1
|
Zhu X, Nie M, Sun N, Zhang Y, Sun M, Li C, Jiang Q, Wei H, Li Y, Hu Q, Zhao Y, Li X. Comparative analysis of crab growth performance, enzyme activity, and microbiota between rice-crab coculture and pond farming systems. Front Vet Sci 2025; 12:1571454. [PMID: 40177674 PMCID: PMC11961982 DOI: 10.3389/fvets.2025.1571454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Accepted: 03/03/2025] [Indexed: 04/05/2025] Open
Abstract
Introduction To support the sustainable development of rice and aquaculture industries, various rice-animal coculture systems have been developed. One such system, the rice-crab coculture system (RCC), has been practiced for decades in northern China. However, studies on the crab physiological status in RCC remain limited. Microorganisms play a crucial role in aquaculture by influencing animal nutrition, health, nutrient cycling, water quality, and environmental impact. Research on the gut and environmental microbiota in RCC is scarce. Methods This study compared the growth performance, immune and digestive enzyme activities of crabs between RCC and traditional pond farming system (PF). In addition, the microbiota in crab guts, water, and sediment from both systems was investigated using 16S rRNA gene sequencing. Results Crabs in RCC exhibited superior growth performance and higher enzymatic activities, including acid phosphatase (ACP), alkaline phosphatase (AKP), lipase (LPS), and trypsin (TRY). Significant differences were observed in microbiota composition across crab gut, water, and sediment samples, respectively. RCC crabs had a lower abundance of Bacteroidota and a higher abundance of Firmicutes in their gut microbiota. The RCC environment was enriched with beneficial bacteria such as Rhizobiales, Methylococcales, KD4-96, C39, Xanthomonadales, and Nitrosomonadaceae. Microbial function predictions confirmed enhanced methanotrophy and nitrogen fixation in the RCC. Discussion The RCC enhances the growth rate and immune capability of crabs. Crabs from RCC consume more animal-based nutrition, which results in distinct differences in gut microbiota composition and higher levels of LPS and TRY compared to those in PF. Additionally, RCC supports environmentally beneficial bacteria that contribute to greenhouse gas reduction, carbon and nitrogen fixation, organic matter decomposition, and ammonia oxidation, benefiting both the crabs and their ecosystem. These findings enhance our understanding of crab physiology and microbial communities in RCC and PF systems.
Collapse
Affiliation(s)
- Xiaochen Zhu
- Hebei Key Laboratory of the Bohai Sea Fish Germplasm Resources Conservation and Utilization, Beidaihe Central Experiment Station, Chinese Academy of Fishery Sciences, Qinhuangdao, China
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
- College of Science and Engineering, Flinders University, Bedford Park, SA, Australia
| | - Miao Nie
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Na Sun
- Panjin Guanghe Crab Industry Co. Ltd., Panjin, China
- Key Laboratory of Breeding and Propagation of Chinese Mitten Crab, Ministry of Agriculture and Rural Affairs, Panjin, Liaoning, China
| | - Yazhao Zhang
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Mingxia Sun
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Changlei Li
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Qing Jiang
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Hua Wei
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
- Key Laboratory of Breeding and Propagation of Chinese Mitten Crab, Ministry of Agriculture and Rural Affairs, Panjin, Liaoning, China
- Liaoning Panjin Wetland Ecosystem National Observation and Research Station, Shenyang, China
| | - Yingdong Li
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
- Key Laboratory of Breeding and Propagation of Chinese Mitten Crab, Ministry of Agriculture and Rural Affairs, Panjin, Liaoning, China
- Liaoning Panjin Wetland Ecosystem National Observation and Research Station, Shenyang, China
| | - Qingbiao Hu
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
- Key Laboratory of Breeding and Propagation of Chinese Mitten Crab, Ministry of Agriculture and Rural Affairs, Panjin, Liaoning, China
- Liaoning Panjin Wetland Ecosystem National Observation and Research Station, Shenyang, China
| | - Yingying Zhao
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
- Key Laboratory of Breeding and Propagation of Chinese Mitten Crab, Ministry of Agriculture and Rural Affairs, Panjin, Liaoning, China
- Liaoning Panjin Wetland Ecosystem National Observation and Research Station, Shenyang, China
| | - Xiaodong Li
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
- Panjin Guanghe Crab Industry Co. Ltd., Panjin, China
- Key Laboratory of Breeding and Propagation of Chinese Mitten Crab, Ministry of Agriculture and Rural Affairs, Panjin, Liaoning, China
- Liaoning Panjin Wetland Ecosystem National Observation and Research Station, Shenyang, China
| |
Collapse
|
2
|
Wu Y, Liu R, Si W, Zhang J, Yang J, Qiu Z, Luo R, Wang Y. The Growth and Ion Absorption of Sesbania ( Sesbania cannabina) and Hairy Vetch ( Vicia villosa) in Saline Soil Under Improvement Measures. PLANTS (BASEL, SWITZERLAND) 2024; 13:3413. [PMID: 39683206 DOI: 10.3390/plants13233413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 11/29/2024] [Accepted: 12/03/2024] [Indexed: 12/18/2024]
Abstract
Soil salinization is a serious threat to the ecological environment and sustainable agricultural development in the arid regions of northwest China. Optimal soil salinization amelioration methods were eagerly explored under different soil salinity levels. Sesbania and hairy vetch are salt-tolerant plants, and green manure improved the saline environment. In this study, two leguminous halophytic crops, sesbania (Sesbania cannabina) and hairy vetch (Vicia villosa), were planted under different salinity levels, combined with three saline soil improvement measures, namely gravel mulching, manure application, and straw returning. No improvement measures and no salinity treatment was set as the control (CK). This study was conducted to analyze the effects of soil salinization improvement measures on the growth and ion uptake of sesbania and hairy vetch as biological measures under different soil salinity levels. Sesbania under manure application absorbed the highest soil Na+ (2.71 g kg-1) and Cl- (2.66 g kg-1) amounts at a soil salinity of 3.2 g kg-1, which was 14.7% and 10.95% higher than under gravel mulching and straw returning, respectively. Na+ and Cl- absorption of hairy vetch under manure application reached the highest value of 1.39 g kg-1 and 1.38 g kg-1 at a soil salinity of 1.6 g kg-1, which was 24.46% and 22.31% higher than under gravel mulching and straw returning, respectively. Plant height and stem diameter as well as root growth and development of sesbania and hairy vetch were limited at soil salinities greater than 1.6 g kg-1 and 0.8 g kg-1. Overall, sesbania and hairy vetch effectively absorbed both soil Na+ and Cl- under manure application, thus regulating soil salinity and reducing soil salinization. However, soil salinity levels greater than 3.2 g kg-1 and 1.6 g kg-1 not only weakened the ionic absorption capacity but also inhibited the growth and development of sesbania and hairy vetch. This study provides evidence that soil salt ion absorption by sesbania and hairy vetch is promoted effectively, ameliorating soil salinity, under manure application as compared to under gravel mulching and straw returning.
Collapse
Affiliation(s)
- You Wu
- College of Energy and Power Engineering, Lanzhou University of Technology, Lanzhou 730050, China
- Ministry of Agriculture and Rural Affairs Smart Agriculture Irrigation Equipment Key Laboratory, Lanzhou 730050, China
| | - Rui Liu
- College of Energy and Power Engineering, Lanzhou University of Technology, Lanzhou 730050, China
- Ministry of Agriculture and Rural Affairs Smart Agriculture Irrigation Equipment Key Laboratory, Lanzhou 730050, China
| | - Wei Si
- College of Energy and Power Engineering, Lanzhou University of Technology, Lanzhou 730050, China
- Ministry of Agriculture and Rural Affairs Smart Agriculture Irrigation Equipment Key Laboratory, Lanzhou 730050, China
| | - Jiale Zhang
- College of Energy and Power Engineering, Lanzhou University of Technology, Lanzhou 730050, China
- Ministry of Agriculture and Rural Affairs Smart Agriculture Irrigation Equipment Key Laboratory, Lanzhou 730050, China
| | - Jianhua Yang
- College of Energy and Power Engineering, Lanzhou University of Technology, Lanzhou 730050, China
- Ministry of Agriculture and Rural Affairs Smart Agriculture Irrigation Equipment Key Laboratory, Lanzhou 730050, China
| | - Zhenxin Qiu
- College of Energy and Power Engineering, Lanzhou University of Technology, Lanzhou 730050, China
- Ministry of Agriculture and Rural Affairs Smart Agriculture Irrigation Equipment Key Laboratory, Lanzhou 730050, China
| | - Renlei Luo
- College of Energy and Power Engineering, Lanzhou University of Technology, Lanzhou 730050, China
- Ministry of Agriculture and Rural Affairs Smart Agriculture Irrigation Equipment Key Laboratory, Lanzhou 730050, China
| | - Yu Wang
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| |
Collapse
|
3
|
Wang J, Lin X, An X, Liu S, Wei X, Zhou T, Li Q, Chen Q, Liu X. Mangrove afforestation as an ecological control of invasive Spartina alterniflora affects rhizosphere soil physicochemical properties and bacterial community in a subtropical tidal estuarine wetland. PeerJ 2024; 12:e18291. [PMID: 39421423 PMCID: PMC11485052 DOI: 10.7717/peerj.18291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 09/20/2024] [Indexed: 10/19/2024] Open
Abstract
Background The planting of mangroves is extensively used to control the invasive plant Spartina alterniflora in coastal wetlands. Different plant species release diverse sets of small organic compounds that affect rhizosphere conditions and support high levels of microbial activity. The root-associated microbial community is crucial for plant health and soil nutrient cycling, and for maintaining the stability of the wetland ecosystem. Methods High-throughput sequencing was used to assess the structure and function of the soil bacterial communities in mudflat soil and in the rhizosphere soils of S. alterniflora, mangroves, and native plants in the Oujiang estuarine wetland, China. A distance-based redundancy analysis (based on Bray-Curtis metrics) was used to identify key soil factors driving bacterial community structure. Results S. alterniflora invasion and subsequent mangrove afforestation led to the formation of distinct bacterial communities. The main soil factors driving the structure of bacterial communities were electrical conductivity (EC), available potassium (AK), available phosphorus (AP), and organic matter (OM). S. alterniflora obviously increased EC, OM, available nitrogen (AN), and NO3 --N contents, and consequently attracted copiotrophic Bacteroidates to conduct invasion in the coastal areas. Mangroves, especially Kandelia obovata, were suitable pioneer species for restoration and recruited beneficial Desulfobacterota and Bacilli to the rhizosphere. These conditions ultimately increased the contents of AP, available sulfur (AS), and AN in soil. The native plant species Carex scabrifolia and Suaeda glauca affected coastal saline soil primarily by decreasing the EC, rather than by increasing nutrient contents. The predicted functions of bacterial communities in rhizosphere soils were related to active catabolism, whereas those of the bacterial community in mudflat soil were related to synthesis and resistance to environmental factors. Conclusions Ecological restoration using K. obovata has effectively improved a degraded coastal wetland mainly through increasing phosphorus availability and promoting the succession of the microbial community.
Collapse
Affiliation(s)
- Jinwang Wang
- Wenzhou Key Laboratory of Resource Plant Innovation and Utilization, Zhejiang Institute of Subtropical Crops, Zhejiang Academy of Agricultural Sciences, Wenzhou, China
| | - Xi Lin
- Wenzhou Institute of Eco-Environmental Sciences, Wenzhou, China
| | - Xia An
- Zhejiang Xiaoshan Institute of Cotton & Bast Fiber Crops, Zhejiang Institute of Landscape Plants and Flowers, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Shuangshuang Liu
- Wenzhou Key Laboratory of Resource Plant Innovation and Utilization, Zhejiang Institute of Subtropical Crops, Zhejiang Academy of Agricultural Sciences, Wenzhou, China
| | - Xin Wei
- Wenzhou Key Laboratory of Resource Plant Innovation and Utilization, Zhejiang Institute of Subtropical Crops, Zhejiang Academy of Agricultural Sciences, Wenzhou, China
| | - Tianpei Zhou
- Yueqing Bureau of Natural Resources and Planning, Wenzhou, China
| | - Qianchen Li
- College of Life and Environmental Sciences, Wenzhou University, Wenzhou, China
| | - Qiuxia Chen
- Wenzhou Key Laboratory of Resource Plant Innovation and Utilization, Zhejiang Institute of Subtropical Crops, Zhejiang Academy of Agricultural Sciences, Wenzhou, China
| | - Xing Liu
- Wenzhou Key Laboratory of Resource Plant Innovation and Utilization, Zhejiang Institute of Subtropical Crops, Zhejiang Academy of Agricultural Sciences, Wenzhou, China
| |
Collapse
|
4
|
Liu P, Chen L, Hamoud YA, Zheng J, Chang T, Ali J, Huang H, Shaghaleh H. Ameliorative effect of poly-γ-glutamic acid biopreparation on coastal saline soil. Heliyon 2024; 10:e36762. [PMID: 39263153 PMCID: PMC11388776 DOI: 10.1016/j.heliyon.2024.e36762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 08/21/2024] [Accepted: 08/21/2024] [Indexed: 09/13/2024] Open
Abstract
To investigate the effect of poly-γ-glutamic acid (γ-PGA) biopreparation on ameliorating coastal saline soil, three treatments were established: soil salt washed treatment (CK), soil salt washed with added γ-PGA (PGA), soil salt washed with added γ-PGA biopreparation (PGAB). This study determined the effects of γ-PGA on coastal saline soil by analyzing soil aggregate, soil evaporation, soil vertical water and salt distribution, and soil cation content, soil pH, soil nutrient content and soil microorganism quantity. Results showed that γ-PGA had an ameliorative effect on saline soil, with the PGAB treatment exhibiting the most pronounced ameliorative effect compared to CK. Adding PGAB reduced soil evaporation by 30.45 %, soil salt content by 27.91 %, meanwhile increasing plant height by 33.86 %, plant fresh weight by 98.54 %, soil aggregate diameter by 6.68 times, soil water content by 26.47 % (P < 0.05). Additionally, soil total nitrogen was increased by 50.0 % in PGAB treatment, and available nitrogen and phosphorus contents were increased by 1.68 times and 85.83 % (P < 0.05), respectively. Populations of soil-culturable bacteria and fungi of PGAB treatment increased by 65.96 % and 1.23 times, respectively (P < 0.05). After salt-washing process, adding PGAB improved soil physicochemical properties, which altered the ecological environment of rhizosphere soil and promoted plant growth. The results can provide a practical approach for ameliorating coastal saline soils.
Collapse
Affiliation(s)
- Pei Liu
- College of Agricultural Science and Engineering, Hohai University, Nanjing, 210098, China
| | - Lihua Chen
- College of Agricultural Science and Engineering, Hohai University, Nanjing, 210098, China
| | - Yousef Alhaj Hamoud
- College of Hydrology and Water Resources, Hohai University, Nanjing, 210098, China
| | - Jinhai Zheng
- College of Harbour, Coastal and Offshore Engineering, Hohai University, Nanjing, 210098, China
| | - Tingting Chang
- College of Agricultural Science and Engineering, Hohai University, Nanjing, 210098, China
| | - Jawad Ali
- College of Agricultural Science and Engineering, Hohai University, Nanjing, 210098, China
| | - He Huang
- College of Agricultural Science and Engineering, Hohai University, Nanjing, 210098, China
- College of Forestry, Nanjing Forestry University, Nanjing, 210037, China
| | - Hiba Shaghaleh
- College of Environment, Hohai University, Nanjing, 210098, China
| |
Collapse
|
5
|
Wen Y, Wu R, Qi D, Xu T, Chang W, Li K, Fang X, Song F. The effect of AMF combined with biochar on plant growth and soil quality under saline-alkali stress: Insights from microbial community analysis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 281:116592. [PMID: 38901167 DOI: 10.1016/j.ecoenv.2024.116592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 05/12/2024] [Accepted: 06/11/2024] [Indexed: 06/22/2024]
Abstract
Arbuscular mycorrhizal fungi (AMF) and biochar application individually can enhance plant tolerance to saline-alkali stress and promote plant growth efficiency. However, little is known about the potential synergistic effects of their combination on improving plant growth and soil quality under saline-alkali stress. This experiment adopted the potted method to explore the effects of four treatments on switchgrass growth and soil quality: biochar (BC), Rhizophagus irregularis (Ri), biochar + Ri (BR) and a control without biochar or Ri (CK). Compared to the CK treatment, the switchgrass biomass increased by 92.4 %, 148.6 %, and 177.3 % in the BC, Ri, and BR treatment groups, respectively. Similarly, the rhizosphere soil quality index increased by 29.33 %, 22.7 %, and 49.1 % in the respective treatment groups. The BR treatment significantly altered the rhizosphere soil microbial composition and diversity. Notably, compared to the other treatments, the archaeal α-diversity in the BR group showed a significant decrease. BR treatment significantly increased the relative abundance of bacteria, fungi and archaea at the genus level (e.g., Bacillus, Trichome and candidatus_methanopenens). Network analysis showed that the complexity and closeness of interactions between different microbial taxa were stronger in the BC, Ri and BR treatments than in the CK treatment, with BR being the more prominent. In summary, biochar combined with Ri has a better effect on promoting the growth of switchgrass under saline-alkali stress, improving the quality of saline-alkali soil, and increasing soil microbial diversity. This study provides a new approach for the efficient development and utilization of saline-alkali land.
Collapse
Affiliation(s)
- Yuqiang Wen
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin 150080, China; Jiaxiang Industrial Technology Research Institute of Heilongjiang University, Jining 272000, China
| | - Ruotong Wu
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin 150080, China
| | - Dandan Qi
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin 150080, China
| | - Tianle Xu
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin 150080, China
| | - Wei Chang
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin 150080, China; Jiaxiang Industrial Technology Research Institute of Heilongjiang University, Jining 272000, China.
| | - Kun Li
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin 150080, China
| | - Xiaoxu Fang
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin 150080, China
| | - Fuqiang Song
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin 150080, China; Jiaxiang Industrial Technology Research Institute of Heilongjiang University, Jining 272000, China.
| |
Collapse
|
6
|
Zhang S, Chen T, Chen Y, Li S, Wang W, Zhao Y, Zhu C. A Comparative Analysis of Bacterial and Fungal Communities in Coastal and Inland Pecan Plantations. Microorganisms 2024; 12:1313. [PMID: 39065081 PMCID: PMC11279223 DOI: 10.3390/microorganisms12071313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 06/21/2024] [Accepted: 06/26/2024] [Indexed: 07/28/2024] Open
Abstract
Pecan forests (Carya illinoinensis) are significant contributors to both food and oil production, and thrive in diverse soil environments, including coastal regions. However, the interplay between soil microbes and pecan forest health in coastal environments remains understudied. Therefore, we investigated soil bacterial and fungal diversity in coastal (Dafeng, DF) and inland (Guomei, GM) pecan plantations using high-throughput sequencing. The results revealed a higher microbial diversity in the DF plantation than in the GM plantation, significantly influenced by pH and edaphic factors. The dominant bacterial phyla were Proteobacteria, Acidobacteriota and Bacteroidota in the DF plantation, and Acidobacteriota, Proteobacteria, and Verrucomicrobiota in the GM plantation. Bacillus, Nitrospira and UTCFX1 were significantly more abundant bacterial genera in DF soil, whereas Candidatus Udaeobacter, HSB_OF53-F07 and ADurbBin063-1 were more prevalent in GM soil. Basidiomycota dominated fungal sequences in the GM plantation, with a higher relative abundance of Ascomycota in the DF plantation. Significant differences in fungal genus composition were observed between plantations, with Scleroderma, Hebeloma, and Naucoria being more abundant in DF soil, and Clavulina, Russula, and Inocybe in GM soil. A functional analysis revealed greater carbohydrate metabolism potential in GM plantation bacteria and a higher ectomycorrhizal fungi abundance in DF soil. Significantly positive correlations were detected between certain bacterial and fungal genera and pH and total soluble salt content, suggesting their role in pecan adaptation to coastal environments and saline-alkali stress mitigation. These findings enhance our understanding of soil microbiomes in coastal pecan plantations, and are anticipated to foster ecologically sustainable agroforestry practices and contribute to coastal marshland ecosystem management.
Collapse
Affiliation(s)
- Shijie Zhang
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), No. 1 Qianhuhoucun, Zhongshanmenwai, Xuanwu District, Nanjing 210014, China; (S.Z.); (T.C.); (Y.C.); (W.W.); (Y.Z.)
| | - Ting Chen
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), No. 1 Qianhuhoucun, Zhongshanmenwai, Xuanwu District, Nanjing 210014, China; (S.Z.); (T.C.); (Y.C.); (W.W.); (Y.Z.)
| | - Yu Chen
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), No. 1 Qianhuhoucun, Zhongshanmenwai, Xuanwu District, Nanjing 210014, China; (S.Z.); (T.C.); (Y.C.); (W.W.); (Y.Z.)
| | - Shucheng Li
- College of Agriculture, Anhui Science and Technology University, Fengyang, Chuzhou 233100, China;
| | - Wu Wang
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), No. 1 Qianhuhoucun, Zhongshanmenwai, Xuanwu District, Nanjing 210014, China; (S.Z.); (T.C.); (Y.C.); (W.W.); (Y.Z.)
| | - Yuqiang Zhao
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), No. 1 Qianhuhoucun, Zhongshanmenwai, Xuanwu District, Nanjing 210014, China; (S.Z.); (T.C.); (Y.C.); (W.W.); (Y.Z.)
| | - Cancan Zhu
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), No. 1 Qianhuhoucun, Zhongshanmenwai, Xuanwu District, Nanjing 210014, China; (S.Z.); (T.C.); (Y.C.); (W.W.); (Y.Z.)
| |
Collapse
|
7
|
Guarrera S, Vanella D, Consoli S, Giudice G, Toscano S, Ramírez-Cuesta J, Milani M, Ferlito F, Longo D. Analysis of small-scale soil CO 2 fluxes in an orange orchard under irrigation and soil conservative practices. Heliyon 2024; 10:e30543. [PMID: 38726109 PMCID: PMC11079320 DOI: 10.1016/j.heliyon.2024.e30543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 04/29/2024] [Accepted: 04/29/2024] [Indexed: 05/12/2024] Open
Abstract
The quantification of soil carbon dioxide (CO2) flux represents an indicator of the agro-ecosystems sustainability. However, the monitoring of these fluxes is quite challenging due to their high spatially-temporally variability and dependence on environmental variables and soil management practices.In this study, soil CO2 fluxes were measured using a low-cost accumulation chamber, that was realized ad hoc for the surveys, in an orange orchard managed under different soil management (SM, bare versus mulched soils) and water regime (WR, full irrigation versus regulated deficit irrigation) strategies. In particular, the soil CO2 flux measurements were acquired in discontinuous and continuous modes, together with ancillary agrometeorological and soil-related information, and then compared to the agrosystem scale CO2 fluxes measured by the eddy covariance (EC) technique.Overall significant differences were obtained for the soil CO2 discontinuous fluxes as function of the WR (0.16 ± 0.01 and 0.14 ± 0.01 mg m-2 s-1 under full irrigation and regulated deficit irrigation, respectively). For the continuous soil CO2 measurements, the response observed for the SM factor varied from year to year, indicating for the overall reference period 2022-23 higher soil CO2 flux under the mulched soils (0.24 ± 0.01 mg m-2 s-1) than under bare soil conditions (0.15 ± 0.00 mg m-2 s-1). Inter-annual variations were also observed as function of the day-of-year (DOY), the SM and their interactions, resulting in higher soil CO2 flux under the mulched soils (0.24 ± 0.02 mg m-2 s-1) than under bare soil (0.15 ± 0.01 mg m-2 s-1) in certain periods of the years, according to the environmental conditions. Results suggest the importance of integrating soil CO2 flux measurements with ancillary variables that explain the variability of the agrosystem and the need to conduct the measurements using different operational modalities, also providing for night-time monitoring of CO2. In addition, the study underlines that the small-scale chamber measurements can be used to estimate soil CO2 fluxes at orchard scale if fluxes are properly scaled.
Collapse
Affiliation(s)
- S. Guarrera
- Agricultural, Food and Environmental Science, Di3A, University of Catania, Catania, 95124, Italy
| | - D. Vanella
- Dipartimento di Agricoltura, Alimentazione e Ambiente (Di3A), Università Degli Studi di Catania, Via S. Sofia, 100, Catania, 95123, Italy
| | - S. Consoli
- Dipartimento di Agricoltura, Alimentazione e Ambiente (Di3A), Università Degli Studi di Catania, Via S. Sofia, 100, Catania, 95123, Italy
| | - G. Giudice
- Istituto Nazionale di Geofisica e Vulcanologia, Sezione di Catania, Osservatorio Etneo (INGV-OE), Piazza Roma 2, 95125, Catania, Italy
| | - S. Toscano
- Dipartimento di Agricoltura, Alimentazione e Ambiente (Di3A), Università Degli Studi di Catania, Via S. Sofia, 100, Catania, 95123, Italy
| | - J.M. Ramírez-Cuesta
- Dipartimento di Agricoltura, Alimentazione e Ambiente (Di3A), Università Degli Studi di Catania, Via S. Sofia, 100, Catania, 95123, Italy
| | - M. Milani
- Dipartimento di Agricoltura, Alimentazione e Ambiente (Di3A), Università Degli Studi di Catania, Via S. Sofia, 100, Catania, 95123, Italy
| | - F. Ferlito
- Consiglio per la Ricerca in Agricoltura e l'analisi Dell'economia Agraria, Centro di Ricerca Olivicoltura, Frutticoltura e Agrumicoltura, Corso Savoia, 190, Acireale, CT, 95024, Italy
| | - D. Longo
- Dipartimento di Agricoltura, Alimentazione e Ambiente (Di3A), Università Degli Studi di Catania, Via S. Sofia, 100, Catania, 95123, Italy
| |
Collapse
|
8
|
Li MY, Wang W, Ma Y, Chen Y, Tao HY, Zhao ZY, Wang PY, Zhu L, Ma B, Xiao YL, Li SS, Ashraf M, Wang WY, Xiong XB, Zhu Y, Zhang JL, Irum M, Song YJ, Kavagi L, Xiong YC. Plastic footprint deteriorates dryland carbon footprint across soil-plant-atmosphere continuum. ENVIRONMENT INTERNATIONAL 2024; 186:108632. [PMID: 38583296 DOI: 10.1016/j.envint.2024.108632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 04/03/2024] [Accepted: 04/03/2024] [Indexed: 04/09/2024]
Abstract
Plastic fragments are widely found in the soil profile of terrestrial ecosystems, forming plastic footprint and posing increasing threat to soil functionality and carbon (C) footprint. It is unclear how plastic footprint affects C cycling, and in particularly permanent C sequestration. Integrated field observations (including 13C labelling) were made using polyethylene and polylactic acid plastic fragments (low-, medium- and high-concentrations as intensifying footprint) landfilling in soil, to track C flow along soil-plant-atmosphere continuum (SPAC). The result indicated that increased plastic fragments substantially reduced photosynthetic C assimilation (p < 0.05), regardless of fragment degradability. Besides reducing C sink strength, relative intensity of C emission increased significantly, displaying elevated C source. Moreover, root C fixation declined significantly from 21.95 to 19.2 mg m-2, and simultaneously root length density, root weight density, specific root length and root diameter and surface area were clearly reduced. Similar trends were observed in the two types of plastic fragments (p > 0.05). Particularly, soil aggregate stability was significantly lowered as affected by plastic fragments, which accelerated the decomposition rate of newly sequestered C (p < 0.05). More importantly, net C rhizodeposition declined averagely from 39.77 to 29.41 mg m-2, which directly led to significant decline of permanent C sequestration in soil. Therefore, increasing plastic footprint considerably worsened C footprint regardless of polythene and biodegradable fragments. The findings unveiled the serious effects of plastic residues on permanent C sequestration across SPAC, implying that current C assessment methods clearly overlook plastic footprint and their global impact effects.
Collapse
Affiliation(s)
- Meng-Ying Li
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou 730000, China
| | - Wei Wang
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou 730000, China
| | - Yue Ma
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou 730000, China
| | - Yinglong Chen
- The UWA Institute of Agriculture, and School of Agriculture and Environment, The University of Western Australia, Perth 6001, WA, Australia
| | - Hong-Yan Tao
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou 730000, China
| | - Ze-Ying Zhao
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou 730000, China
| | - Peng-Yang Wang
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou 730000, China
| | - Li Zhu
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou 730000, China; College of Biology and Agricultural Resources, Huanggang Normal University, Huanggang 438000, China
| | - Baoluo Ma
- Ottawa Research and Development Center, Agriculture and Agri-Food Canada, Ottawa K1A 0C6, Canada
| | - Yun-Li Xiao
- College of Biology and Agricultural Resources, Huanggang Normal University, Huanggang 438000, China
| | - Shi-Sheng Li
- College of Biology and Agricultural Resources, Huanggang Normal University, Huanggang 438000, China
| | - Muhammad Ashraf
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore 54000, Pakistan
| | - Wen-Ying Wang
- School of Life Sciences, Qinghai Normal University, Xining 810008, China
| | - Xiao-Bin Xiong
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou 730000, China
| | - Ying Zhu
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou 730000, China
| | - Jin-Lin Zhang
- College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, China
| | - Momena Irum
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou 730000, China
| | - Ya-Jie Song
- Global Institute of Eco-environment for Sustainable Development (GIESD), 40 Pleasant Street, New Haven, CT 06511, USA
| | - Levis Kavagi
- Division of Ecosystems and Biodiversity, United Nations Environment Programme, Nairobi 00100, Kenya
| | - You-Cai Xiong
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou 730000, China.
| |
Collapse
|
9
|
Wang J, Aghajani Delavar M. Techno-economic analysis of phytoremediation: A strategic rethinking. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 902:165949. [PMID: 37536595 DOI: 10.1016/j.scitotenv.2023.165949] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 07/29/2023] [Accepted: 07/30/2023] [Indexed: 08/05/2023]
Abstract
Phytoremediation is a cost-effective and environmentally sound approach, which uses plants to immobilize/stabilize, extract, decay, or lessen toxicity and contaminants. Despite successful evidence of field application, such as natural attenuations, and self-purification, the main barriers remain from a "promising" to a "commercial" approach. Therefore, the ultimate goal of this paper is to examine factors that contribute to phytoremediation's underutilization and discuss the real costs of phytoremediation when the time and land values are considered. We revisit mechanisms and processes of phytoremediation. We synthesize existing information and understanding based on previous works done on phytoremediation and its applications to provide the technical assessment and perspective views in the commercial acceptance of phytoremediation. The results show that phytoremediation is the most suitable for remote regions with low land values. Since these regions allow a longer period to be restored, land vegetation covers can be established in more or less time like natural attenuation. Since the length of phytoremediation is an inherent limitation, this inherent disadvantage limits its adoption in developed business regions, such as growing urban areas. Because high land values could not be recovered in the short term, phytoremediation is not cost-effective in those regions. We examine the potential measures that can enhance the performance of phytoremediation, such as soil amendments, and agricultural practices. The results obtained through review can clarify where/what conditions phytoremediation can provide the most suitable solutions at a large scale. Finally, we identify the main barriers and knowledge gaps to establishing a vegetation cover in large-scale applications and highlight the research priorities for increased acceptance of phytoremediation.
Collapse
Affiliation(s)
- Junye Wang
- Faculty of Science and Technology, Athabasca University, 1 University Drive, Athabasca, Alberta T9S 3A3, Canada.
| | - Mojtaba Aghajani Delavar
- Faculty of Science and Technology, Athabasca University, 1 University Drive, Athabasca, Alberta T9S 3A3, Canada
| |
Collapse
|
10
|
Zheng Y, Cao X, Zhou Y, Li Z, Yang Y, Zhao D, Li Y, Xu Z, Zhang CS. Effect of planting salt-tolerant legumes on coastal saline soil nutrient availability and microbial communities. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 345:118574. [PMID: 37423189 DOI: 10.1016/j.jenvman.2023.118574] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 06/28/2023] [Accepted: 07/02/2023] [Indexed: 07/11/2023]
Abstract
Soil salinization is a serious global environmental problem affecting sustainable development of agriculture. Legumes are excellent candidates for the phytoremediation of saline soils; however, how soil microbes mediate the amelioration of coastal saline ecosystems is unknown. In this study, two salt-tolerant legumes, Glycine soja and Sesbania cannabina were planted in coastal saline soil for three years. Soil nutrient availability and microbiota structure (including bacteria, fungi, and diazotrophs) were compared between the phytoremediated soils and control soil (barren land). Planting legumes reduced soil salinity, and increased total carbon, total nitrogen, and NO3--N contents. Among the soil microbiota, some nitrogen-fixing bacteria (e.g., Azotobacter) were enriched in legumes, which were probably responsible for soil nitrogen accumulation. The complexity of the bacterial, fungal, and diazotrophic networks increased significantly from the control to the phytoremediated soils, suggesting that the soil microbial community formed closer ecological interactions during remediation. Furthermore, the dominant microbial functions were chemoheterotrophy (24.75%) and aerobic chemoheterotrophy (21.97%) involved in the carbon cycle, followed by nitrification (13.68%) and aerobic ammonia oxidation (13.34%) involved in the nitrogen cycle. Overall, our findings suggested that G. soja and S. cannabina legumes were suitable for ameliorating saline soils as they decreased soil salinity and increased soil nutrient content, with microorganisms especially nitrogen-fixing bacteria, playing an important role in this remediation process.
Collapse
Affiliation(s)
- Yanfen Zheng
- Marine Agriculture Research Center, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, 266101, China; National Center of Technology Innovation for Comprehensive Utilization of Saline-Alkali Land, Dongying, 257300, China
| | - Xuwen Cao
- Institute of Marine Science and Technology, Shandong University, Qingdao, 266200, China
| | - Yanan Zhou
- Marine Agriculture Research Center, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, 266101, China
| | - Zhe Li
- Marine Agriculture Research Center, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, 266101, China
| | - Yanzhe Yang
- Marine Agriculture Research Center, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, 266101, China
| | - Donglin Zhao
- Marine Agriculture Research Center, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, 266101, China; National Center of Technology Innovation for Comprehensive Utilization of Saline-Alkali Land, Dongying, 257300, China
| | - Yiqiang Li
- Marine Agriculture Research Center, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, 266101, China; National Center of Technology Innovation for Comprehensive Utilization of Saline-Alkali Land, Dongying, 257300, China
| | - Zongchang Xu
- Marine Agriculture Research Center, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, 266101, China; National Center of Technology Innovation for Comprehensive Utilization of Saline-Alkali Land, Dongying, 257300, China.
| | - Cheng-Sheng Zhang
- Marine Agriculture Research Center, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, 266101, China; National Center of Technology Innovation for Comprehensive Utilization of Saline-Alkali Land, Dongying, 257300, China.
| |
Collapse
|
11
|
Fan D, Schwinghamer T, Liu S, Xia O, Ge C, Chen Q, Smith DL. Characterization of endophytic bacteriome diversity and associated beneficial bacteria inhabiting a macrophyte Eichhornia crassipes. FRONTIERS IN PLANT SCIENCE 2023; 14:1176648. [PMID: 37404529 PMCID: PMC10316030 DOI: 10.3389/fpls.2023.1176648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 05/24/2023] [Indexed: 07/06/2023]
Abstract
Introduction The endosphere of a plant is an interface containing a thriving community of endobacteria that can affect plant growth and potential for bioremediation. Eichhornia crassipes is an aquatic macrophyte, adapted to estuarine and freshwater ecosystems, which harbors a diverse bacterial community. Despite this, we currently lack a predictive understanding of how E. crassipes taxonomically structure the endobacterial community assemblies across distinct habitats (root, stem, and leaf). Methods In the present study, we assessed the endophytic bacteriome from different compartments using 16S rRNA gene sequencing analysis and verified the in vitro plant beneficial potential of isolated bacterial endophytes of E. crassipes. Results and discussion Plant compartments displayed a significant impact on the endobacterial community structures. Stem and leaf tissues were more selective, and the community exhibited a lower richness and diversity than root tissue. The taxonomic analysis of operational taxonomic units (OTUs) showed that the major phyla belonged to Proteobacteria and Actinobacteriota (> 80% in total). The most abundant genera in the sampled endosphere was Delftia in both stem and leaf samples. Members of the family Rhizobiaceae, such as in both stem and leaf samples. Members of the family Rhizobiaceae, such as Allorhizobium- Neorhizobium-Pararhizobium-Rhizobium were mainly associated with leaf tissue, whereas the genera Nannocystis and Nitrospira from the families Nannocystaceae and Nitrospiraceae, respectively, were statistically significantly associated with root tissue. Piscinibacter and Steroidobacter were putative keystone taxa of stem tissue. Most of the endophytic bacteria isolated from E. crassipes showed in vitro plant beneficial effects known to stimulate plant growth and induce plant resistance to stresses. This study provides new insights into the distribution and interaction of endobacteria across different compartments of E. crassipes Future study of endobacterial communities, using both culture-dependent and -independent techniques, will explore the mechanisms underlying the wide-spread adaptability of E. crassipesto various ecosystems and contribute to the development of efficient bacterial consortia for bioremediation and plant growth promotion.
Collapse
Affiliation(s)
- Di Fan
- School of Biology, Food and Environment, Hefei University, Hefei, China
| | - Timothy Schwinghamer
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB, Canada
| | - Shuaitong Liu
- School of Biology, Food and Environment, Hefei University, Hefei, China
| | - Ouyuan Xia
- School of Biology, Food and Environment, Hefei University, Hefei, China
| | - Chunmei Ge
- School of Biology, Food and Environment, Hefei University, Hefei, China
| | - Qun Chen
- School of Biology, Food and Environment, Hefei University, Hefei, China
| | - Donald L. Smith
- Department of Plant Science, McGill University, Sainte-Anne-de-Bellevue, QC, Canada
| |
Collapse
|
12
|
Zhou L, Liu W, Duan H, Dong H, Li J, Zhang S, Zhang J, Ding S, Xu T, Guo B. Improved effects of combined application of nitrogen-fixing bacteria Azotobacter beijerinckii and microalgae Chlorella pyrenoidosa on wheat growth and saline-alkali soil quality. CHEMOSPHERE 2023; 313:137409. [PMID: 36457265 DOI: 10.1016/j.chemosphere.2022.137409] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 11/05/2022] [Accepted: 11/25/2022] [Indexed: 06/17/2023]
Abstract
Soil salinization seriously affects crop yield and soil productivity. The application of bacteria and microalgae has been considered as a promising strategy to alleviate soil salinization. However, the effect of bacteria-microalgae symbiosis on saline-alkali land is still unclear. This study evaluated the effects of Azotobacter beijerinckii, Chlorella pyrenoidosa, and their combined application on the wheat growth and saline-alkali soil improvement. The results showed that, among all the treatments, A. beijerinckii + live C. pyrenoidosa combined inoculation group (BA) had the best effect on increasing wheat plant biomass, improving salt tolerance, and improving soil fertility. The dry weight of wheat plant in the BA group increased by 66.7%, 17.4%, and 35.0%, respectively, compared with the control group (CK), A. beijerinckii inoculation group (B), and live C. pyrenoidosa inoculation group (A). The total nitrogen content of wheat plant in the BA group increased by 69.5%, 76.7%, and 71.1%, compared with the CK, B, and A group. The proline content of wheat plant in the BA group was 100% higher than that in the CK group. The N/P ratio and K/Na ratio of wheat plant increased by 157% and 12.9% in the BA group compared with the CK group, respectively, which was more conducive to alleviating nitrogen limitation and salt stress. The A. beijerinckii + live C. pyrenoidosa inoculation treatment better reduced soil pH and improved the availability of phosphorus in soil. This study illustrated the comprehensive application prospects of bacteria-microalgae interactions on wheat growth promotion and soil improvement in saline-alkali land, and provided a new effective strategy for improving saline-alkali soil quality and increasing crop productivity.
Collapse
Affiliation(s)
- Lixiu Zhou
- Qilu University of Technology (Shandong Academy of Sciences), Shandong Analysis and Test Center, Jinan 250014, China; Faculty of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Wei Liu
- Qilu University of Technology (Shandong Academy of Sciences), Shandong Analysis and Test Center, Jinan 250014, China; Faculty of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.
| | - Huijie Duan
- Qilu University of Technology (Shandong Academy of Sciences), Shandong Analysis and Test Center, Jinan 250014, China; Faculty of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Haiwen Dong
- Qilu University of Technology (Shandong Academy of Sciences), Shandong Analysis and Test Center, Jinan 250014, China; Faculty of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Jingchao Li
- Qilu University of Technology (Shandong Academy of Sciences), Shandong Analysis and Test Center, Jinan 250014, China; Faculty of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Shuxi Zhang
- Qilu University of Technology (Shandong Academy of Sciences), Shandong Analysis and Test Center, Jinan 250014, China; Faculty of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Jing Zhang
- Qilu University of Technology (Shandong Academy of Sciences), Shandong Analysis and Test Center, Jinan 250014, China
| | - Shigang Ding
- Qilu University of Technology (Shandong Academy of Sciences), Shandong Analysis and Test Center, Jinan 250014, China
| | - Tongtong Xu
- Qilu University of Technology (Shandong Academy of Sciences), Shandong Analysis and Test Center, Jinan 250014, China; Faculty of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Beibei Guo
- Qilu University of Technology (Shandong Academy of Sciences), Shandong Analysis and Test Center, Jinan 250014, China
| |
Collapse
|
13
|
Zhang Y, Xie Z, Zhou J, Li Y, Ning C, Su Q, Ye L, Ai S, Lai J, Pan P, Liu N, Liao Y, Su Q, Li Z, Liang H, Cui P, Huang J. The altered metabolites contributed by dysbiosis of gut microbiota are associated with microbial translocation and immune activation during HIV infection. Front Immunol 2023; 13:1020822. [PMID: 36685491 PMCID: PMC9845923 DOI: 10.3389/fimmu.2022.1020822] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 11/28/2022] [Indexed: 01/05/2023] Open
Abstract
Background The immune activation caused by microbial translocation has been considered to be a major driver of HIV infection progression. The dysbiosis of gut microbiota has been demonstrated in HIV infection, but the interplay between gut microbiota and its metabolites in the pathogenesis of HIV is seldom reported. Methods We conducted a case-controlled study including 41 AIDS patients, 39 pre-AIDS patients and 34 healthy controls. Both AIDS group and pre-AIDS group were divided according to clinical manifestations and CD4 + T cell count. We collected stool samples for 16S rDNA sequencing and untargeted metabolomics analysis, and examined immune activation and microbial translocation for blood samples. Results The pre-AIDS and AIDS groups had higher levels of microbial translocation and immune activation. There were significant differences in gut microbiota and metabolites at different stages of HIV infection. Higher abundances of pathogenic bacteria or opportunistic pathogen, as well as lower abundances of butyrate-producing bacteria and bacteria with anti-inflammatory potential were associated with HIV severity. The metabolism of tryptophan was disordered after HIV infection. Lower level of anti-inflammatory metabolites and phosphonoacetate, and higher level of phenylethylamine and polyamines were observed in HIV infection. And microbial metabolic pathways related to altered metabolites differed. Moreover, disrupted metabolites contributed by altered microbiota were found to be correlated to microbial translocation and immune activation. Conclusions Metabolites caused by dysbiosis of gut microbiota and related metabolic function are correlated to immune activation and microbial translocation, suggesting that the effect of microbiota on metabolites is related to intestinal barrier disruption in HIV infection.
Collapse
Affiliation(s)
- Yu Zhang
- Guangxi Key Laboratory of AIDS Prevention and Treatment and Guangxi Universities Key Laboratory of Prevention and Control of Highly Prevalent Disease, Nanning, China
- School of Public Health, Guangxi Medical University, Nanning, China
- The Tenth Affiliated Hospital of Guangxi Medical University, Qinzhou, China
| | - Zhiman Xie
- Department of Infectious Diseases, The Fourth People's Hospital of Nanning, Nanning, China
| | - Jie Zhou
- Guangxi Key Laboratory of AIDS Prevention and Treatment and Guangxi Universities Key Laboratory of Prevention and Control of Highly Prevalent Disease, Nanning, China
- School of Public Health, Guangxi Medical University, Nanning, China
| | - Yanjun Li
- Department of Infectious Diseases, The Fourth People's Hospital of Nanning, Nanning, China
| | - Chuanyi Ning
- Guangxi Key Laboratory of AIDS Prevention and Treatment and Guangxi Universities Key Laboratory of Prevention and Control of Highly Prevalent Disease, Nanning, China
| | - Qisi Su
- Department of Infectious Diseases, The Fourth People's Hospital of Nanning, Nanning, China
| | - Li Ye
- Guangxi Key Laboratory of AIDS Prevention and Treatment and Guangxi Universities Key Laboratory of Prevention and Control of Highly Prevalent Disease, Nanning, China
- School of Public Health, Guangxi Medical University, Nanning, China
| | - Sufang Ai
- Department of Infectious Diseases, The Fourth People's Hospital of Nanning, Nanning, China
| | - Jingzhen Lai
- Guangxi Key Laboratory of AIDS Prevention and Treatment and Guangxi Universities Key Laboratory of Prevention and Control of Highly Prevalent Disease, Nanning, China
- Life Science Institute, Guangxi Medical University, Nanning, China
| | - Peijiang Pan
- Guangxi Key Laboratory of AIDS Prevention and Treatment and Guangxi Universities Key Laboratory of Prevention and Control of Highly Prevalent Disease, Nanning, China
- Life Science Institute, Guangxi Medical University, Nanning, China
| | - Ningmei Liu
- Department of Infectious Diseases, The Fourth People's Hospital of Nanning, Nanning, China
| | - Yanyan Liao
- Guangxi Key Laboratory of AIDS Prevention and Treatment and Guangxi Universities Key Laboratory of Prevention and Control of Highly Prevalent Disease, Nanning, China
- Life Science Institute, Guangxi Medical University, Nanning, China
| | - Qijian Su
- The Tenth Affiliated Hospital of Guangxi Medical University, Qinzhou, China
| | - Zhuoxin Li
- Guangxi Key Laboratory of AIDS Prevention and Treatment and Guangxi Universities Key Laboratory of Prevention and Control of Highly Prevalent Disease, Nanning, China
- School of Public Health, Guangxi Medical University, Nanning, China
| | - Hao Liang
- Guangxi Key Laboratory of AIDS Prevention and Treatment and Guangxi Universities Key Laboratory of Prevention and Control of Highly Prevalent Disease, Nanning, China
- School of Public Health, Guangxi Medical University, Nanning, China
- Life Science Institute, Guangxi Medical University, Nanning, China
| | - Ping Cui
- Guangxi Key Laboratory of AIDS Prevention and Treatment and Guangxi Universities Key Laboratory of Prevention and Control of Highly Prevalent Disease, Nanning, China
- Life Science Institute, Guangxi Medical University, Nanning, China
| | - Jiegang Huang
- Guangxi Key Laboratory of AIDS Prevention and Treatment and Guangxi Universities Key Laboratory of Prevention and Control of Highly Prevalent Disease, Nanning, China
- School of Public Health, Guangxi Medical University, Nanning, China
| |
Collapse
|
14
|
Zhang J, Ge Z, Ma Z, Huang D, Zhang J. Seasonal changes driving shifts of aquatic rhizosphere microbial community structure and the functional properties. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 322:116124. [PMID: 36063697 DOI: 10.1016/j.jenvman.2022.116124] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 08/22/2022] [Accepted: 08/25/2022] [Indexed: 06/15/2023]
Abstract
Ecological floating beds could enable roots to become suspended and this allowed submerged roots to harbour various types of microbes. But, there was a lack of systematic research on microbial community structure changes and the influencing mechanisms. In this study, the ecological floating beds were constructed using selected plants [Cyperus involucratus Rottboll (Cyp), Thalia dealbata Fraser (Tha) and Iris tectorum Maxim (Iri)] that was compared with a control group [static water (S)]. The results showed that the highest abundance and diversity of root microbial communities were found in autumn, with the dominant taxa being Proteobacteria, Actinobacteriota, Cyanobacteria, Chloroflexi, Firmicutes, Bacteroidota, and Acidobacteriota. The microbial communities of Tha and Cyp groups greatly overlapped, while the Iri and control groups exhibited distinctly diverse communities. The root microbial populations of the same plant also reflected a large change in different seasons. Conversely, photosynthetic autotrophs and specialized anaerobes were more inclined to thrive at higher temperatures and lower DO concentrations and then they gradually became the dominant species. Microbial co-occurrences of the Tha and control groups were complex and showed both cooperation and competition. In addition, TOC was an important environmental factor that shaped the microbial community structures and DO changed the microbial community by affecting the abundance of aerobic and anaerobic bacteria. Microorganisms showed potential for degradation and metabolism of non-food substances with low/no corresponding metabolic pathways.
Collapse
Affiliation(s)
- Jiawei Zhang
- Department of Environmental Science and Engineering, Fudan Unersity, Shanghai, 200433, PR China
| | - Zuhan Ge
- Department of Environmental Science and Engineering, Fudan Unersity, Shanghai, 200433, PR China
| | - Zihang Ma
- Department of Environmental Science and Engineering, Fudan Unersity, Shanghai, 200433, PR China
| | - Deying Huang
- Department of Chemistry, Fudan University, Shanghai, 200433, PR China
| | - Jibiao Zhang
- Department of Environmental Science and Engineering, Fudan Unersity, Shanghai, 200433, PR China.
| |
Collapse
|
15
|
Qiu L, Kong W, Zhu H, Zhang Q, Banerjee S, Ishii S, Sadowsky MJ, Gao J, Feng C, Wang J, Chen C, Lu T, Shao M, Wei G, Wei X. Halophytes increase rhizosphere microbial diversity, network complexity and function in inland saline ecosystem. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 831:154944. [PMID: 35367547 DOI: 10.1016/j.scitotenv.2022.154944] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 03/23/2022] [Accepted: 03/27/2022] [Indexed: 06/14/2023]
Abstract
Salinization is an important global environmental problem influencing sustainable development of terrestrial ecosystems. Salt-tolerant halophytes are often used as a promising approach to remedy the saline soils. Yet, how rhizosphere microbes' association and functions vary with halophytes in saline ecosystems remains unclear, restricting our ability to assess the role of halophytes in remedying saline ecosystems. Herein, we examined bacterial and fungal diversities, compositions, and co-occurrence networks in the rhizospheres of six halophytes and bulk soils in a semiarid inland saline ecosystem, and related these parameters to microbial functions. The microbiomes were more diverse and complex and microbial activity and residues were higher in rhizospheres than bulk soils. The connections of taxa in the rhizosphere microbial communities increased with fungi-fungi and bacteria-fungi connections and fungal diversity. The proportion of the fungi-related central connections were larger in rhizospheres (13-73%) than bulk soils (3%). Moreover, microbial activity and residues were significantly correlated with microbial composition and co-occurrence network complexity. These results indicated that enhanced association between fungi and bacteria increased microbial co-occurring network complexity in halophytes rhizosphere, which contributed to the higher microbial functions (microbial activities and residue) in this inland saline ecosystem.
Collapse
Affiliation(s)
- Liping Qiu
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling, Shaanxi 712100, China; CAS Center for Excellence in Quaternary Science and Global Change, Xi'an, Shaanxi 710061, China
| | - Weibo Kong
- Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling, Shaanxi 712100, China
| | - Hansong Zhu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Qian Zhang
- BioTechnology Institute, University of Minnesota, St. Paul, MN 55108, USA
| | - Samiran Banerjee
- Department of Microbiological Sciences, North Dakota State University, Fargo, ND 58102, USA
| | - Satoshi Ishii
- BioTechnology Institute, University of Minnesota, St. Paul, MN 55108, USA; Department of Soil, Water, and Climate, University of Minnesota, St. Paul, MN 55108, USA
| | - Michael J Sadowsky
- BioTechnology Institute, University of Minnesota, St. Paul, MN 55108, USA; Department of Soil, Water, and Climate, University of Minnesota, St. Paul, MN 55108, USA
| | - Jianlun Gao
- Yulin Meteorological Office of Shaanxi Province, Yulin, Shaanxi 718600, China
| | - Changzeng Feng
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, Yunnan 650118, China
| | - Jingjing Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Chunliang Chen
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Tianhui Lu
- Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling, Shaanxi 712100, China
| | - Mingan Shao
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling, Shaanxi 712100, China; CAS Center for Excellence in Quaternary Science and Global Change, Xi'an, Shaanxi 710061, China
| | - Gehong Wei
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xiaorong Wei
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling, Shaanxi 712100, China; CAS Center for Excellence in Quaternary Science and Global Change, Xi'an, Shaanxi 710061, China.
| |
Collapse
|
16
|
Wang Y, Wang L, Suo M, Qiu Z, Wu H, Zhao M, Yang H. Regulating Root Fungal Community Using Mortierella alpina for Fusarium oxysporum Resistance in Panax ginseng. Front Microbiol 2022; 13:850917. [PMID: 35633727 PMCID: PMC9133625 DOI: 10.3389/fmicb.2022.850917] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Accepted: 03/02/2022] [Indexed: 01/16/2023] Open
Abstract
Plant-associated microbes play important roles in plant health and disease. Mortierella is often found in the plant rhizosphere, and its possible functions are not well known, especially in medical plants. Mortierella alpina isolated from ginseng soil was used to investigate its effects on plant disease. The promoting properties and interactions with rhizospheric microorganisms were investigated in a medium. Further, a pot experiment was conducted to explore its effects on ginseng root rot disease. Physicochemical properties, high-throughput sequencing, network co-occurrence, distance-based redundancy analysis (db-RDA), and correlation analysis were used to evaluate their effects on the root rot pathogen. The results showed that Mortierella alpina YW25 had a high indoleacetic acid production capacity, and the maximum yield was 141.37 mg/L at 4 days. The growth of M. alpina YW25 was inhibited by some probiotics (Bacillus, Streptomyces, Brevibacterium, Trichoderma, etc.) and potential pathogens (Cladosporium, Aspergillus, etc.), but it did not show sensitivity to the soil-borne pathogen Fusarium oxysporum. Pot experiments showed that M. alpina could significantly alleviate the diseases caused by F. oxysporum, and increased the available nitrogen and phosphorus content in rhizosphere soil. In addition, it enhanced the activities of soil sucrase and acid phosphatase. High-throughput results showed that the inoculation of M. alpina with F. oxysporum changed the microbial community structure of ginseng, stimulated the plant to recruit more plant growth-promoting bacteria, and constructed a more stable microbial network of ginseng root. In this study, we found and proved the potential of M. alpina as a biocontrol agent against F. oxysporum, providing a new idea for controlling soil-borne diseases of ginseng by regulating rhizosphere microorganisms.
Collapse
Affiliation(s)
- Yan Wang
- College of Life Sciences, Northeast Forestry University, Harbin, China
- Key Laboratory for Enzyme and Enzyme-like Material Engineering of Heilongjiang, Harbin, China
| | - Liwei Wang
- College of Life Sciences, Northeast Forestry University, Harbin, China
- Key Laboratory for Enzyme and Enzyme-like Material Engineering of Heilongjiang, Harbin, China
| | - Meng Suo
- College of Life Sciences, Northeast Forestry University, Harbin, China
- Key Laboratory for Enzyme and Enzyme-like Material Engineering of Heilongjiang, Harbin, China
| | - Zhijie Qiu
- College of Life Sciences, Northeast Forestry University, Harbin, China
- Key Laboratory for Enzyme and Enzyme-like Material Engineering of Heilongjiang, Harbin, China
| | - Hao Wu
- College of Life Sciences, Northeast Forestry University, Harbin, China
- Key Laboratory for Enzyme and Enzyme-like Material Engineering of Heilongjiang, Harbin, China
| | - Min Zhao
- College of Life Sciences, Northeast Forestry University, Harbin, China
- Key Laboratory for Enzyme and Enzyme-like Material Engineering of Heilongjiang, Harbin, China
| | - Hongyan Yang
- College of Life Sciences, Northeast Forestry University, Harbin, China
- Key Laboratory for Enzyme and Enzyme-like Material Engineering of Heilongjiang, Harbin, China
| |
Collapse
|
17
|
Zhang H, Phillip FO, Wu L, Zhao F, Yu S, Yu K. Effects of Temperature and Nitrogen Application on Carbon and Nitrogen Accumulation and Bacterial Community Composition in Apple Rhizosphere Soil. FRONTIERS IN PLANT SCIENCE 2022; 13:859395. [PMID: 35444679 PMCID: PMC9014127 DOI: 10.3389/fpls.2022.859395] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 02/28/2022] [Indexed: 05/03/2023]
Abstract
Malus sieversii grows on the slopes of the Tianshan Mountains in Xinjiang where the difference in daily temperature is significant. In recent years, the rhizosphere soil health of Malus sieversii has been severely impacted by anthropogenic disturbance and pathogenic infestation. The soil nutrient content and soil microorganism diversity are the main components of soil health. Low temperature has negative effects on soil bacterial community structure by inhibiting the accumulation of carbon and nitrogen. However, the effects of temperature and nitrogen application on soil carbon and nitrogen accumulation and the bacterial community composition in the rhizosphere soil of Malus sieversii are unclear. We set two temperature levels, i.e., low temperature (L) and room temperature (R), combined with no nitrogen (N0) and nitrogen application (N1) to explore the response of plant carbon and nitrogen uptake, rhizosphere soil carbon and nitrogen accumulation and bacterial community composition to temperature and nitrogen fertilization. At the same temperature level, plant 13C abundance (P-Atom13C), plant 15N absolute abundance (P-Con15N), soil 15N abundance (S-Atom15N) and soil urease, protease and glutaminase activities were significantly higher under nitrogen application compared with the no-nitrogen application treatment. The bacterial community diversity and richness indices of the apple rhizosphere soil in the N1 treatment were higher than those in the N0 treatment. The relative abundances of Actinobacteria, Rhodopseudomonas, and Bradyrhizobium were higher in the LN1 treatment than in the LN0 treatment. Redundancy analysis (RDA) showed that plant 13C absolute abundance (P-Con13C) and plant 15N absolute abundance (P-Con15N) were the main factors affecting the soil bacterial community composition. In summary, Nitrogen application can alleviate the effects of low temperature stress on the soil bacterial community and is of benefit for the uptakes of carbon and nitrogen in Malus sieversii plants.
Collapse
Affiliation(s)
| | | | | | | | | | - Kun Yu
- The Key Laboratory of Characteristics of Fruit and Vegetable Cultivation and Utilization of Germplasm Resources of the Xinjiang Production and Construction Corps, Shihezi University, Xinjiang, China
| |
Collapse
|