adaption of national standards. After preprocessing original flow values into proportional flow values, the generalized additive model and Monte Carlo random sampling were used for the establishment of the flow-EHI relation model. From the model calculation, the e-flow assessment results were that, in proportional flow values, the suitable flow range was 1.05-1.35, and the optimum flow range was 1.15-1.25 (flows in Yangtze River Datong Station). For flow regulation in two crucial periods, flows of 42,630-65,545 m3/s or over 14,675 m3/s are needed for the suitable flow of YRE in summer (June-August) or January, respectively. An adaptive management framework of ecological health-based estuarine e-flow assessment for YRE was contrived due to the limitation of current established model when facing the extreme drought in summer, 2022. The methodology and framework in this study are expected to provide valuable management and data support for the sustainable development of estuarine ecosystems and to bring inspiration for further studies at even continental or global levels.
Collapse
Affiliation(s)
- Weizheng Huang
- Key Laboratory of Yangtze River Water Environment of the Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Lai Wei
- Key Laboratory of Yangtze River Water Environment of the Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Ya Yang
- Key Laboratory of Yangtze River Water Environment of the Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Jinnuo Sun
- Key Laboratory of Yangtze River Water Environment of the Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Ling Ding
- Shanghai Investigation, Design and Research Institute Co., Ltd. (SIDRI), Shanghai, 200335, China
| | - Xinghua Wu
- Research Center for Eco-Environmental Engineering, China Three Gorges Corporation (CTG), Beijing, 100038, China
| | - Leifu Zheng
- Shanghai Investigation, Design and Research Institute Co., Ltd. (SIDRI), Shanghai, 200335, China
| | - Qinghui Huang
- Key Laboratory of Yangtze River Water Environment of the Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China.
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China.
| |
Collapse
|
6
|
Russo L, Bellardini D, Steinberg DK, Congestri R, Lomas MW, D'Alelio D. Long-term oscillations in the normalized biomass-size spectrum reveal the impact of oligotrophication on zooplankton trophic structure in the North Atlantic Subtropical Gyre. MARINE ENVIRONMENTAL RESEARCH 2024; 193:106295. [PMID: 38118377 DOI: 10.1016/j.marenvres.2023.106295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 11/30/2023] [Accepted: 12/04/2023] [Indexed: 12/22/2023]
Abstract
Ocean warming of the North Atlantic Subtropical Gyre (NASG) induced oligotrophication and a decrease in integrated net primary production during the 2010s, potentially affecting higher trophic levels. We analyzed long-term records (1994-2019) of daytime and nighttime zooplankton biomass in five size classes from the NASG. Daytime biomass decreased in the three largest size classes during the 2010s, while decrease in nighttime biomass was less evident due to the relative stability in diel vertical migrator biomass. We used the normalized biomass size spectrum (NBSS) to estimate the relative transfer efficiency between trophic levels. The steepness of the NBSS slope at the end of the time series increased by 14% (daytime) and 24% (nighttime) from the maximum observed annual average values (2011 and 2009, respectively). This suggests oligotrophication during the 2010s led to a significant reduction in the transfer of biomass across trophic levels, with negative impacts on the NASG planktonic food web.
Collapse
Affiliation(s)
- Luca Russo
- Program in Evolutionary Biology and Ecology, Department of Biology, University of Rome 'Tor Vergata', Via della Ricerca scientifica 1, 00133, Rome, Italy.
| | - Daniele Bellardini
- Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121, Naples, Italy; DiSTAV, Department of Earth, Environment and Life Sciences, University of Genoa, Corso Europa 26, 16132, Genoa, Italy.
| | - Deborah K Steinberg
- Coastal & Ocean Processes Section, Virginia Institute of Marine Science, William & Mary, Gloucester Point, VA, 23062, USA.
| | - Roberta Congestri
- Laboratory of Biology of Algae, Department of Biology, University of Rome 'Tor Vergata', Via Cracovia 1, 00133, Rome, Italy.
| | - Michael W Lomas
- Bigelow Laboratory for Ocean Sciences, 60 Bigelow Drive, East Boothbay, ME, 04544, USA.
| | - Domenico D'Alelio
- Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121, Naples, Italy; NBFC, National Biodiversity Future Center, Piazza Marina 61, 90133, Palermo, Italy.
| |
Collapse
|
7
|
Uddin MG, Diganta MTM, Sajib AM, Rahman A, Nash S, Dabrowski T, Ahmadian R, Hartnett M, Olbert AI. Assessing the impact of COVID-19 lockdown on surface water quality in Ireland using advanced Irish water quality index (IEWQI) model. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 336:122456. [PMID: 37673321 DOI: 10.1016/j.envpol.2023.122456] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 07/23/2023] [Accepted: 08/23/2023] [Indexed: 09/08/2023]
Abstract
The COVID-19 pandemic has significantly impacted various aspects of life, including environmental conditions. Surface water quality (WQ) is one area affected by lockdowns imposed to control the virus's spread. Numerous recent studies have revealed the considerable impact of COVID-19 lockdowns on surface WQ. In response, this research aimed to assess the impact of COVID-19 lockdowns on surface water quality in Ireland using an advanced WQ model. To achieve this goal, six years of water quality monitoring data from 2017 to 2022 were collected for nine water quality indicators in Cork Harbour, Ireland, before, during, and after the lockdowns. These indicators include pH, water temperature (TEMP), salinity (SAL), biological oxygen demand (BOD5), dissolved oxygen (DOX), transparency (TRAN), and three nutrient enrichment indicators-dissolved inorganic nitrogen (DIN), molybdate reactive phosphorus (MRP), and total oxidized nitrogen (TON). The results showed that the lockdown had a significant impact on various WQ indicators, particularly pH, TEMP, TON, and BOD5. Over the study period, most indicators were within the permissible limit except for MRP, with the exception of during COVID-19. During the pandemic, TON and DIN decreased, while water transparency significantly improved. In contrast, after COVID-19, WQ at 7% of monitoring sites significantly deteriorated. Overall, WQ in Cork Harbour was categorized as "good," "fair," and "marginal" classes over the study period. Compared to temporal variation, WQ improved at 17% of monitoring sites during the lockdown period in Cork Harbour. However, no significant trend in WQ was observed. Furthermore, the study analyzed the advanced model's performance in assessing the impact of COVID-19 on WQ. The results indicate that the advanced WQ model could be an effective tool for monitoring and evaluating lockdowns' impact on surface water quality. The model can provide valuable information for decision-making and planning to protect aquatic ecosystems.
Collapse
Affiliation(s)
- Md Galal Uddin
- School of Engineering, University of Galway, Ireland; Ryan Institute, University of Galway, Ireland; MaREI Research Centre, University of Galway, Ireland; Eco-HydroInformatics Research Group (EHIRG), Civil Engineering, University of Galway, Ireland.
| | - Mir Talas Mahammad Diganta
- School of Engineering, University of Galway, Ireland; Ryan Institute, University of Galway, Ireland; MaREI Research Centre, University of Galway, Ireland; Eco-HydroInformatics Research Group (EHIRG), Civil Engineering, University of Galway, Ireland
| | - Abdul Majed Sajib
- School of Engineering, University of Galway, Ireland; Ryan Institute, University of Galway, Ireland; MaREI Research Centre, University of Galway, Ireland; Eco-HydroInformatics Research Group (EHIRG), Civil Engineering, University of Galway, Ireland
| | - Azizur Rahman
- School of Computing, Mathematics and Engineering, Charles Sturt University, Wagga Wagga, Australia; The Gulbali Institute of Agriculture, Water and Environment, Charles Sturt University, Wagga Wagga, Australia
| | - Stephen Nash
- School of Engineering, University of Galway, Ireland; Ryan Institute, University of Galway, Ireland; MaREI Research Centre, University of Galway, Ireland
| | | | - Reza Ahmadian
- School of Engineering, Cardiff University, The Parade, Cardiff, CF24 3AQ, UK
| | - Michael Hartnett
- School of Engineering, University of Galway, Ireland; Ryan Institute, University of Galway, Ireland
| | - Agnieszka I Olbert
- School of Engineering, University of Galway, Ireland; Ryan Institute, University of Galway, Ireland; MaREI Research Centre, University of Galway, Ireland; Eco-HydroInformatics Research Group (EHIRG), Civil Engineering, University of Galway, Ireland
| |
Collapse
|
8
|
Ezzati G, Kyllmar K, Barron J. Long-term water quality monitoring in agricultural catchments in Sweden: Impact of climatic drivers on diffuse nutrient loads. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 864:160978. [PMID: 36563753 DOI: 10.1016/j.scitotenv.2022.160978] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 12/08/2022] [Accepted: 12/12/2022] [Indexed: 06/17/2023]
Abstract
Water quality related to non-point source pollution continues to pose challenges in agricultural landscapes, despite two completed cycles of Water Framework Directive actions by farmers and landowners. Future climate projections will cause new challenges in landscape hydrology and subsequently, the potential responses in water quality. Investigating the nutrient trends in surface waters and studying the efficiency of mitigation measures revealed that loads and measures are highly variable both spatially and temporally in catchments with different agro-climatic and environmental conditions. In Sweden, nitrogen and phosphorus loads in eight agricultural catchments (470-3300 ha) have been intensively monitored for >20 years. This study investigated the relationship between precipitation, air temperature, and discharge patterns in relation to nitrogen (N) and phosphorus (P) loads at catchment outlets. The time series data analysis was carried out by integrating Mann-Kendall test, Pettitt break-points, and Generalized Additive Model. The results showed that the nutrient loads highly depend on water discharge, which had large variation in annual average (158-441 mm yr-1). The annual average loads were also considerably different among the catchments with total N (TN) loads ranging from 6.76 to 35.73 kg ha-1, and total P (TP) loads ranging from 0.11 to 1.04 kg ha-1. The climatic drivers were highly significant indicators of nutrient loads but with varying degree of significance. Precipitation (28-962 mm yr-1) was a significant indicator of TN loads in five catchments (loamy sand/sandy loam) while annual average temperature (6.5-8.7 °C yr-1) was a significant driver of TN loads in six out of eight catchments. TP loads were associated with precipitation in two catchments and significantly correlated to water discharge in six catchments. Considering the more frequent occurrence of extreme weather events, it is necessary to tailor N and P mitigation measures to future climate-change features of precipitation, temperature, and discharge.
Collapse
Affiliation(s)
- G Ezzati
- Department of Soil and Environment, Swedish University of Agricultural Sciences, P.O. Box 7014, SE-750 07 Uppsala, Sweden.
| | - K Kyllmar
- Department of Soil and Environment, Swedish University of Agricultural Sciences, P.O. Box 7014, SE-750 07 Uppsala, Sweden
| | - J Barron
- Department of Soil and Environment, Swedish University of Agricultural Sciences, P.O. Box 7014, SE-750 07 Uppsala, Sweden
| |
Collapse
|