1
|
Dolkar P, Sharma M, Modeel S, Yadav S, Siwach S, Bharti M, Yadav P, Lata P, Negi T, Negi RK. Challenges and effective tracking down strategies of antibiotic contamination in aquatic ecosystem. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:55935-55957. [PMID: 39254807 DOI: 10.1007/s11356-024-34806-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 08/22/2024] [Indexed: 09/11/2024]
Abstract
A growing environmental concern revolves around the widespread use of medicines, particularly antibiotics, which adversely impact water quality and various life forms. The unregulated production and utilization of antibiotics not only affect non-targeted organisms but also exert significant evolutionary pressures, leading to the rapid development of antimicrobial resistance (AMR) in bacterial communities. To address this issue, global studies have been conducted to assess the prevalence and quantities of antibiotics in various environmental components including freshwater, ocean, local sewage, and fish. These studies aim to establish effective analytical methods for identifying and measuring antibiotic residues in environmental matrices that might enable authorities to establish norms for the containment and disposal of antibiotics. This article offers a comprehensive overview of methods used to extract antibiotics from environmental matrices exploring purification techniques such as liquid-liquid extraction, solid-phase extraction, green extraction techniques, and concentration methods like lyophilization and rotary evaporation. It further highlights qualitative and quantitative analysis methods, high-performance liquid chromatography, ultra-high-performance liquid chromatography, and liquid chromatography-tandem along with analytical methods such as UV-Vis and tandem mass spectrometry for detecting and measuring antibiotics. Urgency is underscored for proactive strategies to curb antibiotic contamination, safeguarding the integrity of aquatic ecosystems and public health on a global scale.
Collapse
Affiliation(s)
- Padma Dolkar
- Fish Molecular Biology Laboratory, Department of Zoology, University of Delhi, New Delhi, 110007, India
| | - Monika Sharma
- Fish Molecular Biology Laboratory, Department of Zoology, University of Delhi, New Delhi, 110007, India
- Present Address: Gargi College, University of Delhi, Delhi, 110049, India
| | - Sonakshi Modeel
- Fish Molecular Biology Laboratory, Department of Zoology, University of Delhi, New Delhi, 110007, India
| | - Sheetal Yadav
- Fish Molecular Biology Laboratory, Department of Zoology, University of Delhi, New Delhi, 110007, India
| | - Sneha Siwach
- Fish Molecular Biology Laboratory, Department of Zoology, University of Delhi, New Delhi, 110007, India
| | - Meghali Bharti
- Fish Molecular Biology Laboratory, Department of Zoology, University of Delhi, New Delhi, 110007, India
| | - Pankaj Yadav
- Fish Molecular Biology Laboratory, Department of Zoology, University of Delhi, New Delhi, 110007, India
| | - Pushp Lata
- Fish Molecular Biology Laboratory, Department of Zoology, University of Delhi, New Delhi, 110007, India
| | - Tarana Negi
- Government College, Dujana, Jhajjar, Haryana, 124102, India
| | - Ram Krishan Negi
- Fish Molecular Biology Laboratory, Department of Zoology, University of Delhi, New Delhi, 110007, India.
| |
Collapse
|
2
|
Meng Z, Mo X, Xue Q, Wang Z, Lu X, Liu J, Ma Q, Sparks JP, He M. Distribution, source apportionment, and ecological risk assessment of soil antibiotic resistance genes in urban green spaces. ENVIRONMENTAL RESEARCH 2024; 251:118601. [PMID: 38447608 DOI: 10.1016/j.envres.2024.118601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 02/24/2024] [Accepted: 02/28/2024] [Indexed: 03/08/2024]
Abstract
Urban green spaces play a crucial role in cities by providing near-natural environments that greatly impacts the health of residents. However, these green spaces have recently been scrutinized as potential reservoirs of antibiotic resistance genes (ARGs), posing significant ecological risks. Despite this concern, our understanding of the distribution, sources, and ecological risks associated with ARGs remains limited. In this study, we investigated the spatial distribution of soil ARGs using spatial interpolation and auto-correlation analysis. To apportion the source of soil ARGs in urban green spaces of Tianjin, Geo-detector method (GDM) was employed. Furthermore, we evaluated the ecological risk posed by ARGs employing risk quotients (RQ). The results of our study showed a significantly higher abundance of Quinolone resistance genes in the soil of urban green spaces in Tianjin. These genes were mainly found in the northwest, central, and eastern regions of the city. Our investigation identified three main factors contributing to the presence of soil ARGs: antibiotic production, precipitation, livestock breeding, and hospital. The results of ecological risk in RQ value showed a high risk associated with Quinolone resistance genes, followed by Aminoglycoside, Tetracycline, Multidrug, MLSB, Beta Lactam, Sulfonamide, and Chloramphenicol. Mantel-test and correlation analysis revealed that the ecological risk of ARGs was greatly influenced by soil properties and heavy metals. This study provides a new perspective on source apportionment and the ecological risk assessment of soil ARGs in urban green spaces.
Collapse
Affiliation(s)
- Zirui Meng
- School of Geographic and Environmental Science, Tianjin Normal University, Tianjin, 300382, China; Tianjin Key Laboratory of Water Resources and Environment, Tianjin Normal University, Tianjin, 300382, China; State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Science, Beijing, 100012, China
| | - Xunqiang Mo
- School of Geographic and Environmental Science, Tianjin Normal University, Tianjin, 300382, China
| | - Qing Xue
- School of Geographic and Environmental Science, Tianjin Normal University, Tianjin, 300382, China
| | - Ziyi Wang
- School of Geographic and Environmental Science, Tianjin Normal University, Tianjin, 300382, China
| | - Xueqiang Lu
- College of Environmental Science and Engineering, Nankai University, Tianjin, 300071, China
| | - Jie Liu
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Center for Grassland Microbiome, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, China
| | - Qinqin Ma
- College of Life Science, Sichuan Normal University, Sichuan, 610066, China
| | - Jed P Sparks
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY, 14853, USA
| | - Mengxuan He
- School of Geographic and Environmental Science, Tianjin Normal University, Tianjin, 300382, China; Tianjin Key Laboratory of Water Resources and Environment, Tianjin Normal University, Tianjin, 300382, China.
| |
Collapse
|
3
|
Pei H, Wang L, Xia X, Dong C, Tan B, Zhang Y, Lin Z, Ding J. Sulfamethoxazole stress endangers the gut health of sea cucumber (Apostichopus japonicus) and affects host metabolism. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 273:116099. [PMID: 38422788 DOI: 10.1016/j.ecoenv.2024.116099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 02/03/2024] [Accepted: 02/08/2024] [Indexed: 03/02/2024]
Abstract
Sulfamethoxazole (SMZ) is a frequently detected antibiotic in the environment, and there is a growing concern about its potential toxic effects on aquatic organisms. sea cucumber (Apostichopus japonicas) is a benthic invertebrate whose gut acts as a primary immune defense and serves critical protective barrier. In this study, growth performance, histology, gut microbiota, and metabolomics analyses were performed to investigate the toxic response in the intestine of sea cucumber effects caused by SMZ stress for 56 d by evaluating with different concentrations of SMZ (0, 1.2×10-3, and 1.2 mg/L). The weight gain rate of sea cucumbers under SMZ stress showed significant decrease, indicating that the growth of sea cucumbers was hindered. Analysis of the intestinal morphological features indicated that SMZ stimulation resulted in atrophy of the sea cucumber gut. In the 1.2×10-3 mg/L concentration, the thickness of muscle and mucosal layers was reduced by 12.40% and 21.39%, while in the 1.2 mg/L concentration, the reductions were 35.08% and 26.98%. The abundance and diversity of sea cucumber intestinal bacteria decreased significantly (P < 0.05) under the influence of SMZ. Notably, the intestinal bacteria of sea cucumber became homogenized with the increase in SMZ concentration, and the relative abundance of Ralstonia reached 81.64% under the stress of 1.2 mg/L concentration. The SMZ stress significantly impacted host metabolism and disrupted balance, particularly in L-threonine, L-tyrosine, neuronic acid, piperine, and docosapentaenoic acid. SMZ leads to dysregulation of metabolites, resulting in growth inhibition and potential inflammatory responses that could adversely affect the normal activities of aquatic organisms. Further metabolic pathway enrichment analyses demonstrated that impaired biosynthesis of unsaturated fatty acids and aminoacyl-tRNA biosynthesis metabolic pathway were major reasons for SMZ stress-induced intestinal bacteria dysbiosis. This research aims to provide some theoretical evidence for the ecological hazard assessment of antibiotics in water.
Collapse
Affiliation(s)
- Honglin Pei
- Key Laboratory of Mariculture & Stock Enhancement in North China Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian 116023, China
| | - Luo Wang
- Key Laboratory of Mariculture & Stock Enhancement in North China Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian 116023, China.
| | - Xinglong Xia
- Key Laboratory of Mariculture & Stock Enhancement in North China Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian 116023, China
| | - Changkun Dong
- Key Laboratory of Mariculture & Stock Enhancement in North China Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian 116023, China
| | - Bamei Tan
- Key Laboratory of Mariculture & Stock Enhancement in North China Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian 116023, China
| | - Yanmin Zhang
- Key Laboratory of Mariculture & Stock Enhancement in North China Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian 116023, China
| | - Zhiping Lin
- Key Laboratory of Mariculture & Stock Enhancement in North China Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian 116023, China
| | - Jun Ding
- Key Laboratory of Mariculture & Stock Enhancement in North China Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian 116023, China
| |
Collapse
|
4
|
Peng X, Zhang X, Zhang S, Li Z, Zhang H, Zhang L, Wu Z, Liu B. Revealing the response characteristics of periphyton biomass and community structure to sulfamethoxazole exposure in aquaculture water: The perspective of microbial network relationships. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 344:123301. [PMID: 38190873 DOI: 10.1016/j.envpol.2024.123301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 12/08/2023] [Accepted: 01/02/2024] [Indexed: 01/10/2024]
Abstract
The widespread application of sulfonamide antibiotics in aquaculture has raised concerns about their adverse environmental impacts. Periphyton plays a crucial role in the aquatic ecosystem. In this study, we examined sulfamethoxazole (SMX) effects on the community structure and interactions of periphyton in simulated aquaculture water. Our findings indicated that the total biomass of periphyton decreased, while the biomass of periphytic algae and the secretion of extracellular polymeric substances (EPS) increased at 0.7 × 10-3 mg/L. Under higher SMX concentrations (5 mg/L and 10 mg/L), periphyton growth was severely inhibited, the microbial community structure of periphyton were sharply altered, characterized by the cyanobacteria growth suppression and decrease in the diversity index of community. Furthermore, elevated SMX concentrations (5 mg/L and 10 mg/L) increased the ratio of negative relationships from 45.4% to 49.4%, which suggested that high SMX concentrations promoted potential competition among microbes and disrupted the microbial food webs in periphyton. The absolute abundance of sul1 and sul2 genes in T2 and T3 groups were 2-3 orders of magnitude higher than those in control group after 30 days of SMX exposure, which elevated the risk of resistance gene enrichment and dissemination in the natural environment. The study contributes to our understanding of the detrimental effects of antibiotic pollution, which can induce changes in the structure and interaction relationship of microbial communities in aquaculture water.
Collapse
Affiliation(s)
- Xue Peng
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Xinyi Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shuxian Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhuxi Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; School of Environmental Studies, China University of Geosciences, Wuhan, 430074, China
| | - Haokun Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lu Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Zhenbin Wu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; School of Environmental Studies, China University of Geosciences, Wuhan, 430074, China
| | - Biyun Liu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China.
| |
Collapse
|
5
|
Wang W, Zhang L, Dong W, Wei K, Li J, Sun J, Wang S, Mao X. A colorimetric aptasensor fabricated with group-specific split aptamers and complex nanozyme for enrofloxacin and ciprofloxacin determination. JOURNAL OF HAZARDOUS MATERIALS 2023; 458:131995. [PMID: 37437481 DOI: 10.1016/j.jhazmat.2023.131995] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 06/20/2023] [Accepted: 07/03/2023] [Indexed: 07/14/2023]
Abstract
Developing simultaneous detection methods for multiple targets is crucial for the field of food analysis. Herein, enrofloxacin (ENR) and ciprofloxacin (CIP) were taken as model targets. For the first time, a strategy to generate group-specific split aptamers was established by revealing and splitting the critical binding domain, and the split aptamers were exploited to design a four-way DNA junction (4WJ) which could regulate the enzymatic activity of chitosan oligosaccharide (COS)-AuNPs nanozyme to develop a colorimetric aptasensor. A pair of split aptamers were obtained for ENR (Kd = 15.00 nM) and CIP (Kd = 4.870 nM). The mechanism of COS binding with double-stranded DNA in the 4WJ was elucidated. Under optimal conditions, the colorimetric aptasensor enabled a wide linear detection range of 1.4-1400 nM and a limit of detection (LOD) of 321.1 pM and 961.0 pM towards ENR and CIP, respectively, which exhibited excellent sensitivity, selectivity, and availability in detecting ENR/CIP in seafood. This study expands the general strategies for generating robust aptamers and nanozyme complex and provides a good reference for developing multi-target detection methods.
Collapse
Affiliation(s)
- Wenjing Wang
- Qingdao Key Laboratory of Food Biotechnology, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, PR China; Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao 266404, PR China
| | - Ling Zhang
- Qingdao Key Laboratory of Food Biotechnology, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, PR China; Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao 266404, PR China
| | - Wenhui Dong
- Qingdao Key Laboratory of Food Biotechnology, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, PR China; Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao 266404, PR China
| | - Kaiyue Wei
- Qingdao Key Laboratory of Food Biotechnology, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, PR China; Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao 266404, PR China
| | - Jiao Li
- Qingdao Key Laboratory of Food Biotechnology, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, PR China; Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao 266404, PR China
| | - Jianan Sun
- Qingdao Key Laboratory of Food Biotechnology, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, PR China; Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao 266404, PR China
| | - Sai Wang
- Qingdao Key Laboratory of Food Biotechnology, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, PR China; Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao 266404, PR China.
| | - Xiangzhao Mao
- Qingdao Key Laboratory of Food Biotechnology, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, PR China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, PR China; Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao 266404, PR China
| |
Collapse
|
6
|
Feng Y, Lu Y, Chen Y, Xu J, Jiang J. Microbial community structure and antibiotic resistance profiles in sediments with long-term aquaculture history. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 341:118052. [PMID: 37141714 DOI: 10.1016/j.jenvman.2023.118052] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 04/25/2023] [Accepted: 04/26/2023] [Indexed: 05/06/2023]
Abstract
The aim of this investigation was to examine the microbial populations and their resistance patterns towards antibiotics, including the impact of nitrogen metabolism in response to the reintroduction of antibiotics, as well as the presence of resistance genes in sediments from shrimp ponds that have been utilized for extended periods of 5, 15, and over 30 years. Results showed that the sediments exhibited a high prevalence of Proteobacteria, Bacteroidetes, Planctomycetes, Chloroflexi, and Oxyphotobacteria as the most abundant bacterial phyla, accounting for 70.35-77.43% of the total bacterial community. The five most abundant phyla of fungi detected in all sediments, namely Rozellomycota, Ascomycota, Aphelidiomycota, Basidiomycota, and Mortierellomycota, constituted 24.26-32.54% of the total fungal community. It was highly probable that the Proteobacteria and Bacteroidetes phyla serve as the primary reservoir of antibiotic-resistant bacteria (ARB) in the sediment, which included various genera like Sulfurovum, Woeseia, Sulfurimonas, Desulfosarcina, and Robiginitalea. Among these genera, Sulfurovum appeared to be the most widespread in the sediment of aquaculture ponds that have been in operation for more than three decades, while Woeseia dominated in ponds that have been recently reclaimed and have a 15-year aquaculture history. Antibiotic resistance genes (ARGs) were categorized into seven distinct groups according to their mechanism of action. The prevalence of multidrug-resistant ARGs was found to be the highest among all types, with an abundance ranging from 8.74 × 10-2 to 1.90 × 10-1 copies per 16S rRNA gene copies. The results of a comparative analysis of sediment samples with varying aquaculture histories indicated that the total relative abundance of ARGs was significantly diminished in sediment with a 15-year aquaculture history as opposed to sediment with either a 5-year or 30-year aquaculture history. Another assessment of antibiotic resistances in aquaculture sediments involved an examination of the effects of reintroducing antibiotics on nitrogen metabolism processes. The findings revealed that the rates of ammonification, nitrification, and denitrification in the sediment with a history of 5 years and 15 years, decreased as the concentration of oxytetracycline increased from 1 to 300, and 2000 mg/kg, and inhibitory effects were found to be less pronounced in sediments with a 5-year history compared to those with a 15-year history. In contrast, oxytetracycline exposure led to a significant decrease in the rates of these processes in aquaculture pond sediments with a >30 years of aquaculture history across all the concentrations tested. The emergence and dissemination of antibiotic resistance profiles in aquaculture environments requires attention in future aquaculture management.
Collapse
Affiliation(s)
- Ying Feng
- School of Resources and Environmental Science, Quanzhou Normal University, 362000, Quanzhou, China; Institute of Environmental Sciences, Quanzhou Normal University, 362000, Quanzhou, China
| | - Yue Lu
- School of Resources and Environmental Science, Quanzhou Normal University, 362000, Quanzhou, China; College of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541006, China
| | - Yongshan Chen
- School of Resources and Environmental Science, Quanzhou Normal University, 362000, Quanzhou, China; Institute of Environmental Sciences, Quanzhou Normal University, 362000, Quanzhou, China.
| | - Jinghua Xu
- School of Resources and Environmental Science, Quanzhou Normal University, 362000, Quanzhou, China; Institute of Environmental Sciences, Quanzhou Normal University, 362000, Quanzhou, China
| | - Jinping Jiang
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541006, China
| |
Collapse
|
7
|
Sun R, Li T, Qiu S, Liu Y, Wu Z, Dai Z, Liao Y, Chen X, Chen S, Li C. Occurrence of antibiotic resistance genes carried by plastic waste from mangrove wetlands of the South China Sea. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 864:161111. [PMID: 36572308 DOI: 10.1016/j.scitotenv.2022.161111] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 12/16/2022] [Accepted: 12/17/2022] [Indexed: 06/17/2023]
Abstract
Plastic waste can carry organisms such as bacterial pathogens and antibiotic resistance genes (ARGs) over long distances. However, only few studies have been conducted on the occurrence of ARGs in plastic waste from mangrove wetlands. This study evaluated the distribution characteristics and ecological risks of plastic waste from mangroves in the coastal areas of the South China Sea. The correlation between anthropogenic activity levels and abundance of ARGs in mangroves was evaluated. Transparent and white were the common colors of plastic waste in mangroves. The main shapes of plastic waste were foam and film. The predominant types of plastic waste order were as follows: polyethylene (30.18 %) > polypropylene (27.51 %) > polystyrene (23.59 %). The living area (LA) mangroves had the highest polymer hazard and pollution load indices of 329.09 and 10.03, respectively. The abundance of ARGs (5.08 × 108 copies/g) on the plastic surface in LA mangroves was significantly higher than that of the other mangrove areas. Furthermore, there was a significant correlation between ARGs and intI1 on the plastic surface in mangroves. Correlation analysis between the ARGs and intI1 showed that most of the ARGs were correlated with intI1 except for msbA. In LA mangroves, sociometric and environmental factors showed significant correlations with the absolute abundances of the four ARGs and intI1, indicating that anthropogenic activities may lead to changes in the amount of ARGs on plastic surfaces. Furthermore, the ARG storage of plastic waste from different mangroves was as follows: protected areas (3.12 × 1017 copies) > living areas (2.99 × 1017 copies) > aquaculture pond areas (2.88 × 1017 copies). The higher ARG storage of LA mangroves, with the smallest area, greatly increased its ecological risk. The results of this study can provide basic data for processes that influence the distribution of plastic waste and ARGs in mangroves.
Collapse
Affiliation(s)
- Ruikun Sun
- School of Chemistry and Environment, Guangdong Ocean University, Zhanjiang 524088, China
| | - Ting Li
- School of Chemistry and Environment, Guangdong Ocean University, Zhanjiang 524088, China
| | - Shijie Qiu
- School of Chemistry and Environment, Guangdong Ocean University, Zhanjiang 524088, China
| | - Yu Liu
- School of Chemistry and Environment, Guangdong Ocean University, Zhanjiang 524088, China
| | - Zijie Wu
- School of Chemistry and Environment, Guangdong Ocean University, Zhanjiang 524088, China
| | - Zhenqing Dai
- Shenzhen Institute of Guangdong Ocean University, Shenzhen, Guangdong 518114, China.
| | - Yuantao Liao
- Guangzhou Urban Planning & Design Survey Research Institute, Guangzhou, Guangdong 510030, China
| | - Xin Chen
- Guangzhou Urban Planning & Design Survey Research Institute, Guangzhou, Guangdong 510030, China
| | - Shuying Chen
- Guangzhou Urban Planning & Design Survey Research Institute, Guangzhou, Guangdong 510030, China
| | - Chengyong Li
- School of Chemistry and Environment, Guangdong Ocean University, Zhanjiang 524088, China; Shenzhen Institute of Guangdong Ocean University, Shenzhen, Guangdong 518114, China.
| |
Collapse
|
8
|
Shi BS, Cheng XJ, Chen HZ, Xie J, Zhou ZH, Jiang SQ, Peng XM, Zhang YD, Zhu DT, Lu ZY. Occurrence, source tracking and removal of antibiotics in recirculating aquaculture systems (RAS) in southern China. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 324:116311. [PMID: 36162319 DOI: 10.1016/j.jenvman.2022.116311] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 09/03/2022] [Accepted: 09/15/2022] [Indexed: 06/16/2023]
Abstract
The recirculating aquaculture system (RAS) has attracted much attention in China as a way to rapidly transform and upgrade aquaculture ponds to realize zero-emissions of pollutants in aquaculture tail water. Tail water purification ponds (TWPPs) play an important role in the treatment of aquaculture wastewater. However, until now, there have been few reports on the occurrence of antibiotics in RAS and the removal of antibiotics from the TWPPs of RAS. Therefore, this study focused on the occurrence of antibiotics in a typical ecological RAS. For comparison, the same measurements were simultaneously carried out in nearby open aquaculture ponds and rivers. The pollution level and spatial distribution of antibiotics in the RAS and the removal of antibiotics in the TWPPs were explored. The results showed that (1) eleven and twelve antibiotics were detected in water and sediment samples in the RAS, respectively, but no antibiotics were found in fish muscles and feed. Erythromycin (ERY), lincomycin (LIN), and ciprofloxacin (CFX) were the three main types of antibiotics found in water and sediment samples. (2) The TWPPs of the RAS can effectively remove antibiotics in aquaculture water. The antibiotic concentration in recirculating aquaculture ponds of the RAS was as high as 180 ng/L. After treatments in the TWPPs, the antibiotic concentration of aquaculture water decreased to 81.6 ng/L (3) The antibiotic concentrations in recirculating aquaculture ponds (25.2-180 ng/L) were lower than those in the nearby open aquaculture ponds (126-267.3 ng/L), and the concentration of antibiotics in the sediments of recirculating aquaculture ponds was up to 22.9 ng/g, while that in TWPPs was as high as 56.1 ng/g. In conclusion, the antibiotic residues in the RAS were low after antibiotics were banned in feed in China, and the removal of antibiotics in the TWPPs was more pronounced. Furthermore, cross-contamination was found between the RAS, surrounding open aquaculture ponds and the river, and the water supply of the RAS was likely to be the main contributor of antibiotics in the aquaculture environments. This study can help the government formulate discharge standards for antibiotics in aquaculture and also provide a reference for the transformation and upgrading of aquaculture ponds to achieve a zero-emission aquaculture mode.
Collapse
Affiliation(s)
- Bao-Shan Shi
- School of Civil Engineering and Transportation, South China University of Technology, Guangzhou, 510641, China; State Key Laboratory of Subtropical Building Science, South China University of Technology, Guangzhou, 510640, China
| | - Xiang-Ju Cheng
- School of Civil Engineering and Transportation, South China University of Technology, Guangzhou, 510641, China; State Key Laboratory of Subtropical Building Science, South China University of Technology, Guangzhou, 510640, China.
| | - Hong-Zhan Chen
- Guangzhou Ecological and Environmental Monitoring Center of Guangdong Province, Guangzhou, 510030, China
| | - Jun Xie
- Key Laboratory of Tropical and Subtropical Fishery Resource Application and Cultivation, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510380, China
| | - Zhi-Hong Zhou
- Guangzhou Ecological and Environmental Monitoring Center of Guangdong Province, Guangzhou, 510030, China
| | - Shen-Qiong Jiang
- School of Civil Engineering and Transportation, South China University of Technology, Guangzhou, 510641, China
| | - Xiao-Ming Peng
- School of Civil Engineering and Transportation, South China University of Technology, Guangzhou, 510641, China
| | - Yu-da Zhang
- School of Civil Engineering and Transportation, South China University of Technology, Guangzhou, 510641, China
| | - Dan-Tong Zhu
- School of Civil Engineering and Transportation, South China University of Technology, Guangzhou, 510641, China; State Key Laboratory of Subtropical Building Science, South China University of Technology, Guangzhou, 510640, China
| | - Zhuo-Yin Lu
- School of Civil Engineering and Transportation, South China University of Technology, Guangzhou, 510641, China
| |
Collapse
|
9
|
Srivastava A, Dave H, Prasad B, Maurya DM, Kumari M, Sillanpää M, Prasad KS. Low cost iron modified syzygium cumini l. Wood biochar for adsorptive removal of ciprofloxacin and doxycycline antibiotics from aqueous solution. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
10
|
Yang J, Liu D, Song X, Zhao Y, Wang Y, Rao L, Fu L, Wang Z, Yang X, Li Y, Liu Y. Recent Progress of Cellulose-Based Hydrogel Photocatalysts and Their Applications. Gels 2022; 8:270. [PMID: 35621568 PMCID: PMC9141161 DOI: 10.3390/gels8050270] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/17/2022] [Accepted: 04/19/2022] [Indexed: 02/08/2023] Open
Abstract
With the development of science and technology, photocatalytic technology is of great interest. Nanosized photocatalysts are easy to agglomerate in an aqueous solution, which is unfavorable for recycling. Therefore, hydrogel-based photocatalytic composites were born. Compared with other photocatalytic carriers, hydrogels have a three-dimensional network structure, high water absorption, and a controllable shape. Meanwhile, the high permeability of these composites is an effective way to promote photocatalysis technology by inhibiting nanoparticle photo corrosion, while significantly ensuring the catalytic activity of the photocatalysts. With the growing energy crisis and limited reserves of traditional energy sources such as oil, the attention of researchers was drawn to natural polymers. Like almost all abundant natural polymer compounds in the world, cellulose has the advantages of non-toxicity, degradability, and biocompatibility. It is used as a class of reproducible crude material for the preparation of hydrogel photocatalytic composites. The network structure and high hydroxyl active sites of cellulose-based hydrogels improve the adsorption performance of catalysts and avoid nanoparticle collisions, indirectly enhancing their photocatalytic performance. In this paper, we sum up the current research progress of cellulose-based hydrogels. After briefly discussing the properties and preparation methods of cellulose and its descendant hydrogels, we explore the effects of hydrogels on photocatalytic properties. Next, the cellulose-based hydrogel photocatalytic composites are classified according to the type of catalyst, and the research progress in different fields is reviewed. Finally, the challenges they will face are summarized, and the development trends are prospected.
Collapse
Affiliation(s)
- Jinyu Yang
- Hubei Key Laboratory of Radiation Chemistry and Functional Materials, Non-Power Nuclear Technology Collaborative Innovation Center, Hubei University of Science and Technology, Xianning 437100, China; (J.Y.); (D.L.); (X.S.); (Y.Z.); (Y.W.); (L.R.); (L.F.); (Z.W.); (X.Y.)
- Key Laboratory of Coal Conversion and New Carbon Materials of Hubei Province, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Dongliang Liu
- Hubei Key Laboratory of Radiation Chemistry and Functional Materials, Non-Power Nuclear Technology Collaborative Innovation Center, Hubei University of Science and Technology, Xianning 437100, China; (J.Y.); (D.L.); (X.S.); (Y.Z.); (Y.W.); (L.R.); (L.F.); (Z.W.); (X.Y.)
| | - Xiaofang Song
- Hubei Key Laboratory of Radiation Chemistry and Functional Materials, Non-Power Nuclear Technology Collaborative Innovation Center, Hubei University of Science and Technology, Xianning 437100, China; (J.Y.); (D.L.); (X.S.); (Y.Z.); (Y.W.); (L.R.); (L.F.); (Z.W.); (X.Y.)
- Key Laboratory of Coal Conversion and New Carbon Materials of Hubei Province, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Yuan Zhao
- Hubei Key Laboratory of Radiation Chemistry and Functional Materials, Non-Power Nuclear Technology Collaborative Innovation Center, Hubei University of Science and Technology, Xianning 437100, China; (J.Y.); (D.L.); (X.S.); (Y.Z.); (Y.W.); (L.R.); (L.F.); (Z.W.); (X.Y.)
- Key Laboratory of Coal Conversion and New Carbon Materials of Hubei Province, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Yayang Wang
- Hubei Key Laboratory of Radiation Chemistry and Functional Materials, Non-Power Nuclear Technology Collaborative Innovation Center, Hubei University of Science and Technology, Xianning 437100, China; (J.Y.); (D.L.); (X.S.); (Y.Z.); (Y.W.); (L.R.); (L.F.); (Z.W.); (X.Y.)
- Key Laboratory of Coal Conversion and New Carbon Materials of Hubei Province, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Lu Rao
- Hubei Key Laboratory of Radiation Chemistry and Functional Materials, Non-Power Nuclear Technology Collaborative Innovation Center, Hubei University of Science and Technology, Xianning 437100, China; (J.Y.); (D.L.); (X.S.); (Y.Z.); (Y.W.); (L.R.); (L.F.); (Z.W.); (X.Y.)
| | - Lili Fu
- Hubei Key Laboratory of Radiation Chemistry and Functional Materials, Non-Power Nuclear Technology Collaborative Innovation Center, Hubei University of Science and Technology, Xianning 437100, China; (J.Y.); (D.L.); (X.S.); (Y.Z.); (Y.W.); (L.R.); (L.F.); (Z.W.); (X.Y.)
| | - Zhijun Wang
- Hubei Key Laboratory of Radiation Chemistry and Functional Materials, Non-Power Nuclear Technology Collaborative Innovation Center, Hubei University of Science and Technology, Xianning 437100, China; (J.Y.); (D.L.); (X.S.); (Y.Z.); (Y.W.); (L.R.); (L.F.); (Z.W.); (X.Y.)
| | - Xiaojie Yang
- Hubei Key Laboratory of Radiation Chemistry and Functional Materials, Non-Power Nuclear Technology Collaborative Innovation Center, Hubei University of Science and Technology, Xianning 437100, China; (J.Y.); (D.L.); (X.S.); (Y.Z.); (Y.W.); (L.R.); (L.F.); (Z.W.); (X.Y.)
| | - Yuesheng Li
- Hubei Key Laboratory of Radiation Chemistry and Functional Materials, Non-Power Nuclear Technology Collaborative Innovation Center, Hubei University of Science and Technology, Xianning 437100, China; (J.Y.); (D.L.); (X.S.); (Y.Z.); (Y.W.); (L.R.); (L.F.); (Z.W.); (X.Y.)
| | - Yi Liu
- Key Laboratory of Coal Conversion and New Carbon Materials of Hubei Province, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, China
- College of Chemistry and Chemical Engineering, Tiangong University, Tianjin 300387, China
| |
Collapse
|