1
|
Wang K, Li A, Qiu Z, Wang B, Jin X, Hu L, Wang H. Effects of microplastics accumulation and antibiotics contamination in anaerobic membrane bioreactors for municipal wastewater treatment. JOURNAL OF HAZARDOUS MATERIALS 2025; 489:137705. [PMID: 40010217 DOI: 10.1016/j.jhazmat.2025.137705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 02/08/2025] [Accepted: 02/20/2025] [Indexed: 02/28/2025]
Abstract
Municipal wastewater treatment plants are the main collection points for plastics and antibiotics. Anaerobic membrane bioreactor (AnMBR) is one the most potential municipal wastewater treatment technologies. This study evaluated the impact of microplastic (aged polyvinyl chloride, aged PVC, 1.5 g/L), antibiotics (ciprofloxacin, CIP, 100 μg/L) and their interaction effect on AnMBR treatment performance and membrane fouling. Results showed that the inhibition of CIP on AnMBR organic removal and methane production was intensified, owing to the CIP adsorption on aged PVC. The enzyme activities of electron transport (ETS), adenosine triphosphate (ATP) and F420 were also significantly restrained by 47-52 % with combined exposure. The combined effects also significantly aggravated the membrane fouling of AnMBR, which shorted the membrane operational period by half due to more soluble microbial products (SMP) secretion. The microbial diversity analyses indicated that aged PVC and CIP addition can accumulate some main anaerobic fermentation bacteria but inhibit the archaea. The abundance of related enzyme in the acetoclastic and hydrogenotrophic methanogenesis decreased with the sole aged PVC and CIP addition and severely inhibited with their combine effect. The absolute abundance mcrA significantly reduced by 92 % with combined exposure, validating the negative impact on methanogenic activity. These findings provide valuable insight into the AnMBR implementation in complex wastewater treatment.
Collapse
Affiliation(s)
- Kanming Wang
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Aoran Li
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Zhixuan Qiu
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Banglong Wang
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Xizheng Jin
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Lingling Hu
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Hongyu Wang
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China.
| |
Collapse
|
2
|
Cai T, Ming Y, Zhang Y, Zhang Q. Unraveling the role of black soldier fly larvae in chicken manure conversion: Facilitating maturation and enhancing humification. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 952:175952. [PMID: 39222815 DOI: 10.1016/j.scitotenv.2024.175952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 08/09/2024] [Accepted: 08/30/2024] [Indexed: 09/04/2024]
Abstract
Black soldier fly larvae (BSFL) have garnered considerable attention for their efficacy in mitigating waste management challenges. However, their potential in treating antibiotics contaminated chicken manure remains uncertain. This study investigates the physicochemical properties changes and nutrient dynamics during the composting of contaminated-chicken manure using BSFL. The results indicate that BSFL treatment reduces electrical conductivity (by 6.01-58.09 %), organic matter, and dissolved organic carbon content in chicken manure throughout the composting process, while maintaining a more stable pH value (pH ∼ 6.0-8.0). This is attributed to the consumption of organic matter by BSFL and the subsequent promotion of organic acid formation. Additionally, BSFL treatment improves the degree of aromatization of dissolved organic matter (DOM) in chicken manure and increases the proportions of fulvic acid (up to 48.77 %) and humic acid (maximally 14.27 %) within the DOM. The germination index and pot experiments indicated improved compost maturity and plant growth in BSFL-treated composts. Furthermore, BSFL meal demonstrated high protein and essential fatty acid content, highlighting its potential as a protein supplement in animal feed. This study underscores the efficacy of BSFL in enhancing compost quality and nutrient availability, offering a sustainable solution for waste management and animal feed production.
Collapse
Affiliation(s)
- Tong Cai
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, 200241 Shanghai, China
| | - Yuanbo Ming
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, 200241 Shanghai, China
| | - Yangboxuan Zhang
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, 200241 Shanghai, China
| | - Qiuzhuo Zhang
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, 200241 Shanghai, China; Institute of Eco-Chongming (IEC), 3663 N. Zhongshan Road, 200062 Shanghai, China; Technology Innovation Center for Land Spatial Eco-restoration in Metropolitan Area, Ministry of Natural Resources, 3663 N. Zhongshan Road, 200062 Shanghai, China.
| |
Collapse
|
3
|
Wu N, Ma Y, Yu X, Wang X, Wang Q, Liu X, Xu X. Black soldier fly larvae bioconversion and subsequent composting promote larval frass quality during pig and chicken manure transformation process. BIORESOURCE TECHNOLOGY 2024; 402:130777. [PMID: 38701978 DOI: 10.1016/j.biortech.2024.130777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 04/28/2024] [Accepted: 04/29/2024] [Indexed: 05/06/2024]
Abstract
This research systematically assessed the changes in carbon, nitrogen and microbial profiling during pig and chicken manure transformation by black soldier fly larvae (BSFL) and subsequent composting process. BSFL had higher conversion efficiency for chicken manure. The pH, phosphorus and potassium contents in fresh BSFL frass increased than raw manure, but conductivity, total-/nitrate-/ammonium-nitrogen decreased. After BSFL conversion, pig manure had a larger nitrogen loss (25 %) while chicken manure had a larger carbon loss (32 %). During subsequent composting, the indicator changes (e.g. humus, ammonium nitrogen) in frass composts basically remained stable after 20-30 days. Compared to natural composts, frass composts had higher humification degree, cellulase activities, and more cellulose-degrading bacteria. Subsequent composting further reduced potential pathogens (reduced by 98.9 %-99.7 % than raw manure), and elevated the aromaticity and humification of frass. The findings gave an insight into the maturation management of manure-sourced insect frass.
Collapse
Affiliation(s)
- Nan Wu
- Key Laboratory of Smart Breeding (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Tianjin Agricultural University, Tianjin 300392, China; College of Engineering and Technology, Tianjin Agricultural University, Tianjin 300392, China
| | - Ye Ma
- Key Laboratory of Smart Breeding (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Tianjin Agricultural University, Tianjin 300392, China; College of Agronomy and Resource and Environment, Tianjin Agricultural University, Tianjin 300392, China
| | - Xiaohui Yu
- Key Laboratory of Smart Breeding (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Tianjin Agricultural University, Tianjin 300392, China; College of Engineering and Technology, Tianjin Agricultural University, Tianjin 300392, China
| | - Xiaobo Wang
- Key Laboratory of Smart Breeding (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Tianjin Agricultural University, Tianjin 300392, China; College of Agronomy and Resource and Environment, Tianjin Agricultural University, Tianjin 300392, China
| | - Qing Wang
- Key Laboratory of Smart Breeding (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Tianjin Agricultural University, Tianjin 300392, China; College of Engineering and Technology, Tianjin Agricultural University, Tianjin 300392, China
| | - Xinyuan Liu
- College of Engineering and Technology, Tianjin Agricultural University, Tianjin 300392, China
| | - Xiaoyan Xu
- Key Laboratory of Smart Breeding (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Tianjin Agricultural University, Tianjin 300392, China; College of Agronomy and Resource and Environment, Tianjin Agricultural University, Tianjin 300392, China.
| |
Collapse
|
4
|
Deng B, Luo J, Xu C, Zhang X, Li J, Yuan Q, Cao H. Biotransformation of Pb and As from sewage sludge and food waste by black soldier fly larvae: Migration mechanism of bacterial community and metalloregulatory protein scales. WATER RESEARCH 2024; 254:121405. [PMID: 38447376 DOI: 10.1016/j.watres.2024.121405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/29/2024] [Accepted: 02/29/2024] [Indexed: 03/08/2024]
Abstract
The accumulation and transformation of lead (Pb) and arsenic (As) during the digestion of sewage sludge (SS) by black soldier fly larvae (BSFL) remain unclear. In this study, we used 16 s rRNA and metagenomic sequencing techniques to investigate the correlation between the microbial community, metalloregulatory proteins (MRPs), and Pb and As migration and transformation. During the 15-day test period, BSFL were able to absorb 34-48 % of Pb and 32-45 % of As into their body. Changes in bacterial community abundance, upregulation of MRPs, and redundancy analysis (RDA) results confirmed that ZntA, EfeO, CadC, ArsR, ArsB, ArsD, and ArsA play major roles in the adsorption and stabilization of Pb and As, which is mainly due to the high contribution rates of Lactobacillus (48-59 %) and Enterococcus (21-23 %). Owing to the redox reaction, the regulation of the MRPs, and the change in pH, the Pb and As in the BSFL residue were mainly the residual fraction (F4). The RDA results showed that Lactobacillus and L.koreensis could significantly (P < 0.01) reduce the reducible fraction (F2) and F4 of Pb, whereas Firmicutes and L.fermentum can significantly (P < 0.05) promote the transformation of As to F4, thus realizing the passivation Pb and As. This study contributes to the understanding of Pb and As in SS adsorbed by BSFL and provides important insights into the factors that arise during the BSFL-mediated migration of Pb and As.
Collapse
Affiliation(s)
- Bo Deng
- Key Laboratory of Smart Farming for Agricultural Animals, College of Engineering, Huazhong Agricultural University, No. 1, Shizishan Street, Hongshan District, Wuhan 430070, PR China; Key Laboratory of Aquaculture Facilities Engineering, Ministry of Agriculture and Rural Affairs, Wuhan 430070, China; Technology & Equipment Center for carbon Neutrality in Agriculture, Huazhong Agricultural University, No. 1, Shizishan Street, Hongshan District, Wuhan 430070, PR China
| | - Junlong Luo
- Key Laboratory of Smart Farming for Agricultural Animals, College of Engineering, Huazhong Agricultural University, No. 1, Shizishan Street, Hongshan District, Wuhan 430070, PR China; Key Laboratory of Aquaculture Facilities Engineering, Ministry of Agriculture and Rural Affairs, Wuhan 430070, China; Technology & Equipment Center for carbon Neutrality in Agriculture, Huazhong Agricultural University, No. 1, Shizishan Street, Hongshan District, Wuhan 430070, PR China
| | - Chao Xu
- Key Laboratory of Smart Farming for Agricultural Animals, College of Engineering, Huazhong Agricultural University, No. 1, Shizishan Street, Hongshan District, Wuhan 430070, PR China; Key Laboratory of Aquaculture Facilities Engineering, Ministry of Agriculture and Rural Affairs, Wuhan 430070, China; Technology & Equipment Center for carbon Neutrality in Agriculture, Huazhong Agricultural University, No. 1, Shizishan Street, Hongshan District, Wuhan 430070, PR China
| | - Xin Zhang
- Key Laboratory of Smart Farming for Agricultural Animals, College of Engineering, Huazhong Agricultural University, No. 1, Shizishan Street, Hongshan District, Wuhan 430070, PR China; Key Laboratory of Aquaculture Facilities Engineering, Ministry of Agriculture and Rural Affairs, Wuhan 430070, China; Technology & Equipment Center for carbon Neutrality in Agriculture, Huazhong Agricultural University, No. 1, Shizishan Street, Hongshan District, Wuhan 430070, PR China
| | - Jun Li
- Key Laboratory of Smart Farming for Agricultural Animals, College of Engineering, Huazhong Agricultural University, No. 1, Shizishan Street, Hongshan District, Wuhan 430070, PR China; Key Laboratory of Aquaculture Facilities Engineering, Ministry of Agriculture and Rural Affairs, Wuhan 430070, China; Technology & Equipment Center for carbon Neutrality in Agriculture, Huazhong Agricultural University, No. 1, Shizishan Street, Hongshan District, Wuhan 430070, PR China
| | - Qiaoxia Yuan
- Key Laboratory of Smart Farming for Agricultural Animals, College of Engineering, Huazhong Agricultural University, No. 1, Shizishan Street, Hongshan District, Wuhan 430070, PR China; Key Laboratory of Aquaculture Facilities Engineering, Ministry of Agriculture and Rural Affairs, Wuhan 430070, China; Technology & Equipment Center for carbon Neutrality in Agriculture, Huazhong Agricultural University, No. 1, Shizishan Street, Hongshan District, Wuhan 430070, PR China.
| | - Hongliang Cao
- Key Laboratory of Smart Farming for Agricultural Animals, College of Engineering, Huazhong Agricultural University, No. 1, Shizishan Street, Hongshan District, Wuhan 430070, PR China; Key Laboratory of Aquaculture Facilities Engineering, Ministry of Agriculture and Rural Affairs, Wuhan 430070, China; Technology & Equipment Center for carbon Neutrality in Agriculture, Huazhong Agricultural University, No. 1, Shizishan Street, Hongshan District, Wuhan 430070, PR China.
| |
Collapse
|
5
|
Deng B, Liu Z, Gong T, Xu C, Zhang X, Cao H, Yuan Q. Addition of plantation waste to the bioconversion of pig manure by black soldier fly larvae: Effects on heavy metal content and bioavailability. WASTE MANAGEMENT (NEW YORK, N.Y.) 2024; 176:64-73. [PMID: 38266476 DOI: 10.1016/j.wasman.2024.01.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 01/08/2024] [Accepted: 01/12/2024] [Indexed: 01/26/2024]
Abstract
During the conversion of pig manure by black soldier fly larvae (BSFL), the accumulation and speciation changes of heavy metals (HMs) have adverse effects on the environment. In this study, corn straw, rice straw, bamboo chips (BC), wood chips, and rice husk char were added to a bioconversion system to study the accumulation, migration, speciation changes, and microbial correlations of HMs. The results indicated that the addition of BC was most beneficial for the accumulation of HMs (47-72 %) in the BSFL body. In the BC group, the accumulation effect of the BSFL body on zinc (Zn) and arsenic (As) was the most evident (72 and 71 %, respectively). The results of linear fitting (R2 > 0.90) and redundancy analysis (RDA; 90 %) indicated that the bacterium Bacillaceae (Bacillus) was beneficial for increasing the larval weight (LW) of BSFL, and a higher LW accumulated HMs. The addition of BC helped reduce the total amount (6-51 %) of available states (weak acid extraction and reducible states) in the BSFL residue. The RDA results indicated that bacteria (55-92 %) affected the transformation of HM speciation. For example, Zn and cadmium were mainly affected by Firmicutes, whereas copper and chromium were affected by Bacteroidetes. Proteobacteria and Pseudomonas formosensis affected the conversion of lead and As. This study provides important insights into the adsorption of HMs from pig manure by BSFL.
Collapse
Affiliation(s)
- Bo Deng
- Key Laboratory of Smart Farming for Agricultural Animals, College of Engineering, Huazhong Agricultural University, Wuhan 430070, China
| | - Ziqi Liu
- Key Laboratory of Smart Farming for Agricultural Animals, College of Engineering, Huazhong Agricultural University, Wuhan 430070, China
| | - Ting Gong
- Key Laboratory of Smart Farming for Agricultural Animals, College of Engineering, Huazhong Agricultural University, Wuhan 430070, China
| | - Chao Xu
- Key Laboratory of Smart Farming for Agricultural Animals, College of Engineering, Huazhong Agricultural University, Wuhan 430070, China
| | - Xin Zhang
- Key Laboratory of Smart Farming for Agricultural Animals, College of Engineering, Huazhong Agricultural University, Wuhan 430070, China
| | - Hongliang Cao
- Key Laboratory of Smart Farming for Agricultural Animals, College of Engineering, Huazhong Agricultural University, Wuhan 430070, China
| | - Qiaoxia Yuan
- Key Laboratory of Smart Farming for Agricultural Animals, College of Engineering, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
6
|
Ma J, Sun H, Li B, Wu B, Zhang X, Ye L. Horizontal transfer potential of antibiotic resistance genes in wastewater treatment plants unraveled by microfluidic-based mini-metagenomics. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133493. [PMID: 38228000 DOI: 10.1016/j.jhazmat.2024.133493] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 12/30/2023] [Accepted: 01/08/2024] [Indexed: 01/18/2024]
Abstract
Wastewater treatment plants (WWTPs) are known to harbor antibiotic resistance genes (ARGs), which can potentially spread to the environment and human populations. However, the extent and mechanisms of ARG transfer in WWTPs are not well understood due to the high microbial diversity and limitations of molecular techniques. In this study, we used a microfluidic-based mini-metagenomics approach to investigate the transfer potential and mechanisms of ARGs in activated sludge from WWTPs. Our results show that while diverse ARGs are present in activated sludge, only a few highly similar ARGs are observed across different taxa, indicating limited transfer potential. We identified two ARGs, ermF and tla-1, which occur in a variety of bacterial taxa and may have high transfer potential facilitated by mobile genetic elements. Interestingly, genes that are highly similar to the sequences of these two ARGs, as identified in this study, display varying patterns of abundance across geographic regions. Genes similar to ermF found are widely found in Asia and the Americas, while genes resembling tla-1 are primarily detected in Asia. Genes similar to both genes are barely detected in European WWTPs. These findings shed light on the limited horizontal transfer potential of ARGs in WWTPs and highlight the importance of monitoring specific ARGs in different regions to mitigate the spread of antibiotic resistance.
Collapse
Affiliation(s)
- Jiachen Ma
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Haohao Sun
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China; School of Environmental Science and Engineering, Changzhou University, Changzhou 213164, China
| | - Bing Li
- State Environmental Protection Key Laboratory of Microorganism Application and Risk Control, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Bing Wu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Xuxiang Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Lin Ye
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China.
| |
Collapse
|
7
|
Shi C, Xie P, Ding Z, Niu G, Wen T, Gu W, Lu Y, Wang F, Li W, Zeng J, Shen Q, Yuan J. Inhibition of pathogenic microorganisms in solid organic waste via black soldier fly larvae-mediated management. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 913:169767. [PMID: 38176562 DOI: 10.1016/j.scitotenv.2023.169767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 12/03/2023] [Accepted: 12/28/2023] [Indexed: 01/06/2024]
Abstract
Inadequately managed solid organic waste generation poses a threat to the environment and human health globally. Biotransformation with the black soldier fly larvae (BSFL) is emerging as talent technology for solid waste management. However, there is a lack of understanding of whether BSFL can effectively suppress potential pathogenic microorganisms during management and the underlying mechanisms. In this study, we investigated the temporal variations of microorganisms in two common types of solid waste, i.e., kitchen waste (KW) and pig manure (PM). Natural composting and composting with BSFL under three different pH levels (pH 5, 7, and 9) were established to explore their impact on microbial communities in compost and the gut of BSFL. The results showed that the compost of kitchen waste and pig manure led to an increase in relative abundance of various potentially pathogenic bacteria. Temporal gradient analyses revealed that the most substantial reduction in the relative abundance and diversity of potentially pathogenic microorganisms occurred when the initial pH of both two wastes were adjusted to 7 upon the introduction of BSFL. Through network and pls-pm analysis, it was discovered that the gut microbiota of BSFL occupied an ecological niche in the compost, inhibiting the proliferation of potentially pathogenic microorganisms. This study has revealed the potential of BSFL in reducing public health risks during the solid waste management process, providing robust support for sustainable waste management.
Collapse
Affiliation(s)
- Chaohong Shi
- Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Guangdong Key Laboratory of Nutrient Cycling and Farmland Conservation, Key Laboratory of Plant Nutrition and Fertilizer in South Region, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
| | - Penghao Xie
- Key lab of organic-based fertilizers of China and Jiangsu provincial key lab for solid organic waste utilization, Jiangsu Collaborative Innovation Center for Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhexu Ding
- Key lab of organic-based fertilizers of China and Jiangsu provincial key lab for solid organic waste utilization, Jiangsu Collaborative Innovation Center for Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, Nanjing Agricultural University, Nanjing 210095, China
| | - Guoqing Niu
- Key lab of organic-based fertilizers of China and Jiangsu provincial key lab for solid organic waste utilization, Jiangsu Collaborative Innovation Center for Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, Nanjing Agricultural University, Nanjing 210095, China
| | - Tao Wen
- Key lab of organic-based fertilizers of China and Jiangsu provincial key lab for solid organic waste utilization, Jiangsu Collaborative Innovation Center for Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, Nanjing Agricultural University, Nanjing 210095, China
| | - Wenjie Gu
- Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Guangdong Key Laboratory of Nutrient Cycling and Farmland Conservation, Key Laboratory of Plant Nutrition and Fertilizer in South Region, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China; Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming 525000, China.
| | - Yusheng Lu
- Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Guangdong Key Laboratory of Nutrient Cycling and Farmland Conservation, Key Laboratory of Plant Nutrition and Fertilizer in South Region, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
| | - Fengying Wang
- Guangzhou Outreach Environmental Technologies Co., Ltd., Guangzhou 510640, China
| | - Wanling Li
- Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Guangdong Key Laboratory of Nutrient Cycling and Farmland Conservation, Key Laboratory of Plant Nutrition and Fertilizer in South Region, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
| | - Jianguo Zeng
- Key lab of organic-based fertilizers of China and Jiangsu provincial key lab for solid organic waste utilization, Jiangsu Collaborative Innovation Center for Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, Nanjing Agricultural University, Nanjing 210095, China
| | - Qirong Shen
- Key lab of organic-based fertilizers of China and Jiangsu provincial key lab for solid organic waste utilization, Jiangsu Collaborative Innovation Center for Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, Nanjing Agricultural University, Nanjing 210095, China
| | - Jun Yuan
- Key lab of organic-based fertilizers of China and Jiangsu provincial key lab for solid organic waste utilization, Jiangsu Collaborative Innovation Center for Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
8
|
Wang L, Wang S, Yang R, Zhang B, Xu L, Hu Q, Zhao Z, Cao Z. Effect of moisture content on larval gut microbiome and the conversion of pig manure by black soldier fly. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169579. [PMID: 38145667 DOI: 10.1016/j.scitotenv.2023.169579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/14/2023] [Accepted: 12/19/2023] [Indexed: 12/27/2023]
Abstract
The study investigated the influence of varied moisture levels in pig manure on the gut microbiome of black soldier fly larvae (BSFL) and their waste conversion efficiency. This encompassed alterations in nutrient components of both BSFL and pig manure, diversity and characterization of the BSFL gut microbiota, and the reciprocal effects between the BSFL gut microbiota and their growth performance and nutrient composition. Additionally, the investigation delved into the changes in the bacterial community and the presence of potential pathogenic bacteria in pig manure. An initial mixture of fresh pig manure and wheat bran was prepared with a 60 % moisture content (Group A). Distilled water was subsequently added to adjust the moisture levels, resulting in mixtures with 65 % (Group B), 70 % (Group C), and 75 % (Group D) moisture content. Each group underwent BSFL digestion over ten days. Groups C (3.87 ± 0.05 mg/worm) and D (3.97 ± 0.08 mg/worm) showed significantly higher bioconversion efficiencies and enhanced BSFL growth compared to Groups A (2.66 ± 0.21 mg/worm) and B (3.09 ± 0.09 mg/worm) (P < 0.05). A 75 % moisture level was identified as ideal, positively influencing fecal conversion efficiency (FCE) (9.57 ± 0.14 %), crude fat intake (8.92 ± 0.56 %), protein (46.60 ± 0.54 %), and total phosphorus (1.37 ± 0.08 %) from pig manure, and subsequent nutrient accumulation in BSFLs. A decline in larval crude ash content indicated higher organic matter and an increased pig manure conversion rate with elevated moisture. High-throughput sequencing and diversity analyses confirmed different moisture contents influenced the BSFL gut microbiota. Bacteroidetes (32.7-62.0 %), Proteobacteria (6.8-29.3 %), Firmicutes (5.8-23.4 %), and Actinobacteria (1.9-29.0 %) were predominant phyla. A 75 % moisture content significantly impacted the BSFL biomass conversion and growth performance. Additionally, Larval feces met non-hazardous fertilizer standards, according to NY-525 (2012).
Collapse
Affiliation(s)
- Lili Wang
- MOE Key Laboratory of Bio-Intelligent Manufacturing, School of Bioengineering, Dalian University of Technology, Dalian 116024, China
| | - Shengwen Wang
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Rencan Yang
- Yunnan Animal Science and Veterinary Institute, Kunming 650224, China
| | - Bin Zhang
- Yunnan Animal Science and Veterinary Institute, Kunming 650224, China
| | - Le Xu
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Qingquan Hu
- Yunnan Animal Science and Veterinary Institute, Kunming 650224, China
| | - Zhiyong Zhao
- Yunnan Animal Science and Veterinary Institute, Kunming 650224, China.
| | - Zhenhui Cao
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China.
| |
Collapse
|
9
|
Zhang S, Gao W, Xie L, Zhang G, Wei Z, Li J, Song C, Chang M. Malonic acid shapes bacterial community dynamics in compost to promote carbon sequestration and humic substance synthesis. CHEMOSPHERE 2024; 350:141092. [PMID: 38169202 DOI: 10.1016/j.chemosphere.2023.141092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 12/06/2023] [Accepted: 12/30/2023] [Indexed: 01/05/2024]
Abstract
The incorporation of malonic acid (MA) into compost as a regulator of the tricarboxylic acid (TCA) cycle has the potential to increase carbon sequestration. However, the influence of MA on the transformation of the microbial community during the composting process remains unclear. In this investigation, MA was introduced at different stages of chicken manure (CM) composting to characterize the bacterial community within the compost using high-throughput sequencing. We assess the extent of increased carbon sequestration by comparing the concentration of total organic carbon (TOC). At the same time, this study examines whether increased carbon sequestration contributes to humus formation, which was elucidated by evaluating the content and composition of humus. Our results show that the addition of MA significantly improved carbon sequestration within the compost, reducing the carbon loss rate (C loss (%)) from 64.70% to 52.94%, while increasing HS content and stability. High throughput sequencing and Random Forest (RF) analysis show that the introduction of MA leads to a reduction in the diversity of the bacterial communities, but enhanced the ability of bacterial communities to synthesize humus. Furthermore, the addition of MA favors the proliferation of Firmicutes. Also, the hub of operational taxonomic units (OTUs) within the community co-occurrence network shifts from Proteobacteria to Firmicutes. Remarkably, our study finds a significant decrease in negative correlations between bacteria, potentially mitigating substrate consumption due to negative interactions such as competition. This phenomenon contributes to the improved retention of TOC in the compost. This research provides new insights into the mechanisms by which MA regulates bacterial communities in compost, and provides a valuable theoretical basis for the adoption of this innovative composting strategy.
Collapse
Affiliation(s)
- Shubo Zhang
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin, 300387, China; College of Life Sciences, Northeast Agricultural University, Harbin, 150030, China
| | - Wenfang Gao
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin, 300387, China
| | - Lina Xie
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin, 300387, China
| | - Guogang Zhang
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin, 300387, China
| | - Zimin Wei
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin, 300387, China.
| | - Jie Li
- College of Life Science, Liaocheng University, Liaocheng, 252000, China
| | - Caihong Song
- College of Life Science, Liaocheng University, Liaocheng, 252000, China
| | - Mingkai Chang
- College of Life Sciences, Northeast Agricultural University, Harbin, 150030, China
| |
Collapse
|
10
|
Li T, Yang W, Gao Q, Wei M, Li H, Ma X, Wen T, Guo J, Jin D. Reducing the mass and decreasing the bioavailability of heavy mental from organic wastes treated by black soldier fly larvae. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 269:115821. [PMID: 38091670 DOI: 10.1016/j.ecoenv.2023.115821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 12/06/2023] [Accepted: 12/10/2023] [Indexed: 01/12/2024]
Abstract
Black soldier fly larvae (BSFL), Hermetia illucens L., are widely used to reduce the mass of various wastes. However, the potential metal tolerance mechanisms during periods of waste bioconversion by BSFL remain largely unknown. To further reveal the mechanisms, BSFL were used to treat the agricultural organic wastes, including pig manure (PM), cow manure (COM), spent mushroom substrate (SMS), and wet distiller grains (WDG). After these individual and combined waste(s) were treated by BSFL, we investigated the waste reduction rates and evaluated the responses of BSFL gut microbes to heavy metals of agricultural organic wastes. Additionally, the colloidal particles of residual wastes were characterized by combing energy dispersive X-ray (EDX) spectroscopy, Size potential, Zeta potential, and excitation-emission matrix (EEM) spectroscopy. Results indicated that the waste reduction rates were up to 74% in COM+WDG and 69% in WDG, most of heavy metals (e.g., Zn and Co) from organic wastes were not accumulated in the bodies of mature larvae after treatment. Further, results obtained from the prediction of gene function on the basis of 16 S rRNA data revealed that the presence of multi-resistance genes in the gut of BSFL can help the larvae resist Zn and/or Co stress. In addition, the drug sensitivity test implied that BSFL5_L and BSFL6_L from BSFL gut bacterial strains have multi-resistance to Co and Zn. Additionally, EDX results revealed that the colloidal particles in five waste residues after BSFL treatment are mainly consisted of Fe, Ca and Si, which can capture heavy metals (e.g., Cu, Mn). Results from EEM spectroscopy and PARAFAC showed that tryptophan-like and humic-like accumulatively account for 56%- 68% of all components. Importantly, these two components could strongly bind the metal elements and form colloidal particles with high stability, and therefore reduce the heavy metal pollution of agricultural organic wastes. Our findings offered an environment-friendly method to treat agricultural organic wastes, which would be far-reaching influence to our environment.
Collapse
Affiliation(s)
- Tao Li
- Institute of Entomology, Guizhou University, Guiyang 550025, PR China; Scientific Observing and Experimental Station of Crop Pest in Guiyang, Ministry of Agriculture and Rural Affairs of the P. R. China, Guiyang 550025, PR China
| | - Wenmei Yang
- Institute of Entomology, Guizhou University, Guiyang 550025, PR China; Scientific Observing and Experimental Station of Crop Pest in Guiyang, Ministry of Agriculture and Rural Affairs of the P. R. China, Guiyang 550025, PR China
| | - Qian Gao
- Institute of Entomology, Guizhou University, Guiyang 550025, PR China; Scientific Observing and Experimental Station of Crop Pest in Guiyang, Ministry of Agriculture and Rural Affairs of the P. R. China, Guiyang 550025, PR China
| | - Mao Wei
- Institute of Entomology, Guizhou University, Guiyang 550025, PR China; Scientific Observing and Experimental Station of Crop Pest in Guiyang, Ministry of Agriculture and Rural Affairs of the P. R. China, Guiyang 550025, PR China
| | - Haiyin Li
- Institute of Entomology, Guizhou University, Guiyang 550025, PR China; Scientific Observing and Experimental Station of Crop Pest in Guiyang, Ministry of Agriculture and Rural Affairs of the P. R. China, Guiyang 550025, PR China
| | - Xinyi Ma
- Institute of Entomology, Guizhou University, Guiyang 550025, PR China; Scientific Observing and Experimental Station of Crop Pest in Guiyang, Ministry of Agriculture and Rural Affairs of the P. R. China, Guiyang 550025, PR China
| | - Tingchi Wen
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, PR China
| | - Jianjun Guo
- Institute of Entomology, Guizhou University, Guiyang 550025, PR China; Scientific Observing and Experimental Station of Crop Pest in Guiyang, Ministry of Agriculture and Rural Affairs of the P. R. China, Guiyang 550025, PR China.
| | - Daochao Jin
- Institute of Entomology, Guizhou University, Guiyang 550025, PR China; Scientific Observing and Experimental Station of Crop Pest in Guiyang, Ministry of Agriculture and Rural Affairs of the P. R. China, Guiyang 550025, PR China.
| |
Collapse
|
11
|
Beesigamukama D, Tanga CM, Sevgan S, Ekesi S, Kelemu S. Waste to value: Global perspective on the impact of entomocomposting on environmental health, greenhouse gas mitigation and soil bioremediation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 902:166067. [PMID: 37544444 PMCID: PMC10594063 DOI: 10.1016/j.scitotenv.2023.166067] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 08/02/2023] [Accepted: 08/03/2023] [Indexed: 08/08/2023]
Abstract
The innovative use of insects to recycle low-value organic waste into value-added products such as food, feed and other products with a low ecological footprint has attracted rapid attention globally. The insect frass (a combination unconsumed substrate, faeces, and exuviae) contains substantial amounts of nutrients and beneficial microbes that could utilised as fertilizer. We analyse research trends and report on the production, nutrient quality, maturity and hygiene status of insect-composted organic fertilizer (ICOF) generated from different organic wastes, and their influence on soil fertility, pest and pathogen suppression, and crop productivity. Lastly, we discuss the impact of entomocomposting on greenhouse gas mitigation and provide critical analysis on the regulatory aspects of entomocomposting, and utilization and commercialisation ICOF products. This information should be critical to inform research and policy decisions aimed at developing and promoting appropriate standards and guidelines for quality production, sustainable utilization, and successful integration of entomocompost into existing fertilizer supply chains and cropping systems.
Collapse
Affiliation(s)
- Dennis Beesigamukama
- International Centre of Insect Physiology and Ecology, P. O. Box 30772-00100, Nairobi, Kenya.
| | - Chrysantus M Tanga
- International Centre of Insect Physiology and Ecology, P. O. Box 30772-00100, Nairobi, Kenya.
| | - Subramanian Sevgan
- International Centre of Insect Physiology and Ecology, P. O. Box 30772-00100, Nairobi, Kenya
| | - Sunday Ekesi
- International Centre of Insect Physiology and Ecology, P. O. Box 30772-00100, Nairobi, Kenya
| | - Segenet Kelemu
- International Centre of Insect Physiology and Ecology, P. O. Box 30772-00100, Nairobi, Kenya
| |
Collapse
|
12
|
Du L, Gao X, Zhao L, Zhu X, Wang L, Zhang K, Li D, Ji J, Luo J, Cui J. Assessment of the risk of imidaclothiz to the dominant aphid parasitoid Binodoxys communis (Hymenoptera: Braconidae). ENVIRONMENTAL RESEARCH 2023; 238:117165. [PMID: 37739156 DOI: 10.1016/j.envres.2023.117165] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/07/2023] [Accepted: 09/15/2023] [Indexed: 09/24/2023]
Abstract
The neonicotinoid of imidaclothiz insecticide with low resistance and high efficiency, has great potential for application in pest control in specifically cotton field. In this systematically evaluate the effects of sublethal doses of imidaclothiz (LC10: 11.48 mg/L; LC30: 28.03 mg/L) on the biology, transcriptome, and microbiome of Binodoxys communis, the predominant primary parasitic natural enemy of aphids. The findings indicated that imidaclothiz has significant deleterious effects on the survival rate, parasitic rate, and survival time of B. communis. Additionally, there was a marked reduction in the survival rate and survival time of the F1 generation, that is, the negative effect of imidaclothiz on B. communis was continuous and trans-generational. Transcriptome analysis revealed that imidaclothiz treatment elicited alterations in the expression of genes associated with energy and detoxification metabolism. In addition, 16S rRNA analysis revealed a significant increase in the relative abundance of Rhodococcus and Pantoea, which are associated with detoxification metabolism, due to imidaclothiz exposure. These findings provide evidence that B. communis may regulate gene expression in conjunction with symbiotic bacteria to enhance adaptation to imidaclothiz. Finally, this study precise evaluation of imidaclothiz's potential risk to B. communis and provides crucial theoretical support for increasing the assessment of imidaclothiz in integrated pest management.
Collapse
Affiliation(s)
- Lingen Du
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China; Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Xueke Gao
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China; Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China.
| | - Likang Zhao
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China; Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Xiangzhen Zhu
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China; Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Li Wang
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China; Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Kaixin Zhang
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China; Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Dongyang Li
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China; Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Jichao Ji
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China; Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Junyu Luo
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China; Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China.
| | - Jinjie Cui
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China; Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China.
| |
Collapse
|
13
|
Xie Y, Zhu Y, Yang J, Zhang G, Tian S, Lian J, Dong S. Effect of ultrasound on the stability of partial nitrification: Under the interference of aeration rate. ULTRASONICS SONOCHEMISTRY 2023; 100:106642. [PMID: 37838531 PMCID: PMC10653954 DOI: 10.1016/j.ultsonch.2023.106642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 09/23/2023] [Accepted: 10/07/2023] [Indexed: 10/16/2023]
Abstract
The fluctuation of dissolved oxygen is one of the primary cause of disruptions to the consistent operation of partial nitrification, and the level of dissolved oxygen is mainly controlled by the aeration rate. This study investigated the influence of ultrasonic treatment on the stability of partial nitrification of activated sludge under different aeration conditions. After being treated with ultrasound (energy density = 0.20 W·mL-1, treatment time = 10 min), partial nitrification process operated stably for 67 days, with the nitrite accumulation rate above 83.89 %. The effluent contained 42.50 mg·L-1 of nitrite, much higher than the control reactor (0.30 mg·L-1). The gap between the specific ammonia and nitrite oxidation rates widened continuously as the aeration rate increased, and nitrite-oxidizing bacteria activity did not recover even under conditions with a very high oxygen content. Further analysis showed that ultrasonic treatment had obvious stripping effect on excess extracellular polymeric substances (EPS), especially loosely bound EPS and protein. Additionally, long-term ultrasonic treatment promoted the enrichment of Nitrosomonas and strongly inhibited Nitrotoga. Based on these findings, it appears that under conditions of high aeration rate, ultrasound effectively suppress the recovery of Nitrotoga activity and improve the stability of partial nitrification.
Collapse
Affiliation(s)
- Ying Xie
- Jiangxi Provincial Key Laboratory of Environmental Geotechnology and Engineering Disaster Control, Jiangxi University of Science and Technology, Ganzhou 341000, China
| | - Yichun Zhu
- Jiangxi Provincial Key Laboratory of Environmental Geotechnology and Engineering Disaster Control, Jiangxi University of Science and Technology, Ganzhou 341000, China.
| | - Jieyuan Yang
- Jiangxi Provincial Key Laboratory of Environmental Geotechnology and Engineering Disaster Control, Jiangxi University of Science and Technology, Ganzhou 341000, China
| | - Guangming Zhang
- School of Energy & Environmental Engineering, Hebei University of Technology, Tianjin 300401, China
| | - Shuai Tian
- Jiangxi Provincial Key Laboratory of Environmental Geotechnology and Engineering Disaster Control, Jiangxi University of Science and Technology, Ganzhou 341000, China
| | - Junfeng Lian
- Jiangxi Provincial Key Laboratory of Environmental Geotechnology and Engineering Disaster Control, Jiangxi University of Science and Technology, Ganzhou 341000, China
| | - Shanyan Dong
- Jiangxi Provincial Key Laboratory of Environmental Geotechnology and Engineering Disaster Control, Jiangxi University of Science and Technology, Ganzhou 341000, China
| |
Collapse
|
14
|
Li T, Khan S, Wei M, Li H, Wen T, Guo J, Jin D. Utilizing Black Soldier Fly Larvae to Improve Bioconversion and Reduce Pollution: A Sustainable Method for Efficient Treatment of Mixed Wastes of Wet Distiller Grains and Livestock Manure. Molecules 2023; 28:5735. [PMID: 37570704 PMCID: PMC10421123 DOI: 10.3390/molecules28155735] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 07/25/2023] [Accepted: 07/27/2023] [Indexed: 08/13/2023] Open
Abstract
Widespread environmental contamination caused by huge amounts of wastes generated by human activities has become a critical global concern that requires urgent action. The black soldier fly (BSFL) has gradually been used to treat different wastes due to high efficiency and low cost. However, little information is available regarding the treatment of mixed wastes by BSFLs. The impact of BSFLs on conversion of cow manure (COM) and pig manure (PM) via the incorporation of wet distiller grains (WDG) was assessed. Results demonstrate that the waste reduction rate was increased by 20% by incorporating 45% WDG to COM and PM. The bioconversion rate of BSFLs in COM and PM also increased from 1.20 ± 0.02% and 0.92 ± 0.02% to 10.54 ± 0.06% and 10.05 ± 0.11%, respectively. Total nitrogen content and δ15N/14N ratios of WDG + COM and WDG + PM were found to be significantly lower than those of COM and PM alone (p < 0.01). The organic matter changes during manure degradation were further analyzed by combing ultraviolet-visible spectrum (UV-vis) with excitation-emission matrix (EEM) spectroscopy techniques and fluorescence area integration (FRI) method. The UV-vis spectra results indicate that the addition of WDG to manures resulted in the decreased aromaticity and molecular weight of the waste. EEM spectra demonstrated that the accumulative Pi,n values of regions III and V in COM, COM + WDG, PM, and PM + WDG were 58%, 49%, 52% and 63%, respectively. These results not only provide new insights into the potential of mixed wastes for BSFL treatment but also contribute to the basis for the formulation of effective management measurements that reduce and/or reuse these wastes.
Collapse
Affiliation(s)
- Tao Li
- Institute of Entomology, Guizhou University, Guiyang 550025, China; (T.L.); (S.K.); (M.W.); (H.L.)
- Scientific Observing and Experimental Station of Crop Pest in Guiyang, Ministry of Agriculture and Rural Affairs, Guiyang 550025, China
| | - Samiullah Khan
- Institute of Entomology, Guizhou University, Guiyang 550025, China; (T.L.); (S.K.); (M.W.); (H.L.)
- Scientific Observing and Experimental Station of Crop Pest in Guiyang, Ministry of Agriculture and Rural Affairs, Guiyang 550025, China
| | - Mao Wei
- Institute of Entomology, Guizhou University, Guiyang 550025, China; (T.L.); (S.K.); (M.W.); (H.L.)
- Scientific Observing and Experimental Station of Crop Pest in Guiyang, Ministry of Agriculture and Rural Affairs, Guiyang 550025, China
| | - Haiyin Li
- Institute of Entomology, Guizhou University, Guiyang 550025, China; (T.L.); (S.K.); (M.W.); (H.L.)
- Scientific Observing and Experimental Station of Crop Pest in Guiyang, Ministry of Agriculture and Rural Affairs, Guiyang 550025, China
| | - Tingchi Wen
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China;
| | - Jianjun Guo
- Institute of Entomology, Guizhou University, Guiyang 550025, China; (T.L.); (S.K.); (M.W.); (H.L.)
- Scientific Observing and Experimental Station of Crop Pest in Guiyang, Ministry of Agriculture and Rural Affairs, Guiyang 550025, China
| | - Daochao Jin
- Institute of Entomology, Guizhou University, Guiyang 550025, China; (T.L.); (S.K.); (M.W.); (H.L.)
- Scientific Observing and Experimental Station of Crop Pest in Guiyang, Ministry of Agriculture and Rural Affairs, Guiyang 550025, China
| |
Collapse
|
15
|
Lin B, Tan B, Zhang Q, Li M, Peng H, Su J, He J, Zhang Y, Liu X, Wu N. Unraveling the nexus of Cr (Ⅵ), Aniline, and Microbial Ecology on aniline-degrading biosystem: Removal efficiency, sludge type, microbial ecology. BIORESOURCE TECHNOLOGY 2023; 382:129185. [PMID: 37196741 DOI: 10.1016/j.biortech.2023.129185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 05/10/2023] [Accepted: 05/14/2023] [Indexed: 05/19/2023]
Abstract
In order to explore the stress principle of Cr (Ⅵ) on aniline biodegradation system, a control group and experimental groups with the concentration of Cr (Ⅵ) at 2, 5, 8 mg/L were set up. The results demonstrated that Cr (Ⅵ) had minimal effects on the degradation efficiency of aniline but significantly inhibited nitrogen removal function. When Cr (Ⅵ) concentration was below 5 mg/L, the nitrification performance recovered spontaneously, while denitrification performance was severely impaired. Furthermore, the secretion of extracellular polymeric substances (EPS) and its fluorescence substance concentration were strongly inhibited with increasing Cr (Ⅵ) concentration. High-throughput sequencing revealed that the experimental groups were enriched with Leucobacter and Cr (Ⅵ)-reducing bacteria, but the abundance of nitrifiers and denitrifiers was significantly decreased compared to the control group. Overall, the effects of Cr (Ⅵ) stress at different concentrations on nitrogen removal performance were more significant than those on aniline degradation.
Collapse
Affiliation(s)
- Bing Lin
- School of Civil Engineering & Architecture, Wuhan University of Technology, Wuhan 430070, P.R. China
| | - Bin Tan
- CCCC Second Highway Consultants Co., Ltd, Wuhan, 430056, P.R. China
| | - Qian Zhang
- School of Civil Engineering & Architecture, Wuhan University of Technology, Wuhan 430070, P.R. China; Sanya Science and Education Innovation Park, Wuhan University of Technology, Hainan 572024, P.R. China.
| | - Meng Li
- School of Civil Engineering & Architecture, Wuhan University of Technology, Wuhan 430070, P.R. China; Sanya Science and Education Innovation Park, Wuhan University of Technology, Hainan 572024, P.R. China
| | - Haojin Peng
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Junhao Su
- School of Civil Engineering & Architecture, Wuhan University of Technology, Wuhan 430070, P.R. China
| | - Jing He
- School of Civil Engineering & Architecture, Wuhan University of Technology, Wuhan 430070, P.R. China
| | - Yunjie Zhang
- School of Civil Engineering & Architecture, Wuhan University of Technology, Wuhan 430070, P.R. China
| | - Xiangyu Liu
- School of Civil Engineering & Architecture, Wuhan University of Technology, Wuhan 430070, P.R. China
| | - Nanping Wu
- School of Civil Engineering & Architecture, Wuhan University of Technology, Wuhan 430070, P.R. China
| |
Collapse
|
16
|
Qian L, Lin H, Li B, Dong Y. Physicochemical characteristics and microbial communities of rhizosphere in complex amendment-assisted soilless revegetation of gold mine tailings. CHEMOSPHERE 2023; 320:138052. [PMID: 36739989 DOI: 10.1016/j.chemosphere.2023.138052] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 01/30/2023] [Accepted: 02/03/2023] [Indexed: 06/18/2023]
Abstract
Amendment-assisted soilless revegetation is a promissing ecological restoration method of mine tailings because of its eco-friendliness and low-cost. However, it is difficult to establish the plant community during ecological restoration because of its nutrient deficiency and heavy metal toxicity. In this study, the complex amendment, consisting of 1% peat, 1% sludge and 4% bentonite, was used to assist tall fescue to revegetate gold mine tailings. The variation in physicochemical characteristics and microbial community diversity and composition of rhizosphere tailings were investigated. The complex amendments significantly promoted tall fescue growth with an increase of 35.33% in shoot length and 27.19% in fresh weight. The improved plant growth was attributed to the reduction in heavy metal accumulation and the variation in the characteristics of rhizosphere tailing microecology. The heavy metal concentrations in plant tissues were decreased by 27.71-53.44% in the amended groups. Compared with the control, the available nitrogen (N), phosphorus (P) and potassium (K) levels in TA (without plant cultivation) and TPA (with plant cultivation) were also enhanced by 36.67-49.09% and 42.21-71.47%, respectively. Besides, the amendments introduced more exclusive operational taxonomic units (OTU) and increased the relative abundance of ecologically beneficial microbes in the rhizosphere. Overall, this study provides insight into amendment-assisted soilless revegetation and its effects on microecology to expand ecological restoration of gold mine tailings.
Collapse
Affiliation(s)
- Ling Qian
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China; Sino-Japan Friendship Center for Environmental Protection, Beijing, 100029, China
| | - Hai Lin
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China; Beijing Key Laboratory on Resource-Oriented Treatment of Industrial Pollutants, Beijing, 100083, China.
| | - Bing Li
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China; Beijing Key Laboratory on Resource-Oriented Treatment of Industrial Pollutants, Beijing, 100083, China
| | - Yingbo Dong
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China; Beijing Key Laboratory on Resource-Oriented Treatment of Industrial Pollutants, Beijing, 100083, China.
| |
Collapse
|
17
|
Wang X, Liu X, Wang Z, Sun G, Li J. Greenhouse gas reduction and nitrogen conservation during manure composting by combining biochar with wood vinegar. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 324:116349. [PMID: 36179479 DOI: 10.1016/j.jenvman.2022.116349] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 09/13/2022] [Accepted: 09/19/2022] [Indexed: 06/16/2023]
Abstract
The constant greenhouse gases (GHGs) and ammonia emissions during pig manure (PM) composting have made large contributions to air pollution and global temperature rise. This study aimed to evaluate the addition of biochar (B) and wood vinegar (WV) to reduce GHGs emissions and improve nitrogen retention and microbial activities during PM composting. Different treatments, carried out under a 1:2 ratio (dry weight) of PM and sawdust mixture with the addition of B (5%) and various proportions of WV, include a control treatment (CT) without the addition of B and WV and, B, B+0.5%WV, B+1.0%WV, B+1.5%WV, and B+2.0%WV treatments. The results indicated that the addition of B could accelerate the composting process in contrast to CT. In addition, various amounts of WV with B decreased NH3, CO2, CH4 and N2O emissions by 18.82-35.88%, 1.38-15.39%, 16.98-62.73%, and 4.47-19.91%, respectively. Furthermore, in contrast to the B treatment, WV addition was more effective in decreasing GHGs and NH3 emissions, and the B+1.0% WV treatment displayed the lowest nitrogen loss (2.12%) and GHGs emissions (11.62 g/kg). The bacterial community analysis demonstrated that synergistic application of WV and B can increase the relative abundance of Proteobacteria which can contribute to nitrogen fixation and reduction of nitrogen loss. The results proved that combining B with WV can be a feasible strategy to effectively reduce GHGs emissions and improve nitrogen conservation in the composting industry.
Collapse
Affiliation(s)
- Xiuzhang Wang
- College of Mechanical and Electronic Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China; Western Scientific Observing and Research Station for Development and Utilization of Rural Renewable Energy, Ministry of Agriculture and Rural Affairs, PR China
| | - Xiao Liu
- College of Mechanical and Electronic Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China; Western Scientific Observing and Research Station for Development and Utilization of Rural Renewable Energy, Ministry of Agriculture and Rural Affairs, PR China
| | - Ziqi Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Guotao Sun
- College of Mechanical and Electronic Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China; Western Scientific Observing and Research Station for Development and Utilization of Rural Renewable Energy, Ministry of Agriculture and Rural Affairs, PR China.
| | - Jianming Li
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| |
Collapse
|
18
|
Wang M, Wu Y, Zhao J, Liu Y, Gao L, Jiang Z, Zhang J, Tian W. Comparison of composting factors, heavy metal immobilization, and microbial activity after biochar or lime application in straw-manure composting. BIORESOURCE TECHNOLOGY 2022; 363:127872. [PMID: 36084764 DOI: 10.1016/j.biortech.2022.127872] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 08/23/2022] [Accepted: 08/25/2022] [Indexed: 06/15/2023]
Abstract
Composting is an efficient way of disposing agricultural solid wastes as well as passivating heavy metals (HMs). Herein, equivalent (3%) biochar (BC) or lime (LM) were applied in rice straw and swine manure composting, with no additives applied as control group (CK). The results indicated that both the additives increased NO3--N content, organic matter degradation, humus formation, and HM immobilization in composting, and the overall improvement of lime was more significant. In addition, the additives optimized the bacterial community of compost, especially for thermophilic and mature phase. Lime stimulated the growth of Bacillus, Peptostreptococcus, Clostridium, Turicibacter, Clostridiaceae and Pseudomonas, which functioned well in HM passivation via biosorption, bioleaching, or promoting HM-humus formation by secreting hydrolases. Lime (3%) as additive is recommended in swine manure composting to promote composting maturity and reduce HM risk. The study present theoretical guidance in improving composting products quality for civil and industrial composting.
Collapse
Affiliation(s)
- Mengmeng Wang
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China
| | - Yuncheng Wu
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China
| | - Jiayin Zhao
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China
| | - Yu Liu
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China
| | - Li Gao
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China
| | - Zhongkun Jiang
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China; College of Agricultural Science and Engineering, Hohai University, Nanjing 210098, China
| | - Jibing Zhang
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China
| | - Wei Tian
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China.
| |
Collapse
|
19
|
Yousif Abdellah YA, Shi ZJ, Luo YS, Hou WT, Yang X, Wang RL. Effects of different additives and aerobic composting factors on heavy metal bioavailability reduction and compost parameters: A meta-analysis. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 307:119549. [PMID: 35644429 DOI: 10.1016/j.envpol.2022.119549] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 05/20/2022] [Accepted: 05/25/2022] [Indexed: 06/15/2023]
Abstract
Additives are considered a promising approach to accelerate the composting process and alleviate the dissemination of pollutants to the environment. However, nearly all previous articles have focused on the impact of additive amounts on the reduction of HMs, which may not fully represent the main factor shaping HMs bioavailability status during composting. Simultaneously, previous reviews only explored the impacts, speciation, and toxicity mechanism of HMs during composting. Hence, a global-scale meta-analysis was conducted to investigate the response patterns of HMs bioavailability and compost parameters to different additives, composting duration, and composting factors (additive types, feedstock, bulking agents, and composting methods) by measuring the weighted mean values of the response ratio "[ln (RR)]" and size effect (%). The results revealed that additives significantly lessened HMs bioavailability by ≥ 40% in the final compost products than controls. The bioavailability decline rates were -40%, -60%, -57%, -55%, -42%, and -44% for Zn, Pb, Ni, Cu, Cr, and Cd. Simultaneously, additives significantly improved the total nitrogen (TN) (+16%), pH (+5%), and temperature (+5%), and decreased total organic carbon (TOC) (-17%), moisture content (MC) (-18%), and C/N ratio (-19%). Furthermore, we found that the prolongation of composting time significantly promoted the effect of additives on declining HMs bioavailability (p < 0.05). Nevertheless, increasing additive amounts revealed an insignificant impact on decreasing the HMs bioavailability (p > 0.05). Eventually, using zeolite as an additive, chicken manure as feedstock, sawdust as a bulking agent, and a reactor as composting method had the most significant reduction effect on HMs bioavailability (p < 0.05). The findings of this meta-analysis may contribute to the selection, modification, and application of additives and composting factors to manage the level of bioavailable HMs in the compost products.
Collapse
Affiliation(s)
| | - Zhao-Ji Shi
- Department of Ecology, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China
| | - Yu-Sen Luo
- Department of Ecology, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China; Guangdong Provincial Key Laboratory of Eco-circular Agriculture, South China Agricultural University, Guangzhou, 510642, China; Guangdong Engineering Technology Research Centre of Modern Eco-agriculture and Circular Agriculture, Guangzhou, 510642, China; Key Laboratory of Agro-Environment in the Tropics, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, 510642, China
| | - Wen-Tao Hou
- Department of Ecology, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China; Guangdong Provincial Key Laboratory of Eco-circular Agriculture, South China Agricultural University, Guangzhou, 510642, China; Guangdong Engineering Technology Research Centre of Modern Eco-agriculture and Circular Agriculture, Guangzhou, 510642, China; Key Laboratory of Agro-Environment in the Tropics, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, 510642, China
| | - Xi Yang
- Department of Ecology, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China; Guangdong Provincial Key Laboratory of Eco-circular Agriculture, South China Agricultural University, Guangzhou, 510642, China; Guangdong Engineering Technology Research Centre of Modern Eco-agriculture and Circular Agriculture, Guangzhou, 510642, China; Key Laboratory of Agro-Environment in the Tropics, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, 510642, China
| | - Rui-Long Wang
- Department of Ecology, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China; Guangdong Provincial Key Laboratory of Eco-circular Agriculture, South China Agricultural University, Guangzhou, 510642, China; Guangdong Engineering Technology Research Centre of Modern Eco-agriculture and Circular Agriculture, Guangzhou, 510642, China; Key Laboratory of Agro-Environment in the Tropics, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, 510642, China; Heyuan Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Heyuan, 517000, China.
| |
Collapse
|
20
|
Liu T, Klammsteiner T, Dregulo AM, Kumar V, Zhou Y, Zhang Z, Awasthi MK. Black soldier fly larvae for organic manure recycling and its potential for a circular bioeconomy: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 833:155122. [PMID: 35405225 DOI: 10.1016/j.scitotenv.2022.155122] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 03/30/2022] [Accepted: 04/01/2022] [Indexed: 06/14/2023]
Abstract
Livestock farming and its products provide a diverse range of benefits for our day-to-day life. However, the ever-increasing demand for farmed animals has raised concerns about waste management and its impact on the environment. Worldwide, cattle produce enormous amounts of manure, which is detrimental to soil properties if poorly managed. Waste management with insect larvae is considered one of the most efficient techniques for resource recovery from manure. In recent years, the use of black soldier fly larvae (BSFL) for resource recovery has emerged as an effective method. Using BSFL has several advantages over traditional methods, as the larvae produce a safe compost and extract trace elements like Cu and Zn. This paper is a comprehensive review of the potential of BSFL for recycling organic wastes from livestock farming, manure bioconversion, parameters affecting the BSFL application on organic farming, and process performance of biomolecule degradation. The last part discusses the economic feasibility, lifecycle assessment, and circular bioeconomy of the BSFL in manure recycling. Moreover, it discusses the future perspectives associated with the application of BSFL. Specifically, this review discusses BSFL cultivation and its impact on the larvae's physiology, gut biochemical physiology, gut microbes and metabolic pathways, nutrient conservation and global warming potential, microbial decomposition of organic nutrients, total and pathogenic microbial dynamics, and recycling of rearing residues as fertilizer.
Collapse
Affiliation(s)
- Tao Liu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Thomas Klammsteiner
- Department of Microbiology, University of Innsbruck, Technikerstrasse 25d, 6020 Innsbruck, Austria
| | - Andrei Mikhailovich Dregulo
- Federal State Budgetary Educational Institution of Higher Education "Saint-Petersburg State University" 7-9 Universitetskaya emb., 199034, Saint- Petersburg, Russia.
| | - Vinay Kumar
- Department of Biotechnology, Indian Institute of Technology (IIT) Roorkee, Roorkee 247667, Uttarakhand, India
| | - Yuwen Zhou
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Zengqiang Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Mukesh Kumar Awasthi
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China.
| |
Collapse
|
21
|
Liu C, Li B, Dong Y, Lin H. Endophyte colonization enhanced cadmium phytoremediation by improving endosphere and rhizosphere microecology characteristics. JOURNAL OF HAZARDOUS MATERIALS 2022; 434:128829. [PMID: 35429753 DOI: 10.1016/j.jhazmat.2022.128829] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 03/19/2022] [Accepted: 03/29/2022] [Indexed: 06/14/2023]
Abstract
This study investigated the phytoremediation efficiency of Cd-contaminated soils by hyperaccumulator P. acinosa and its endophyte B. cereus, and evaluated the variation of rhizosphere/endosphere microecology characteristics. The result showed that endophyte PE31, which could successfully colonize on P. acinosa root, increased plant Cd uptake by 42.90% and 28.85% in low and high Cd contaminated soils by promotion of plant biomass and Cd concentration in plant tissues. The improved phytoremediation may attribute to the endophyte inoculation, which significantly improved the bioavailable heavy metal (HM) percentage, nutrient cycling related enzyme activities and nutrient contents including available potassium, phosphorus and organic matter. Additionally, the relative abundance beneficial bacteria Bacillus (significantly increased by 81.23% and 34.03% in the endosphere, and by 4.86% and 8.54% in rhizosphere in low and high Cd contaminated soils) and Lysobacter, showed positive and close correlation with plant growth and HM accumulation. These results indicated that endophyte inoculation could reshape rhizosphere and endosphere microecology characteristics, which enhanced the potential for phytoremediation of Cd contaminated soils.
Collapse
Affiliation(s)
- Chenjing Liu
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China; Beijing Key Laboratory on Resource-Oriented Treatment of Industrial Pollutants, Beijing 100083, China
| | - Bing Li
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China; Beijing Key Laboratory on Resource-Oriented Treatment of Industrial Pollutants, Beijing 100083, China
| | - Yingbo Dong
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China; Beijing Key Laboratory on Resource-Oriented Treatment of Industrial Pollutants, Beijing 100083, China
| | - Hai Lin
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China; Beijing Key Laboratory on Resource-Oriented Treatment of Industrial Pollutants, Beijing 100083, China.
| |
Collapse
|
22
|
Xu S, Li L, Zhan J, Guo X. Variation and factors on heavy metal speciation during co-composting of rural sewage sludge and typical rural organic solid waste. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 306:114418. [PMID: 34999283 DOI: 10.1016/j.jenvman.2021.114418] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 11/29/2021] [Accepted: 12/28/2021] [Indexed: 06/14/2023]
Abstract
In this study, a co-composting of rural organic solid waste (rural sewage sludge, kitchen waste and corn stalks) was conducted to analyze the variation of heavy metals (As, Cu, Cr, Ni, Pb, Hg, and Zn) and their major influencing factors. During composting, significant changes were observed in the total contents of heavy metals (p < 0.01): the total concentrations of As, Cu, Hg, Pb and Zn increased by 7.5%, 54.1%, 26.3%, 15.8%, and 34.2%, whereas that of Cr and Ni decreased by 71.3% and 33.4%, respectively. Heavy metals were mainly bound to the oxidizable and residual fractions. Spearman and Redundancy analysis (RDA) indicated that substances were significantly correlated with the changes in speciation of heavy metals, among all the factors, while pH and temperature were the dominating environmental influencing parameters. Several metal-resistant bacterial genera (Pseudomonas, Paenibacillus, Bacillus, Acinetobacter, Desulfovibrio, and Ochrobactrum, etc) were observed, with significant explanatory capacity for the changes in heavy metals. Composting showed a poor effect on heavy metal passivation, except for that of As. After composting, the heavy metal contents were consistent with the application standards. The evaluation of potential ecological risk showed a high cumulative ecological risk (336.9) of heavy metals. This study provides technical support and practical information for the disposal and safe recycling for rural organic solid waste.
Collapse
Affiliation(s)
- Su Xu
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Lin Li
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Jun Zhan
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Xuesong Guo
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China.
| |
Collapse
|
23
|
Chen X, Du Z, Guo T, Wu J, Wang B, Wei Z, Jia L, Kang K. Effects of heavy metals stress on chicken manures composting via the perspective of microbial community feedback. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 294:118624. [PMID: 34864104 DOI: 10.1016/j.envpol.2021.118624] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 11/10/2021] [Accepted: 12/01/2021] [Indexed: 06/13/2023]
Abstract
Heavy metal pollution was the main risk during livestock manures composting, in which microorganisms played a vital role. However, response strategies of microbial community to heavy metals stress (HMS) remained largely unclear. Therefore, the objective of this study was to reveal the ecological adaptation and counter-effect of bacterial community under HMS during chicken manures composting, and evaluating environmental implications of HMS on composting. The degradation of organic matters (more than 6.4%) and carbohydrate (more than 19.8%) were enhanced under intense HMS, suggesting that microorganisms could quickly adapt to the HMS to ensure smooth composting. Meanwhile, HMS increased keystone nodes and strengthened significant positive correlation relationships between genera (p < 0.05), indicating that bacteria resisted HMS through cooperating during composting. In addition, different bacterial groups performed various functions to cope with HMS. Specific bacterial groups responded to HMS, and certain groups regulated bacterial networks. Therefore, bacterial community had the extraordinary potential to deal with HMS and guarantee chicken manures composting even in the presence of high concentrations of heavy metals.
Collapse
Affiliation(s)
- Xiaomeng Chen
- College of Life Science, Northeast Agricultural University, Harbin, 150030, China
| | - Zhuang Du
- College of Life Science, Northeast Agricultural University, Harbin, 150030, China
| | - Tong Guo
- College of Life Science, Northeast Agricultural University, Harbin, 150030, China
| | - Junqiu Wu
- College of Life Science, Northeast Agricultural University, Harbin, 150030, China
| | - Bo Wang
- College of Life Science, Northeast Agricultural University, Harbin, 150030, China
| | - Zimin Wei
- College of Life Science, Northeast Agricultural University, Harbin, 150030, China.
| | - Liming Jia
- Heilongjiang Province Environmental Monitoring Centre, Harbin, 150056, China
| | - Kejia Kang
- Heilongjiang Province Environmental Science Research Institute, Harbin, 150056, China
| |
Collapse
|