1
|
Witzgall K, Hesse BD, Pacay-Barrientos NL, Jansa J, Seguel O, Oses R, Buegger F, Guigue J, Rojas C, Rousk K, Grams TEE, Pietrasiak N, Mueller CW. Soil carbon and nitrogen cycling at the atmosphere-soil interface: Quantifying the responses of biocrust-soil interactions to global change. GLOBAL CHANGE BIOLOGY 2024; 30:e17519. [PMID: 39381885 DOI: 10.1111/gcb.17519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 08/27/2024] [Accepted: 09/10/2024] [Indexed: 10/10/2024]
Abstract
In drylands, where water scarcity limits vascular plant growth, much of the primary production occurs at the soil surface. This is where complex macro- and microbial communities, in an intricate bond with soil particles, form biological soil crusts (biocrusts). Despite their critical role in regulating C and N cycling in dryland ecosystems, there is limited understanding of the fate of biologically fixed C and N from biocrusts into the mineral soil, or how climate change will affect C and N fluxes between the atmosphere, biocrusts, and subsurface soils. To address these gaps, we subjected biocrust-soil systems to experimental warming and drought under controlled laboratory conditions, monitored CO2 fluxes, and applied dual isotopic labeling pulses (13CO2 and 15N2). This allowed detailed quantification of elemental pathways into specific organic matter (OM) pools and microbial biomass via density fractionation and phospholipid fatty acid analyses. While biocrusts modulated CO2 fluxes regardless of the temperature regime, drought severely limited their photosynthetic C uptake to the extent that the systems no longer sustained net C uptake. Furthermore, the effect of biocrusts extended into the underlying 1 cm of mineral soil, where C and N accumulated as mineral-associated OM (MAOM<63μm). This was strongly associated with increased relative dominance of fungi, suggesting that fungal hyphae facilitate the downward C and N translocation and subsequent MAOM formation. Most strikingly, however, these pathways were disrupted in systems exposed to warming, where no effects of biocrusts on the elemental composition of the underlying soil nor on MAOM were determined. This was further associated with reduced net biological N fixation under combined warming and drought, highlighting how changing climatic conditions diminish some of the most fundamental ecosystem functions of biocrusts, with detrimental repercussions for C and N cycling and the persistence of soil organic matter pools in dryland ecosystems.
Collapse
Affiliation(s)
- K Witzgall
- Soil Science, TUM School of Life Sciences, Technical University of Munich, Freising-Weihenstephan, Germany
| | - B D Hesse
- Land Surface Atmosphere Interactions - AG Ecophysiology of Plants, TUM School of Life Sciences, Technical University of Munich, Freising-Weihenstephan, Germany
- Institute of Botany (BOT), University of Natural Resources and Life Sciences, Vienna, Austria
| | - N L Pacay-Barrientos
- Soil Science, TUM School of Life Sciences, Technical University of Munich, Freising-Weihenstephan, Germany
| | - J Jansa
- Institute of Microbiology, Czech Academy of Sciences, Prague, Czech Republic
| | - O Seguel
- Facultad de Ciencias Agronómicas, Universidad de Chile, Santiago, Chile
| | - R Oses
- Centro Regional de Investigación y Desarrollo Sustentable de Atacama (CRIDESAT), Universidad de Atacama, Copiapó, Chile
| | - F Buegger
- Research Unit Environmental Simulation, Helmholtz Zentrum München (GmbH), German Research Center for Environmental Health, Neuherberg, Germany
| | - J Guigue
- Soil Science, TUM School of Life Sciences, Technical University of Munich, Freising-Weihenstephan, Germany
| | - C Rojas
- Laboratory of Soil Microbial Ecology and Biogeochemistry (LEMiBiS), Universidad de O'Higgins, San Fernando, Chile
- Center of Applied Ecology and Sustainability (CAPES), Santiago, Chile
| | - K Rousk
- Department of Biology, Terrestrial Ecology Section, University of Copenhagen, Copenhagen, Denmark
| | - T E E Grams
- Land Surface Atmosphere Interactions - AG Ecophysiology of Plants, TUM School of Life Sciences, Technical University of Munich, Freising-Weihenstephan, Germany
| | - N Pietrasiak
- Department of Plant and Environmental Sciences, New Mexico State University, Las Cruces, New Mexico, USA
| | - C W Mueller
- Soil Science, TUM School of Life Sciences, Technical University of Munich, Freising-Weihenstephan, Germany
- Institute for Ecology, Chair of Soil Science, Technical University Berlin, Berlin, Germany
- Department of Geosciences and Natural Resource Management, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
2
|
Zhang L. Effects of mixed biocrusts on soil nutrients and bacterial community structure: a case study from Hilly Loess Plateau, China. Sci Rep 2024; 14:21265. [PMID: 39261650 PMCID: PMC11391072 DOI: 10.1038/s41598-024-71927-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 09/02/2024] [Indexed: 09/13/2024] Open
Abstract
The ecological function of biological crusts in arid and semi-arid areas is of great importance. Bacteria, as a crucial microbial group in biological crusts, play a key role in the formation, nutrient cycling, and regulation of these crusts. However, the succession of biological crusts and the diversity of bacterial communities, along with key environmental factors in the Loess Plateau's hilly and gully areas, remain unclear. This study investigated soil bacterial abundance and diversity in bare soil (BS), alga-lichen mixed crust (MC), and alga-lichen mixed crust subsoil (MCS) using high-throughput sequencing methods. It explored the relationship between the bacterial community in biological crusts and key environmental factors. The results indicated that the Chao1, Shannon index, and phylogenetic diversity of bacteria significantly increased with the succession of biological crusts. There were notable differences in the community composition and structure of bacteria at different stages of crust development, with Rubrobacteria and Cyanobacteriia dominating in MCS. Effective phosphorus, available potassium, nitrogen, pH, and total organic carbon were identified as key environmental factors affecting soil bacterial communities. In summary, the succession of biological crusts alters soil physicochemical characteristics and creates different ecological niches for bacterial communities. Soil nutrients and pH play a crucial role in the selection of bacterial species and the shaping of bacterial communities in the Loess Plateau's hilly and gully areas.
Collapse
Affiliation(s)
- Lei Zhang
- Technology Lnnovation Center for Land Engineering and Human Seutlements, Xi'an Jiaotong University, Xi'an, 713599, China.
- Shaanxi Provincial Land Engineering Construction Group Co., Ltd., Xi'an, 710054, China.
| |
Collapse
|
3
|
Jung P, Brand R, Briegel-Williams L, Werner L, Jost E, Lentendu G, Singer D, Athavale R, Nürnberg DJ, Alfaro FD, Büdel B, Lakatos M. The symbiotic alga Trebouxia fuels a coherent soil ecosystem on the landscape scale in the Atacama Desert. ENVIRONMENTAL MICROBIOME 2024; 19:59. [PMID: 39123247 PMCID: PMC11311966 DOI: 10.1186/s40793-024-00601-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 08/05/2024] [Indexed: 08/12/2024]
Abstract
Biocrusts represent associations of lichens, green algae, cyanobacteria, fungi and other microorganisms, colonizing soils in varying proportions of principally arid biomes. The so-called grit crust represents a recently discovered type of biocrust situated in the Coastal Range of the Atacama Desert (Chile) made of microorganisms growing on and in granitoid pebbles, resulting in a checkerboard pattern visible to the naked eye on the landscape scale. This specific microbiome fulfills a broad range of ecosystem services, all probably driven by fog and dew-induced photosynthetic activity of mainly micro-lichens. To understand its biodiversity and impact, we applied a polyphasic approach on the phototrophic microbiome of this biocrust, combining isolation and characterization of the lichen photobionts, multi-gene phylogeny of the photobionts and mycobionts based on a direct sequencing and microphotography approach, metabarcoding and determination of chlorophylla+b contents. Metabarcoding showed that yet undescribed lichens within the Caliciaceae dominated the biocrust together with Trebouxia as the most abundant eukaryote in all plots. Together with high mean chlorophylla+b contents exceeding 410 mg m-2, this distinguished the symbiotic algae Trebouxia as the main driver of the grit crust ecosystem. The trebouxioid photobionts could be assigned to the I (T. impressa/gelatinosa) and A (T. arboricola) clades and represented several lineages containing five potential species candidates, which were identified based on the unique phylogenetic position, morphological features, and developmental cycles of the corresponding isolates. These results designate the grit crust as the only known coherent soil layer with significant landscape covering impact of at least 440 km2, predominantly ruled by a single symbiotic algal genus.
Collapse
Affiliation(s)
- Patrick Jung
- Department of Integrative Biotechnology, University of Applied Sciences Kaiserslautern, Pirmasens, Germany.
| | - Rebekah Brand
- Department of Integrative Biotechnology, University of Applied Sciences Kaiserslautern, Pirmasens, Germany
| | - Laura Briegel-Williams
- Department of Integrative Biotechnology, University of Applied Sciences Kaiserslautern, Pirmasens, Germany
| | - Lina Werner
- Department of Integrative Biotechnology, University of Applied Sciences Kaiserslautern, Pirmasens, Germany
| | - Emily Jost
- Department of Integrative Biotechnology, University of Applied Sciences Kaiserslautern, Pirmasens, Germany
| | - Guillaume Lentendu
- Laboratory of Soil Biodiversity, Université de Neuchâtel, Neuchâtel, Switzerland
| | - David Singer
- Soil Science and Environment Group, Changins, HES-SO University of Applied Sciences and Arts Western Switzerland, Nyon, Switzerland
| | - Rujuta Athavale
- Institute for Experimental Physics, Freie Universität Berlin, Berlin, Germany
| | - Dennis J Nürnberg
- Institute for Experimental Physics, Freie Universität Berlin, Berlin, Germany
- Dahlem Centre of Plant Sciences, Freie Universität Berlin, Berlin, Germany
| | - Fernando D Alfaro
- GEMA Center for Genomics, Ecology and Environment, Universidad Mayor, Santiago, Chile
| | - Burkhard Büdel
- Biology, Rhineland-Palatinate Technical University Kaiserslautern Landau, Kaiserslautern, Germany
| | - Michael Lakatos
- Department of Integrative Biotechnology, University of Applied Sciences Kaiserslautern, Pirmasens, Germany
| |
Collapse
|
4
|
Eckhoff KD, Reed SC, Bradford JB, Daly NC, Griffen K, Reibold R, Lupardus R, Munson SM, Sengsirirak A, Villarreal ML, Duniway MC. Dryland soil recovery after disturbance across soil and climate gradients of the Colorado Plateau. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 932:172976. [PMID: 38705304 DOI: 10.1016/j.scitotenv.2024.172976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 04/30/2024] [Accepted: 05/02/2024] [Indexed: 05/07/2024]
Abstract
Drylands impacted by energy development often require costly reclamation activities to reconstruct damaged soils and vegetation, yet little is known about the effectiveness of reclamation practices in promoting recovery of soil quality due to a lack of long-term and cross-site studies. Here, we examined paired on-pad and adjacent undisturbed off-pad soil properties over a 22-year chronosequence of 91 reclaimed oil or gas well pads across soil and climate gradients of the Colorado Plateau in the southwestern United States. Our goals were to estimate the time required for soil properties to reach undisturbed conditions, examine the multivariate nature of soil quality following reclamation, and identify environmental factors that affect reclamation outcomes. Soil samples, collected in 2020 and 2021, were analyzed for biogeochemical pools (total nitrogen, and total organic and inorganic carbon), chemical characteristics (salinity, sodicity, pH), and texture. Predicted time to recovery across all sites was 29 years for biogeochemical soil properties, 31 years for soil chemical properties, and 6 years for soil texture. Ordination of soil properties revealed differences between on- and off-pad soils, while site aridity explained variability in on-pad recovery. The predicted time to total soil recovery (distance between on- and off-pad in ordination space) was 96 years, which was longer than any individual soil property. No site reached total recovery, indicating that individual soil properties alone may not fully indicate recovery in soil quality as soil recovery does not equal the sum of its parts. Site aridity was the largest predictor of reclamation outcomes, but the effects differed depending on soil type. Taken together, results suggest the recovery of soil quality - which reflects soil fertility, carbon sequestration potential, and other ecosystem functions - was influenced primarily by site setting, with soil type and aridity major mediators of on-pad carbon, salinity, and total soil recovery following reclamation.
Collapse
Affiliation(s)
- Kathryn D Eckhoff
- US Geological Survey, Southwest Biological Science Center, Moab, UT, United States; Northern Arizona University, Flagstaff, AZ, United States.
| | - Sasha C Reed
- US Geological Survey, Southwest Biological Science Center, Moab, UT, United States
| | - John B Bradford
- US Geological Survey, Southwest Biological Science Center, Flagstaff, AZ, United States
| | - Nikita C Daly
- US Geological Survey, Southwest Biological Science Center, Moab, UT, United States
| | - Keven Griffen
- Northern Arizona University, Flagstaff, AZ, United States
| | - Robin Reibold
- US Geological Survey, Southwest Biological Science Center, Moab, UT, United States
| | - Randi Lupardus
- Bureau of Land Management, Tres Rios Field Office, Durango, CO, United States
| | - Seth M Munson
- US Geological Survey, Southwest Biological Science Center, Flagstaff, AZ, United States
| | - Aarin Sengsirirak
- US Geological Survey, Southwest Biological Science Center, Moab, UT, United States
| | - Miguel L Villarreal
- US Geological Survey, Western Geographic Science Center, Moffett Field, CA, United States
| | - Michael C Duniway
- US Geological Survey, Southwest Biological Science Center, Moab, UT, United States
| |
Collapse
|
5
|
Yang Z, Yuan Y, Guo J, Li J, Li J, Yu H, Zeng W, Huang Y, Yin L, Li F. Responses of Soil C, N, P and Enzyme Activities to Biological Soil Crusts in China: A Meta-Analysis. PLANTS (BASEL, SWITZERLAND) 2024; 13:1525. [PMID: 38891333 PMCID: PMC11174547 DOI: 10.3390/plants13111525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/28/2024] [Accepted: 05/30/2024] [Indexed: 06/21/2024]
Abstract
Biological soil crusts (BSCs) are often referred to as the "living skin" of arid regions worldwide. Yet, the combined impact of BSCs on soil carbon (C), nitrogen (N), phosphorus (P), and enzyme activities remains not fully understood. This study identified, screened and reviewed 71 out of 2856 literature sources to assess the responses of soil C, N, P and enzyme activity to BSCs through a meta-analysis. The results indicated that BSC presence significantly increased soil C, N, P and soil enzyme activity, and this increasing effect was significantly influenced by the types of BSCs. Results from the overall effect showed that soil organic carbon (SOC), total nitrogen (TN), available nitrogen (AN), total phosphorus (TP), and available phosphorus (AP) increased by 107.88%, 84.52%, 45.43%, 27.46%, and 54.71%, respectively, and four soil enzyme activities (Alkaline Phosphatase, Cellulase, Sucrase, and Urease) increased by 93.65-229.27%. The highest increases in SOC, TN and AN content occurred in the soil covered with lichen crusts and moss crusts, and significant increases in Alkaline Phosphatase and Cellulase were observed in the soil covered with moss crusts and mixed crusts, suggesting that moss crusts can synergistically enhance soil C and N pool and enzyme activity. Additionally, variations in soil C, N, P content, and enzyme activity were observed under different environmental settings, with more pronounced improvements seen in coarse and medium-textured soils compared to fine-textured soils, particularly at a depth of 5 cm from the soil surface. BSCs in desert ecosystems showed more significant increases in SOC, TN, AN, and Alkaline Phosphatase compared to forest and grassland ecosystems. Specifically, BSCs at low altitude (≤500 m) with an annual average rainfall of 0-400 mm and an annual average temperature ≤ 10 °C were the most conducive to improving soil C, N, and P levels. Our results highlight the role of BSCs and their type in increasing soil C, N, P and enzyme activities, with these effects significantly impacted by soil texture, ecosystem type, and climatic conditions. The implications of these findings are crucial for soil enhancement, ecosystem revitalization, windbreak, and sand stabilization efforts in the drylands of China.
Collapse
Affiliation(s)
- Zhi Yang
- Faculty of Modern Agricultural Engineering, Kunming University of Science and Technology, Kunming 650500, China; (Z.Y.); (J.L.); (J.L.); (H.Y.); (W.Z.); (Y.H.); (L.Y.); (F.L.)
- Yunnan Provincial Field Scientific Observation and Research Station on Water-Soil-Crop System in Seasonal Arid Region, Kunming University of Science and Technology, Kunming 650500, China
| | - Yong Yuan
- Faculty of Modern Agricultural Engineering, Kunming University of Science and Technology, Kunming 650500, China; (Z.Y.); (J.L.); (J.L.); (H.Y.); (W.Z.); (Y.H.); (L.Y.); (F.L.)
- Yunnan Provincial Field Scientific Observation and Research Station on Water-Soil-Crop System in Seasonal Arid Region, Kunming University of Science and Technology, Kunming 650500, China
| | - Jinjin Guo
- Faculty of Modern Agricultural Engineering, Kunming University of Science and Technology, Kunming 650500, China; (Z.Y.); (J.L.); (J.L.); (H.Y.); (W.Z.); (Y.H.); (L.Y.); (F.L.)
- Yunnan Provincial Field Scientific Observation and Research Station on Water-Soil-Crop System in Seasonal Arid Region, Kunming University of Science and Technology, Kunming 650500, China
| | - Jinxi Li
- Faculty of Modern Agricultural Engineering, Kunming University of Science and Technology, Kunming 650500, China; (Z.Y.); (J.L.); (J.L.); (H.Y.); (W.Z.); (Y.H.); (L.Y.); (F.L.)
- Yunnan Provincial Field Scientific Observation and Research Station on Water-Soil-Crop System in Seasonal Arid Region, Kunming University of Science and Technology, Kunming 650500, China
| | - Jianhua Li
- Faculty of Modern Agricultural Engineering, Kunming University of Science and Technology, Kunming 650500, China; (Z.Y.); (J.L.); (J.L.); (H.Y.); (W.Z.); (Y.H.); (L.Y.); (F.L.)
- Yunnan Provincial Field Scientific Observation and Research Station on Water-Soil-Crop System in Seasonal Arid Region, Kunming University of Science and Technology, Kunming 650500, China
| | - Hu Yu
- Faculty of Modern Agricultural Engineering, Kunming University of Science and Technology, Kunming 650500, China; (Z.Y.); (J.L.); (J.L.); (H.Y.); (W.Z.); (Y.H.); (L.Y.); (F.L.)
- Yunnan Provincial Field Scientific Observation and Research Station on Water-Soil-Crop System in Seasonal Arid Region, Kunming University of Science and Technology, Kunming 650500, China
| | - Wen Zeng
- Faculty of Modern Agricultural Engineering, Kunming University of Science and Technology, Kunming 650500, China; (Z.Y.); (J.L.); (J.L.); (H.Y.); (W.Z.); (Y.H.); (L.Y.); (F.L.)
- Yunnan Provincial Field Scientific Observation and Research Station on Water-Soil-Crop System in Seasonal Arid Region, Kunming University of Science and Technology, Kunming 650500, China
| | - Yinhong Huang
- Faculty of Modern Agricultural Engineering, Kunming University of Science and Technology, Kunming 650500, China; (Z.Y.); (J.L.); (J.L.); (H.Y.); (W.Z.); (Y.H.); (L.Y.); (F.L.)
- Yunnan Provincial Field Scientific Observation and Research Station on Water-Soil-Crop System in Seasonal Arid Region, Kunming University of Science and Technology, Kunming 650500, China
| | - Liyun Yin
- Faculty of Modern Agricultural Engineering, Kunming University of Science and Technology, Kunming 650500, China; (Z.Y.); (J.L.); (J.L.); (H.Y.); (W.Z.); (Y.H.); (L.Y.); (F.L.)
- Yunnan Provincial Field Scientific Observation and Research Station on Water-Soil-Crop System in Seasonal Arid Region, Kunming University of Science and Technology, Kunming 650500, China
| | - Fulian Li
- Faculty of Modern Agricultural Engineering, Kunming University of Science and Technology, Kunming 650500, China; (Z.Y.); (J.L.); (J.L.); (H.Y.); (W.Z.); (Y.H.); (L.Y.); (F.L.)
- Yunnan Provincial Field Scientific Observation and Research Station on Water-Soil-Crop System in Seasonal Arid Region, Kunming University of Science and Technology, Kunming 650500, China
| |
Collapse
|
6
|
Joseph J, Ray JG. A critical review of soil algae as a crucial soil biological component of high ecological and economic significance. JOURNAL OF PHYCOLOGY 2024; 60:229-253. [PMID: 38502571 DOI: 10.1111/jpy.13444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 11/14/2023] [Accepted: 01/08/2024] [Indexed: 03/21/2024]
Abstract
Aero-terrestrial algae are ecologically and economically valuable bioresources contributing to carbon sequestration, sustenance of soil health, and fertility. Compared to aquatic algae, the literature on subaerial algae is minimal, including studies of distinctive habitats such as forest soils, agricultural fields, deserts, polar regions, specific subaerial zones, artificial structures, and tropical soils. The primary goal here was to identify the gaps and scope of research on such algae. Accordingly, the literature was analyzed per sub-themes, such as the "nature of current research data on terrestrial algae," "methodological approaches," "diversity," "environmental relationships," "ecological roles," and "economic significance." The review showed there is a high diversity of algae in soils, especially members belonging to the Cyanophyta (Cyanobacteria) and Chlorophyta. Algal distributions in terrestrial environments depend on the microhabitat conditions, and many species of soil algae are sensitive to specific soil conditions. The ecological significance of soil algae includes primary production, the release of biochemical stimulants and plant growth promoters into soils, nitrogen fixation, solubilization of minerals, and the enhancement and maintenance of soil fertility. Since aero-terrestrial habitats are generally stressed environments, algae of such environments can be rich in rare metabolites and natural products. For example, epilithic soil algae use wet adhesive molecules to fix them firmly on the substratum. Exploring the ecological roles and economic utility of soil and other subaerial algae could be helpful for the development of algae-based industries and for achieving sustainable soil management.
Collapse
Affiliation(s)
- Jebin Joseph
- Department of Botany, St Berchmans College, Changanacherry, Kerala, India
- Laboratory of Ecology and Plant Science, School of Biosciences, Mahatma Gandhi University, Kottayam, Kerala, India
| | - Joseph George Ray
- School of Biosciences, Mahatma Gandhi University, Kottayam, Kerala, India
| |
Collapse
|
7
|
Duan X, Li J, He W, Huang J, Xiong W, Chi S, Luo S, Liu J, Zhang X, Li J. Microbial diversity and their extracellular enzyme activities among different soil particle sizes in mossy biocrust under N limitation in the southeastern Tengger Desert, China. Front Microbiol 2024; 15:1328641. [PMID: 38357343 PMCID: PMC10866007 DOI: 10.3389/fmicb.2024.1328641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 01/03/2024] [Indexed: 02/16/2024] Open
Abstract
Introduction Mossy biocrust represents a stable stage in the succession of biological soil crust in arid and semi-arid areas, providing a microhabitat that maintains microbial diversity. However, the impact of mossy biocrust rhizoid soil and different particle sizes within the mossy biocrust layer and sublayer on microbial diversity and soil enzyme activities remains unclear. Methods This study utilized Illumina MiSeq sequencing and high-throughput fluorometric technique to assess the differences in microbial diversity and soil extracellular enzymes between mossy biocrust rhizoid soil and different particle sizes within the mossy biocrust sifting and sublayer soil. Results The results revealed that the total organic carbon (TOC), total nitrogen (TN), ammonium (NH4+) and nitrate (NO3-) in mossy biocrust rhizoid soil were the highest, with significantly higher TOC, TN, and total phosphorus (TP) in mossy biocrust sifting soil than those in mossy biocrust sublayer soil. Extracellular enzyme activities (EAAs) exhibited different responses to various soil particle sizes in mossy biocrust. Biocrust rhizoid soil (BRS) showed higher C-degrading enzyme activity and lower P-degrading enzyme activity, leading to a significant increase in enzyme C: P and N: P ratios. Mossy biocrust soils were all limited by microbial relative nitrogen while pronounced relative nitrogen limitation and microbial maximum relative carbon limitation in BRS. The diversity and richness of the bacterial community in the 0.2 mm mossy biocrust soil (BSS0.2) were notably lower than those in mossy biocrust sublayer, whereas the diversity and richness of the fungal community in the rhizoid soil were significantly higher than those in mossy biocrust sublayer. The predominant bacterial phyla in mossy biocrust were Actinobacteriota, Protebacteria, Chloroflexi, and Acidobacteriota, whereas in BSS0.2, the predominant bacterial phyla were Actinobacteriota, Protebacteria, and Cyanobacteria. Ascomycota and Basidiomycota were dominant phyla in mossy biocrust. The bacterial and fungal community species composition exhibited significant differences. The mean proportions of Actinobacteriota, Protebacteria, Chloroflexi, Acidobacteriota, Acidobacteria, Cyanobacteria, and Bacteroidota varied significantly between mossy biocrust rhizoid and different particle sizes of mossy biocrust sifting and sublayer soil (p < 0.05). Similarly, significant differences (p < 0.05) were observed in the mean proportions of Ascomycota, Basidiomycota, and Glomeromycota between mossy biocrust rhizoid and different particle sizes within the mossy biocrust sifting and sublayer soil. The complexity and connectivity of bacterial and fungal networks were higher in mossy biocrust rhizoid soil compared with different particle sizes within the mossy biocrust sifting and sublayer soil. Discussion These results offer valuable insights to enhance our understanding of the involvement of mossy biocrust in the biogeochemical cycle of desert ecosystems.
Collapse
Affiliation(s)
- Xiaomin Duan
- College of Biological Science and Engineering, North Minzu University, Yinchuan, China
- Ningxia Key Laboratory of Microbial Resources Development and Applications in Special Environment, Yinchuan, China
- Key Laboratory of Ecological Protection of Agro-pastoral Ecotones in the Yellow River Basin, National Ethnic Affairs Commission of the People’s Republic of China, Yinchuan, China
| | - Jiajia Li
- College of Biological Science and Engineering, North Minzu University, Yinchuan, China
- Ningxia Key Laboratory of Microbial Resources Development and Applications in Special Environment, Yinchuan, China
- Key Laboratory of Ecological Protection of Agro-pastoral Ecotones in the Yellow River Basin, National Ethnic Affairs Commission of the People’s Republic of China, Yinchuan, China
| | - Wangping He
- College of Biological Science and Engineering, North Minzu University, Yinchuan, China
| | - Jingjing Huang
- College of Biological Science and Engineering, North Minzu University, Yinchuan, China
| | - Wanxiang Xiong
- College of Biological Science and Engineering, North Minzu University, Yinchuan, China
| | - Shijia Chi
- College of Biological Science and Engineering, North Minzu University, Yinchuan, China
| | - Siyuan Luo
- College of Biological Science and Engineering, North Minzu University, Yinchuan, China
| | - Jianli Liu
- College of Biological Science and Engineering, North Minzu University, Yinchuan, China
- Ningxia Key Laboratory of Microbial Resources Development and Applications in Special Environment, Yinchuan, China
- Key Laboratory of Ecological Protection of Agro-pastoral Ecotones in the Yellow River Basin, National Ethnic Affairs Commission of the People’s Republic of China, Yinchuan, China
| | - Xiu Zhang
- College of Biological Science and Engineering, North Minzu University, Yinchuan, China
- Ningxia Key Laboratory of Microbial Resources Development and Applications in Special Environment, Yinchuan, China
| | - Jingyu Li
- College of Biological Science and Engineering, North Minzu University, Yinchuan, China
- Ningxia Key Laboratory of Microbial Resources Development and Applications in Special Environment, Yinchuan, China
- Key Laboratory of Ecological Protection of Agro-pastoral Ecotones in the Yellow River Basin, National Ethnic Affairs Commission of the People’s Republic of China, Yinchuan, China
| |
Collapse
|
8
|
Ren Z, Li C, Fu B, Wang S, Stringer LC. Effects of aridification on soil total carbon pools in China's drylands. GLOBAL CHANGE BIOLOGY 2024; 30:e17091. [PMID: 38273482 DOI: 10.1111/gcb.17091] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 11/21/2023] [Accepted: 11/22/2023] [Indexed: 01/27/2024]
Abstract
Drylands are important carbon pools and are highly vulnerable to climate change, particularly in the context of increasing aridity. However, there has been limited research on the effects of aridification on soil total carbon including soil organic carbon and soil inorganic carbon, which hinders comprehensive understanding and projection of soil carbon dynamics in drylands. To determine the response of soil total carbon to aridification, and to understand how aridification drives soil total carbon variation along the aridity gradient through different ecosystem attributes, we measured soil organic carbon, inorganic carbon and total carbon across a ~4000 km aridity gradient in the drylands of northern China. Distribution patterns of organic carbon, inorganic carbon, and total carbon at different sites along the aridity gradient were analyzed. Results showed that soil organic carbon and inorganic carbon had a complementary relationship, that is, an increase in soil inorganic carbon positively compensated for the decrease in organic carbon in semiarid to hyperarid regions. Soil total carbon exhibited a nonlinear change with increasing aridity, and the effect of aridity on total carbon shifted from negative to positive at an aridity level of 0.71. In less arid regions, aridification leads to a decrease in total carbon, mainly through a decrease in organic carbon, whereas in more arid regions, aridification promotes an increase in inorganic carbon and thus an increase in total carbon. Our study highlights the importance of soil inorganic carbon to total carbon and the different effects of aridity on soil carbon pools in drylands. Soil total carbon needs to be considered when developing measures to conserve the terrestrial carbon sink.
Collapse
Affiliation(s)
- Zhuobing Ren
- State Key Laboratory of Earth Surface Processes and Resource Ecology, Faculty of Geographical Science, Beijing Normal University, Beijing, China
- Institute of Land Surface System and Sustainable Development, Faculty of Geographical Science, Beijing Normal University, Beijing, China
| | - Changjia Li
- State Key Laboratory of Earth Surface Processes and Resource Ecology, Faculty of Geographical Science, Beijing Normal University, Beijing, China
- Institute of Land Surface System and Sustainable Development, Faculty of Geographical Science, Beijing Normal University, Beijing, China
| | - Bojie Fu
- State Key Laboratory of Earth Surface Processes and Resource Ecology, Faculty of Geographical Science, Beijing Normal University, Beijing, China
- Institute of Land Surface System and Sustainable Development, Faculty of Geographical Science, Beijing Normal University, Beijing, China
| | - Shuai Wang
- State Key Laboratory of Earth Surface Processes and Resource Ecology, Faculty of Geographical Science, Beijing Normal University, Beijing, China
- Institute of Land Surface System and Sustainable Development, Faculty of Geographical Science, Beijing Normal University, Beijing, China
| | - Lindsay C Stringer
- Department of Environment and Geography, University of York, York, UK
- York Environmental Sustainability Institute, University of York, York, UK
| |
Collapse
|
9
|
Sheng X, Qiying C, Shifeng S, Liu Yizhen, Bicai G, Lan W, Gang G. The trait co-variation regulates the response of bryophytes to nitrogen deposition: A meta-analysis. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 339:122739. [PMID: 37852313 DOI: 10.1016/j.envpol.2023.122739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 10/11/2023] [Accepted: 10/12/2023] [Indexed: 10/20/2023]
Abstract
The nitrogen deposition has the potential to alter the trait composition of plant communities by affecting the fitness and physiological adaptation of species, consequently exerting an influence on ecosystem processes. Despite the importance of bryophytes in nutrient and carbon dynamics across different ecosystems, there is a lack of research examining the relationship between nitrogen deposition and the co-variation of bryophyte traits. To address this gap, a meta-analysis was conducted using data from 27 independent studies to investigate potential associations between trait co-variation of bryophytes and nitrogen deposition. The results revealed that interspecific variability regulates the influence of nitrogen deposition on bryophytes by affecting trait co-variation. Multiple correspondence analysis identified six combinations of closely related traits. For example, species with unbranched main stems frequently exhibit robust leaf midribs, leading to leaf wrinkling and leaf clasping around the stem as a response to water loss. Some weft or mat species tend to obtain resources (nitrogen) through their scale hairs on the main stem. Some species with narrow leaves require leaf teeth to maintain a normal leaf shape. The subgroup analyses indicated that certain traits, including unbranched main stem, changes in leaf morphology, robust leaf midrib, main stem without scale hairs, narrow leaf, leaf margin with teeth, undeveloped apophysis, and erect capsule minimize interaction with pollutants and represent a resource strategy. Conversely, functional traits representing a resource acquisition strategy, such as branched main stem, no changes in leaf morphology, short and weak leaf midrib, main stem with scale hairs, broad leaf, leaf margin without teeth, developed apophysis, and non-erect capsule increase pollutant exposure. Overall, our results suggest that anthropogenic global change may significantly impact bryophytes due to changes in their individual physiology and colony ecological indicators caused by increased nitrogen deposition.
Collapse
Affiliation(s)
- Xu Sheng
- School of Life Sciences, Nanchang University, Nanchang, 330031, China
| | - Cai Qiying
- School of Life Sciences, Nanchang University, Nanchang, 330031, China
| | - Sun Shifeng
- School of Life Sciences, Nanchang University, Nanchang, 330031, China
| | - Liu Yizhen
- School of Life Sciences, Nanchang University, Nanchang, 330031, China
| | - Guan Bicai
- School of Life Sciences, Nanchang University, Nanchang, 330031, China
| | - Wu Lan
- School of Life Sciences, Nanchang University, Nanchang, 330031, China; Key Laboratory of Poyang Lake Environment and Resource Utilization Ministry of Education, Nanchang University, Nanchang, 330031, China
| | - Ge Gang
- School of Life Sciences, Nanchang University, Nanchang, 330031, China; Key Laboratory of Poyang Lake Environment and Resource Utilization Ministry of Education, Nanchang University, Nanchang, 330031, China.
| |
Collapse
|
10
|
Siwach A, Kaushal S, Sarma K, Baishya R. Interplay of moss cover and seasonal variation regulate soil physicochemical properties and net nitrogen mineralization rates in Central Himalayas, India. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 345:118839. [PMID: 37598496 DOI: 10.1016/j.jenvman.2023.118839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 08/07/2023] [Accepted: 08/15/2023] [Indexed: 08/22/2023]
Abstract
Mosses (Class- Bryopsida) are vital to ecosystem dynamics in numerous biomes, although their effects on soil processes are poorly understood. The interplay of moss cover and seasonal variations in soil processes is still unclear in the Indian Central Himalayas. Therefore, we examined the seasonal variations in net nitrogen (N) mineralization rates and several soil properties under two ground covers (with and without moss cover). We used the ex-situ incubation technique to determine N mineralization rates (Rmin) and standard methodology for soil physical and chemical analysis. During the rainy season, the physical properties of the soil and its nutrients, apart from phosphorus, were higher under moss cover. The winter season, however, showed a different pattern, with soil properties exhibiting higher values in soils without moss cover. Ammonium concentrations were higher under moss cover, while nitrate concentrations were higher in soil without moss cover during rainy and winter seasons. The Rmin rates were higher in soil under moss cover, indicating that moss cover promotes N transformation. In contrast, Rmin rates were negative in soil without moss cover, indicating that N immobilization was dominant in N transformation under this ground cover during the rainy season. Our research shows that mosses positively impact the nutrient status and N mineralization rates in various temperate forest types. The seasonal patterns of soil properties are strongly influenced by soil temperature, moisture, and organic carbon. Therefore, we advocate the conservation of mosses and their integration into forest management plans for better ecosystem processes and services in the ecologically fragile Himalayas.
Collapse
Affiliation(s)
- Anshu Siwach
- Ecology and Ecosystem Research Laboratory, Department of Botany, University of Delhi, Delhi, 110007, India
| | - Siddhartha Kaushal
- Ecology and Ecosystem Research Laboratory, Department of Botany, University of Delhi, Delhi, 110007, India
| | - Kiranmay Sarma
- University School of Environment Management, Guru Gobind Singh Indraprastha University, Delhi, 110078, India
| | - Ratul Baishya
- Ecology and Ecosystem Research Laboratory, Department of Botany, University of Delhi, Delhi, 110007, India.
| |
Collapse
|
11
|
Certini G, Scalenghe R. The crucial interactions between climate and soil. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 856:159169. [PMID: 36206907 DOI: 10.1016/j.scitotenv.2022.159169] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 09/25/2022] [Accepted: 09/28/2022] [Indexed: 06/16/2023]
Abstract
Since the birth of soil science, climate has been recognized as a soil-forming factor, along with parent rock, time, topography, and organisms (from which humans were later kept distinct), often prevalent on the other factors on the very long term. But the climate is in turns affected by soils and their management. This paper describes the interrelationships between climate - and its current change - and soil, focusing on each single factor of its formation. Parent material governs, primarily through the particle size distribution, the capacity of soil to retain water and organic matter, which are two main soil-related drivers of the climate. Time is the only unmanageable soil-forming factor; however, extreme climatic phenomena can upset the soil or even dismantle it, so as to slow down the pathway of pedogenesis or even make it start from scratch. Topography, which drives the pedogenesis mostly controlling rainfall distribution - with repercussions also on the climate - is not anymore a given factor because humans have often become a shaper of it. Indeed humans now play a key role in affecting in a plethora of ways those soil properties that most deal with climate. The abundance and diversity of the other organisms are generally positive to soil quality and as a buffer for climate, but there are troubling evidences that climate change is decreasing soil biodiversity. The corpus of researches on mutual feedback between climate and soil has essentially demonstrated that the best soil management in terms of climate change mitigation must aim at promoting vegetation growth and maximizing soil organic matter content and water retention. Some ongoing virtuous initiatives (e.g., the Great Green Wall of Africa) and farming systems (e.g., the conservation agriculture) should be extended as much as possible worldwide to enable the soil to make the greatest contribution to climate change mitigation.
Collapse
Affiliation(s)
- Giacomo Certini
- Dipartimento di Scienze e Tecnologie Agrarie, Alimentari, Ambientali e Forestali (DAGRI), Università degli Studi di Firenze, 50144 Firenze, Italy.
| | - Riccardo Scalenghe
- Dipartimento di Scienze Agrarie, Alimentari e Forestali (SAAF), Università degli Studi di Palermo, 90128 Palermo, Italy.
| |
Collapse
|
12
|
García-Carmona M, Lepinay C, García-Orenes F, Baldrian P, Arcenegui V, Cajthaml T, Mataix-Solera J. Moss biocrust accelerates the recovery and resilience of soil microbial communities in fire-affected semi-arid Mediterranean soils. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 846:157467. [PMID: 35868386 DOI: 10.1016/j.scitotenv.2022.157467] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 07/11/2022] [Accepted: 07/14/2022] [Indexed: 06/15/2023]
Abstract
After wildfires in Mediterranean ecosystems, ruderal mosses are pioneer species, stabilizing the soil surface previous to the establishment of vascular vegetation. However, little is known about the implication of pioneer moss biocrusts for the recovery and resilience of soils in early post-fire stages in semi-arid areas. Therefore, we studied the effects of the burgeoning biocrust on soil physicochemical and biochemical properties and the diversity and composition of microbial communities after a moderate-to-high wildfire severity. Seven months after the wildfire, the biocrust softened the strong impact of the fire in soils, affecting the diversity and composition of bacteria and fungi community compared to the uncrusted soils exposed to unfavourable environmental stress. Soil moisture, phosphorous, and enzyme activities representing the altered biogeochemical cycles after the fire, were the main explanatory variables for biocrust microbial community composition under the semi-arid conditions. High bacterial diversity was found in soils under mosses, while long-lasting legacies are expected in the fungal community, which showed greater sensitivity to the fire. The composition of bacterial and fungal communities at several taxonomical levels was profoundly altered by the presence of the moss biocrust, showing a rapid successional transition toward the unburned soil community. Pioneer moss biocrust play an important role improving the resilience of soil microbial communities. In the context of increasing fire intensity, studying the moss biocrust effects on the recovery of soils microbiome is essential to understanding the resistance and resilience of Mediterranean forests to wildfires.
Collapse
Affiliation(s)
- Minerva García-Carmona
- GEA-Environmental Soil Science Group, Department of Agrochemistry and Environment, Universidad Miguel Hernández, Avenida de la Universidad s/n, 03202 Elche, Spain.
| | - Clémentine Lepinay
- Institute of Microbiology of the Czech Academy of Sciences, Videnska 1083, 14220 Praha 4, Czech Republic
| | - Fuensanta García-Orenes
- GEA-Environmental Soil Science Group, Department of Agrochemistry and Environment, Universidad Miguel Hernández, Avenida de la Universidad s/n, 03202 Elche, Spain
| | - Petr Baldrian
- Institute of Microbiology of the Czech Academy of Sciences, Videnska 1083, 14220 Praha 4, Czech Republic
| | - Victoria Arcenegui
- GEA-Environmental Soil Science Group, Department of Agrochemistry and Environment, Universidad Miguel Hernández, Avenida de la Universidad s/n, 03202 Elche, Spain
| | - Tomáš Cajthaml
- Institute of Microbiology of the Czech Academy of Sciences, Videnska 1083, 14220 Praha 4, Czech Republic
| | - Jorge Mataix-Solera
- GEA-Environmental Soil Science Group, Department of Agrochemistry and Environment, Universidad Miguel Hernández, Avenida de la Universidad s/n, 03202 Elche, Spain
| |
Collapse
|
13
|
Short-Term Vegetation Restoration Enhances the Complexity of Soil Fungal Network and Decreased the Complexity of Bacterial Network. J Fungi (Basel) 2022; 8:jof8111122. [PMID: 36354889 PMCID: PMC9695196 DOI: 10.3390/jof8111122] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/14/2022] [Accepted: 10/19/2022] [Indexed: 11/17/2022] Open
Abstract
Different vegetation restoration methods may affect the soil’s physicochemical properties and microbial communities. However, it is not known how the microbial network’s complexity of the bacterial and fungal communities respond to short-term vegetation restoration. We conducted a short-term ecological restoration experiment to reveal the response of the soil’s microbial community and microbial network’s stability to initial vegetation restoration during the restoration of the degraded grassland ecosystem. The two restoration methods (sowing alfalfa (Medicago sativa, AF) and smooth brome (Bromus inermis, SB)) had no significant effect on the alpha diversity of the fungal community, but the SB significantly increased the alpha diversity of the soil surface bacterial community (p < 0.01). The results of NMDS showed that the soil’s fungal and bacterial communities were altered by a short-term vegetation restoration, and they showed that the available phosphorus (AP), available potassium (AK), and nitrate nitrogen (nitrate-N) were closely related to changes in bacterial and fungal communities. Moreover, a short-term vegetation restoration significantly increased the complexity and stability of fungi ecological networks, but the opposite was the case with the bacteria. Our findings confirm that ecological restoration by sowing may be favorable to the amelioration of soil fungi complexity and stability in the short-term. Such findings may have important implications for soil microbial processes in vegetation recovery.
Collapse
|
14
|
Ladrón de Guevara M, Maestre FT. Ecology and responses to climate change of biocrust-forming mosses in drylands. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:4380-4395. [PMID: 35553672 PMCID: PMC9291340 DOI: 10.1093/jxb/erac183] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 05/09/2022] [Indexed: 06/15/2023]
Abstract
Interest in understanding the role of biocrusts as ecosystem engineers in drylands has substantially increased during the past two decades. Mosses are a major component of biocrusts and dominate their late successional stages. In general, their impacts on most ecosystem functions are greater than those of early-stage biocrust constituents. However, it is common to find contradictory results regarding how moss interactions with different biotic and abiotic factors affect ecosystem processes. This review aims to (i) describe the adaptations and environmental constraints of biocrust-forming mosses in drylands, (ii) identify their primary ecological roles in these ecosystems, and (iii) synthesize their responses to climate change. We emphasize the importance of interactions between specific functional traits of mosses (e.g. height, radiation reflectance, morphology, and shoot densities) and both the environment (e.g. climate, topography, and soil properties) and other organisms to understand their ecological roles and responses to climate change. We also highlight key areas that should be researched in the future to fill essential gaps in our understanding of the ecology and the responses to ongoing climate change of biocrust-forming mosses. These include a better understanding of intra- and interspecific interactions and mechanisms driving mosses' carbon balance during desiccation-rehydration cycles.
Collapse
|