1
|
Gao L, Hao J, Hua Z, Zeng C, Li J, Zeng J. Lipidomics Atlas Tracks Alterations Associated with Deltamethrin-Induced Developmental Neurotoxicity in Embryonic Zebrafish. J Proteome Res 2025. [PMID: 40176748 DOI: 10.1021/acs.jproteome.4c00779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2025]
Abstract
Deltamethrin (DM) is a widely used pyrethroid pesticide associated with childhood neurodevelopmental disorders. However, the specific impact of DM exposure during distinct early life stages remains unclear. Here, zebrafish embryos were exposed to DM at different stages: before (10-16 hpf), at the onset of (16-24 hpf), at the peak of (24-36 hpf) hypothalamic neurogenesis, and continuously from 10 to 120 hpf (subchronic exposure), using different dosages (1, 100, and 250 nM). Exposure to middle/high-dose DM at 24-36 and 10-120 hpf significantly reduced zebrafish locomotor activities and increased apoptotic cells in the spinal cord. As a pivotal factor in central nervous system disorder progression, altered lipid metabolism was investigated using nontargeted lipidomic analysis. DM exposure at 10-16 and 24-36 hpf led to the most significant lipidome reprogramming. Despite exhibiting a dose-dependent trend, even low-dose DM changed the lipidome. Cer 40:2;2 and PG 44:12 showed potential in identifying DM exposure effects. Significant changes in sphingolipid, cardiolipin, phosphatidylglycerol, and glycerolipid pathways were linked to DM-induced developmental neurotoxicity, indicating impaired membrane function, mitochondrial damage, and disrupted energy metabolism. Our study sheds new light on assessing early neurodevelopmental disturbances and identifying intervention targets, emphasizing sensitivity to DM during the critical early phase of neurodevelopment.
Collapse
Affiliation(s)
- Longhua Gao
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China
| | - Jingwen Hao
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China
| | - Zhengyi Hua
- School of Life Sciences, Xiamen University, Xiamen 361102, China
| | - Changchun Zeng
- Department of Medical Laboratory, Shenzhen Longhua District Central Hospital, Shenzhen 518110, China
| | - Jia Li
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Jun Zeng
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China
- Xiamen Key Laboratory of Marine Functional Food, Xiamen 361021, China
- Research Unit Analytical BioGeoChemistry, Helmholtz Munich, Neuherberg 85764, Germany
| |
Collapse
|
2
|
Ramirez‐Duarte WF, Moran BM, Powell DL, Bank C, Sousa VC, Rosenthal GG, Schumer M, Rochman CM. Hybridization in the Anthropocene - how pollution and climate change disrupt mate selection in freshwater fish. Biol Rev Camb Philos Soc 2025; 100:35-49. [PMID: 39092475 PMCID: PMC11718598 DOI: 10.1111/brv.13126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 07/17/2024] [Accepted: 07/22/2024] [Indexed: 08/04/2024]
Abstract
Chemical pollutants and/or climate change have the potential to break down reproductive barriers between species and facilitate hybridization. Hybrid zones may arise in response to environmental gradients and secondary contact between formerly allopatric populations, or due to the introduction of non-native species. In freshwater ecosystems, field observations indicate that changes in water quality and chemistry, due to pollution and climate change, are correlated with an increased frequency of hybridization. Physical and chemical disturbances of water quality can alter the sensory environment, thereby affecting chemical and visual communication among fish. Moreover, multiple chemical compounds (e.g. pharmaceuticals, metals, pesticides, and industrial contaminants) may impair fish physiology, potentially affecting phenotypic traits relevant for mate selection (e.g. pheromone production, courtship, and coloration). Although warming waters have led to documented range shifts, and chemical pollution is ubiquitous in freshwater ecosystems, few studies have tested hypotheses about how these stressors may facilitate hybridization and what this means for biodiversity and species conservation. Through a systematic literature review across disciplines (i.e. ecotoxicology and evolutionary biology), we evaluate the biological interactions, toxic mechanisms, and roles of physical and chemical environmental stressors (i.e. chemical pollution and climate change) in disrupting mate preferences and inducing interspecific hybridization in freshwater fish. Our study indicates that climate change-driven changes in water quality and chemical pollution may impact visual and chemical communication crucial for mate choice and thus could facilitate hybridization among fishes in freshwater ecosystems. To inform future studies and conservation management, we emphasize the importance of further research to identify the chemical and physical stressors affecting mate choice, understand the mechanisms behind these interactions, determine the concentrations at which they occur, and assess their impact on individuals, populations, species, and biological diversity in the Anthropocene.
Collapse
Affiliation(s)
- Wilson F. Ramirez‐Duarte
- Department of Ecology & Evolutionary BiologyUniversity of Toronto25 Willcocks Street, Room 3055TorontoOntarioM5S 3B2Canada
| | - Benjamin M. Moran
- Department of BiologyStanford University327 Campus DriveStanfordCA94305USA
| | - Daniel L. Powell
- Department of BiologyStanford University327 Campus DriveStanfordCA94305USA
| | - Claudia Bank
- Institute of Ecology and EvolutionUniversität BernBaltzerstrasse 6Bern3012Switzerland
- Swiss Institute for BioinformaticsLausanne1015Switzerland
| | - Vitor C. Sousa
- Centre for Ecology, Evolution and Environmental ChangesUniversity of LisbonCampo Grande 016Lisbon1749‐016Portugal
| | - Gil G. Rosenthal
- Department of BiologyUniversità degli Studi di PadovaPadova35131Italy
- Centro de Investigaciones Científicas de las Huastecas ‘Aguazarca’CalnaliHgo43244Mexico
| | - Molly Schumer
- Department of BiologyStanford University327 Campus DriveStanfordCA94305USA
| | - Chelsea M. Rochman
- Department of Ecology & Evolutionary BiologyUniversity of Toronto25 Willcocks Street, Room 3055TorontoOntarioM5S 3B2Canada
| |
Collapse
|
3
|
Blanc-Legendre M, Guillot L, Chevalier L, Malleret C, Le Menach K, Pardon P, Budzinski H, Brion F, Sire S, Coumailleau P, Charlier TD, Pellegrini E, Cousin X. Long-term impact of embryonic exposure to ethinylestradiol and clotrimazole on behavior and neuroplasticity in zebrafish (Danio rerio). ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2025; 113:104592. [PMID: 39581484 DOI: 10.1016/j.etap.2024.104592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 10/10/2024] [Accepted: 11/21/2024] [Indexed: 11/26/2024]
Abstract
Estrogen receptors (ER) are widely expressed in the brain of many species and experimental results highlighted the role of estradiol in neuronal plasticity and behavior. Consequently, the brain is therefore a prime target for endocrine disrupting chemicals (EDCs) interacting with estrogen signaling. Very little is known about the late effects of early disruption of estrogen signaling by EDCs. We focused on: ethinylestradiol (EE2; ER agonist) and clotrimazole (inhibitor of key steroidogenesis enzymes, including aromatases). Zebrafish eleutheroembryos were exposed (0-5 days) and then raised normally until adulthood. Several behavioral tests were performed in adults, then cell proliferation and dopaminergic neurons were quantified in several brain regions using immunostaining. Overall, a developmental exposure to EDCs stimulates cell proliferation in the dorsal telencephalon. At environmentally-relevant concentrations, male fish exposed to EE2 exhibited increased activity levels and decreased social behavior, posing a potential risk to population balance and health.
Collapse
Affiliation(s)
- M Blanc-Legendre
- MARBEC, University of Montpellier, CNRS, Ifremer, IRD, INRAE, Palavas-les-Flots, France
| | - L Guillot
- University of Rennes, Inserm, Irset (Institut de Recherche en Santé, Environnement et Travail), UMR_S, Rennes 1085, France
| | - L Chevalier
- University of Rennes, Inserm, Irset (Institut de Recherche en Santé, Environnement et Travail), UMR_S, Rennes 1085, France
| | - C Malleret
- University of Rennes, Inserm, Irset (Institut de Recherche en Santé, Environnement et Travail), UMR_S, Rennes 1085, France
| | - K Le Menach
- University Bordeaux, CNRS, Bordeaux INP, EPOC, UMR 5805, Pessac 33600, France
| | - P Pardon
- University Bordeaux, CNRS, Bordeaux INP, EPOC, UMR 5805, Pessac 33600, France
| | - H Budzinski
- University Bordeaux, CNRS, Bordeaux INP, EPOC, UMR 5805, Pessac 33600, France
| | - F Brion
- Ecotoxicologie des substances et des milieux, Parc ALATA, INERIS, Verneuil-en-Halatte 60550, France
| | - S Sire
- MARBEC, University of Montpellier, CNRS, Ifremer, IRD, INRAE, Palavas-les-Flots, France
| | - P Coumailleau
- University of Rennes, Inserm, Irset (Institut de Recherche en Santé, Environnement et Travail), UMR_S, Rennes 1085, France
| | - T D Charlier
- University of Rennes, Inserm, Irset (Institut de Recherche en Santé, Environnement et Travail), UMR_S, Rennes 1085, France; University of Rennes, ImPACcell Platform, Biosit, Rennes, France
| | - E Pellegrini
- University of Rennes, Inserm, Irset (Institut de Recherche en Santé, Environnement et Travail), UMR_S, Rennes 1085, France
| | - X Cousin
- MARBEC, University of Montpellier, CNRS, Ifremer, IRD, INRAE, Palavas-les-Flots, France.
| |
Collapse
|
4
|
Qiu X, Tang J, Zhang Y, Li M, Chen K, Shi Y, Wu X. A transcriptomics-based analysis of mechanisms involved in the neurobehavioral effects of 6PPD-quinone on early life stages of zebrafish. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 276:107129. [PMID: 39454255 DOI: 10.1016/j.aquatox.2024.107129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 10/02/2024] [Accepted: 10/18/2024] [Indexed: 10/28/2024]
Abstract
As an emerging pollutant frequently detected in aquatic ecosystems, the toxicity of N-(1,3-dimethylbutyl)-N'-phenyl-p-phenylenediamine-quinone (6PPD-quinone) on fish has been confirmed, but insight into the mechanisms underlying those adverse effects is still limited. Thus, we exposed zebrafish embryos to 6PPD-quinone at 0, 0.25, 2.5, and 25 μg/L until 120 h post-fertilization (hpf), and investigated the variations in their development, behavior, monoamine neurotransmitter levels, and transcriptional profile. Exposure to 6PPD-quinone notably elevated the heart rate of zebrafish at 48 hpf (at 2.5 and 25 μg/L) and 72 hpf (at 0.25, 2.5, and 25 μg/L). In the dark-light transition test, the locomotor activity of zebrafish larvae exposed to 6PPD-quinone significantly increased, especially in the dark periods. Exposure to 6PPD-quinone also altered the dopamine level and its turnover in zebrafish, which exhibited significant correlations to their locomotor activity. RNA sequencing identified 394 differentially expressed genes (DEGs), most of which have the molecular function of binding and catalytic activity. Five DEGs were predicted as the key driver genes in the protein-protein interaction networks associated with circadian rhythm (i.e., npas2), protein processing in endoplasmic reticulum (i.e., hsp90b1 and pdia4), and estrogen signaling pathway (i.e., hsp90aa1.1 and hsp90aa1.2). Our findings provide more insights into mechanisms underlying the toxicity of 6PPD-quinone to teleosts and highlight the necessity to assess its potential risks to aquatic ecosystems.
Collapse
Affiliation(s)
- Xuchun Qiu
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, China.
| | - Jie Tang
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Yibing Zhang
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Ming Li
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Kun Chen
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Yanhong Shi
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China.
| | - Xiangyang Wu
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| |
Collapse
|
5
|
Yuan X, Wu H, Gao J, Yang C, Xiong Z, Wu J, Wang C, Liu D, Shen J, Song R. Deltamethrin increased susceptibility to Aeromonas hydrophila in crucian carp through compromising gill barrier. CHEMOSPHERE 2024; 365:143379. [PMID: 39306116 DOI: 10.1016/j.chemosphere.2024.143379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 09/18/2024] [Accepted: 09/19/2024] [Indexed: 10/12/2024]
Abstract
Pyrethroids serve as a significant method for managing and preventing parasitic diseases in fish. Among these, deltamethrin (DEL) is used extensively in aquatic environments. Our previous work has been confirmed that DEL exposure can induce oxidative stress and immunosuppression on the gill mucosal barrier of crucian carp (Carassius auratus). However, it is not clear whether DEL affects the susceptibility of farmed fish to bacterial infection. In this study, fish was pre-exposed to different DEL concentration (0, 0.3 and 0.6 μg L-1) and then challenged by immersion with Aeromonas hydrophila (1.0 × 10^8 CFU mL-1). After immersion challenge, fish pre-exposed to DEL developed prominent lipopolysaccharides level in gill and serum and had a significantly lower survival rate compared to the control group. In DEL pre-exposure fish after immersion, the gill apoptosis levels were significantly higher and disrupted the tight junction barrier by downregulating the zo1 and claudin12. Furthermore, fish pre-exposed to DEL exhibited increased activities of superoxide dismutase (SOD), total antioxidant capacity (T-AOC), and malonaldehyde (MDA) levels in the early stage after immersion but experiencing decreased activities of glutathione peroxidase (GPx) and lysozyme (LZM) in the later stage after immersion. And this process was regulated by the NRF2 pathway. Additionally, fish pre-exposed to DEL after immersion had significantly lower mRNA levels of immune-related genes tlr4, myd88, tnfα, and il-1β. Overall, these findings indicate that DEL damaged the gill barrier, weakened the immune response, raised LPS levels, and heightened vulnerability to A. hydrophila infection in crucian carp, resulting in mortality. Thus, this work will help social groups and aquaculture workers to understand the potential risk of DEL exposure for bacterial secondary infection in cultured fish.
Collapse
Affiliation(s)
- Xiping Yuan
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China; Hunan Fisheries Science Institute, Changsha, 410153, China.
| | - Hao Wu
- Hunan Fisheries Science Institute, Changsha, 410153, China.
| | - Jinwei Gao
- Hunan Fisheries Science Institute, Changsha, 410153, China.
| | - Can Yang
- Hunan Fisheries Science Institute, Changsha, 410153, China.
| | - Zhenzhen Xiong
- Hunan Fisheries Science Institute, Changsha, 410153, China.
| | - Jiayu Wu
- Hunan Fisheries Science Institute, Changsha, 410153, China.
| | - Chongrui Wang
- Hunan Fisheries Science Institute, Changsha, 410153, China.
| | - Dong Liu
- Hunan Fisheries Science Institute, Changsha, 410153, China.
| | - Jianzhong Shen
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Rui Song
- Hunan Fisheries Science Institute, Changsha, 410153, China.
| |
Collapse
|
6
|
Wang J, Li H, Liu Y, Andrzejczyk NE, Qiao K, Ma Y, Zhou S, Gui W, Zhu G, Li S, Schlenk D. Contribution of Immune Responses to the Cardiotoxicity and Hepatotoxicity of Deltamethrin in Early Life Stage Zebrafish ( Danio rerio). ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:9515-9524. [PMID: 38687472 DOI: 10.1021/acs.est.3c10682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
Deltamethrin (DM) is a widely used insecticide that has demonstrated developmental toxicity in the early life stages of fish. To better characterize the underlying mechanisms, embryos from Tg(cmlc2:RFP), Tg(apo14:GFP), and Tg(mpx:GFP) transgenic strains of zebrafish were exposed to nominal DM concentrations of 0.1, 1, 10, 25, and 50 μg/L until 120 h post-fertilization (hpf). Heart size increased 56.7%, and liver size was reduced by 17.1% in zebrafish exposed to 22.7 and 24.2 μg/L DM, respectively. RNA sequencing and bioinformatic analyses predicted that key biological processes affected by DM exposure were related to inflammatory responses. Expression of IL-1 protein was increased by 69.0% in the 24.4 μg/L DM treatment, and aggregation of neutrophils in cardiac and hepatic histologic sections was also observed. Coexposure to resatorvid, an anti-inflammatory agent, mitigated inflammatory responses and cardiac toxicity induced by DM and also restored liver biomass. Our data indicated a complex proinflammatory mechanism underlying DM-induced cardiotoxicity and hepatotoxicity which may be important for key events of adverse outcomes and associated risks of DM to early life stages of fish.
Collapse
Affiliation(s)
- Jie Wang
- Institute of Pesticide and Environmental Toxicology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, P. R. China
| | - Hanqing Li
- Institute of Pesticide and Environmental Toxicology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, P. R. China
| | - Yuanyuan Liu
- Institute of Pesticide and Environmental Toxicology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, P. R. China
| | - Nicolette E Andrzejczyk
- Department of Environmental Sciences,University of California, Riverside, California 92521, United States
| | - Kun Qiao
- Institute of Pesticide and Environmental Toxicology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, P. R. China
- Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, P. R. China
- Department Evolutionary Ecology and Environmental Toxicology, Faculty Biological Sciences, Goethe University 10 Frankfurt, Frankfurt Am Main 60438, Germany
| | - Yongfang Ma
- Institute of Pesticide and Environmental Toxicology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, P. R. China
| | - Shengli Zhou
- Ecological and Environmental Monitoring Center of Zhejiang Province, Hangzhou 310012, P. R. China
| | - Wenjun Gui
- Institute of Pesticide and Environmental Toxicology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, P. R. China
| | - Guonian Zhu
- Institute of Pesticide and Environmental Toxicology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, P. R. China
| | - Shuying Li
- Institute of Pesticide and Environmental Toxicology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, P. R. China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Zhejiang University, Hangzhou 310058, P. R. China
| | - Daniel Schlenk
- Department of Environmental Sciences,University of California, Riverside, California 92521, United States
| |
Collapse
|
7
|
Wu H, Gao J, Xie Z, Xie M, Song R, Yuan X, Wu Y, Ou D. Effect of chronic deltamethrin exposure on brain transcriptome and metabolome of juvenile crucian carp. ENVIRONMENTAL TOXICOLOGY 2024; 39:1544-1555. [PMID: 38009670 DOI: 10.1002/tox.24022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 05/05/2023] [Accepted: 10/31/2023] [Indexed: 11/29/2023]
Abstract
Deltamethrin (Del), a widely administered pyrethroid insecticide, has been established as a common contaminant of the freshwater environment and detected in many freshwater ecosystems. In this study, we investigated the changes in brain transcriptome and metabolome of crucian carp after exposure to 0.6 μg/L Del for 28 days. Elevated MDA levels and inhibition of SOD activity indicate damage to the antioxidant system. Moreover, a total of 70 differential metabolites (DMs) were identified using the liquid chromatography-mass spectrometry, including 32 upregulated and 38 downregulated DMs in the Del-exposed group. The DMs associated with chronic Del exposure were enriched in steroid hormone biosynthesis, fatty acid metabolism, and glycerophospholipid metabolism for prostaglandin G2, 5-oxoeicosatetraenoic acid, progesterone, androsterone, etiocholanolone, and hydrocortisone. Transcriptomics analysis revealed that chronic Del exposure caused lipid metabolism disorder, endocrine disruption, and proinflammatory immune response by upregulating the pla2g4, cox2, log5, ptgis, lcn, and cbr expression. Importantly, the integrative analysis of transcriptomics and metabolomics indicated that the arachidonic acid metabolism pathway and steroid hormone biosynthesis were decisive processes in the brain tissue of crucian carp after Del exposure. Furthermore, Del exposure perturbed the tight junction, HIF-1 signaling pathway, and thyroid hormone signaling pathway. Overall, transcriptome and metabolome data of our study offer a new insight to assess the risk of chronic Del exposure in fish brains.
Collapse
Affiliation(s)
- Hao Wu
- Hunan Fisheries Science Institute, Changsha, China
| | - Jinwei Gao
- Hunan Fisheries Science Institute, Changsha, China
| | - Zhonggui Xie
- Hunan Fisheries Science Institute, Changsha, China
| | - Min Xie
- Hunan Fisheries Science Institute, Changsha, China
| | - Rui Song
- Hunan Fisheries Science Institute, Changsha, China
| | - Xiping Yuan
- Hunan Fisheries Science Institute, Changsha, China
| | - Yuanan Wu
- Hunan Fisheries Science Institute, Changsha, China
| | - Dongsheng Ou
- Hunan Fisheries Science Institute, Changsha, China
| |
Collapse
|
8
|
Qiu SQ, Huang GY, Li XP, Lei DQ, Wang CS, Ying GG. A comparative study on endocrine disrupting effects of leachates from virgin and aged plastics under simulated media in marine medaka larvae (Oryzias melastigma). JOURNAL OF HAZARDOUS MATERIALS 2023; 446:130700. [PMID: 36592560 DOI: 10.1016/j.jhazmat.2022.130700] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/18/2022] [Accepted: 12/28/2022] [Indexed: 06/17/2023]
Abstract
Marine plastic pollution has garnered substantial attention, but the potential endocrine disrupting effects of plastic leachates in marine organisms remain unclear. In this study, the larvae of marine medaka (Oryzias melastigma) were exposed to the leachates from virgin and aged plastics soaked in simulated seawater and fish digest for 3 days. The concentrations of vitellogenin (VTG), estradiol (E2), and 11-ketotestosterone (11-KT), as well as the transcripts of endocrine-related genes were measured in the larvae. The results revealed that endogenous E2 was more sensitive to plastic leachates than VTG and 11-KT, which was significantly affected by 26.7 % of all plastic leachates. Among all genes, estrogen receptor α was impacted mostly, being up-regulated by 53.3 % of leachates from aged plastics. The comparative results demonstrated that the leachates from plastics with different statuses caused a greater difference than those from plastics in different simulated media, and the leachates from aged plastics resulted in higher endocrine disrupting effects than those from virgin plastics. In addition, seven leached additives (plasticizers and flame retardants) could explain 25.6 % of the hormonal effects using redundancy analysis, indicating that other additives in the plastic leachates can also play important roles in regulating the endocrine system of O. melastigma larvae.
Collapse
Affiliation(s)
- Shu-Qing Qiu
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Guo-Yong Huang
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China.
| | - Xiao-Pei Li
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Dong-Qiao Lei
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Chen-Si Wang
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Guang-Guo Ying
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| |
Collapse
|
9
|
Lei L, Zhu B, Qiao K, Zhou Y, Chen X, Men J, Yang L, Wang Q, Han J, Zhou B. New evidence for neurobehavioral toxicity of deltamethrin at environmentally relevant levels in zebrafish. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 822:153623. [PMID: 35124052 DOI: 10.1016/j.scitotenv.2022.153623] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/28/2022] [Accepted: 01/29/2022] [Indexed: 06/14/2023]
Abstract
Deltamethrin, a widely used type II pyrethroid insecticide, was reported with neurotoxicity to aquatic organisms, such as fish. However, the effects and potential mechanisms on the central nervous system remain largely unknown, especially under environmental concentrations. Therefore, we exposed adult female zebrafish to environmentally relevant levels of deltamethrin (30, 100, and 333 ng/L) for 21 days to assess neurobehavioral changes related to the central nervous system and explore the modes of action. Behavioral assays revealed significant increases in the swimming speeds, residence time near other fish and the shoaling cohesion in exposed fish. Transcriptomic results enriched the disrupted neural functions involving the glutamatergic and dopaminergic synapses in the brain. The qRT-PCR confirmed the upregulation of the factors for promoting the glutamate release. The measurement of neurotransmitters showed significantly increased content of the excitatory neurotransmitter glutamate in the brain. Taken together, deltamethrin exposure increased the glutamate level and promoted the release of such an excitatory neurotransmitter between the glutamatergic synapses in the brain, which eventually led to hyperactivity of social behaviors in adult zebrafish.
Collapse
Affiliation(s)
- Lei Lei
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Biran Zhu
- School of Basic Medical Sciences, Hubei University of Chinese Medicine, Wuhan 430065, China
| | - Kun Qiao
- Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou 310058, China
| | - Yuxi Zhou
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiangping Chen
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Jun Men
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Lihua Yang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Qidong Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Jian Han
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China.
| | - Bingsheng Zhou
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| |
Collapse
|
10
|
Vitamin C Mitigates Oxidative Stress and Behavioral Impairments Induced by Deltamethrin and Lead Toxicity in Zebrafish. Int J Mol Sci 2021; 22:ijms222312714. [PMID: 34884514 PMCID: PMC8657856 DOI: 10.3390/ijms222312714] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 11/15/2021] [Accepted: 11/22/2021] [Indexed: 12/21/2022] Open
Abstract
Environmental contamination from toxic metals and pesticides is an issue of great concern due to their harmful effects to human health and the ecosystems. In this framework, we assessed the adverse effects when aquatic organisms are exposed to toxicants such as deltamethrin (DM) and lead (Pb), alone or in combination, using zebrafish as a model. Moreover, we likewise evaluated the possible protective effect of vitamin C (VC) supplementation against the combined acute toxic effects of the two toxicants. Juvenile zebrafish were exposed to DM (2 μg L-1) and Pb (60 μg L-1) alone and in combination with VC (100 μg L-1) and responses were assessed by quantifying acetylcholinesterase (AChE) activity, lipid peroxidation (MDA), some antioxidant enzyme activities (SOD and GPx), three-dimension locomotion responses and changes of elements concentrations in the zebrafish body. Our results show that VC has mitigative effects against behavioral and biochemical alterations induced by a mixture of contaminants, demonstrating that it can be used as an effective antioxidant. Moreover, the observations in the study demonstrate zebrafish as a promising in vivo model for assessing the neuroprotective actions of bioactive compounds.
Collapse
|