1
|
Yuan D, Li S, Ye C, Liu W, Xu J. Dissolved organic matter (DOM) rather than warming and eutrophication directly affects partial pressure of CO 2 (pCO 2) in mesocosm systems. WATER RESEARCH 2024; 267:122448. [PMID: 39305531 DOI: 10.1016/j.watres.2024.122448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 09/07/2024] [Accepted: 09/13/2024] [Indexed: 11/28/2024]
Abstract
Environmental warming and eutrophication pose significant challenges to shallow lake systems, where dissolved organic matter (DOM) serves as a diverse and intricate mixture of organic macromolecules, playing a pivotal role in aquatic ecosystems. Despite its complexity, comprehending the interplay between environmental changes and DOM composition alterations and their subsequent impacts on aqueous CO2 partial pressure (pCO2) is essential for a better understanding of carbon cycling. Yet, our current understanding in this realm remains limited. To address this gap, mesocosm systems were established to investigate how elevated water temperature and eutrophication, alongside changes in DOM composition, influence pCO2 dynamics. Results indicate that while temperature and nutrient levels do not directly influence pCO2 fluctuations, they indirectly affect aqueous pCO2 through their modulation of DOM composition. Elevated temperature and nutrient concentrations notably enhance both the production and degradation of indigenous protein-like organic matter and increase the accumulation of humic-like organic compounds, with phosphorus released from sediment playing a particularly significant role. Furthermore, the degradation rate of protein-like organic matter significantly exceeds its accumulation rate. On the other hand, the impact of water eutrophication on DOM composition surpasses that of temporal temperature variations, with a 2∼4 °C temperature rise showing minimal effects on DOM composition. Notably, the degradation of protein-like organic matter markedly increases aqueous pCO2, while the rise in humic-like organic matter in water exerts minimal influence on pCO2 concentrations. A comprehensive understanding of carbon cycling processes under environmental changes will facilitate effective management of lake ecosystems and the advancement of carbon mitigation technologies.
Collapse
Affiliation(s)
- Danni Yuan
- School of Environmental Ecology and Biological Engineering, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Wuhan Institute of Technology, Wuhan 430205, PR China
| | - Siyue Li
- School of Environmental Ecology and Biological Engineering, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Wuhan Institute of Technology, Wuhan 430205, PR China.
| | - Chen Ye
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden of the Chinese Academy of Sciences, Wuhan 430074, PR China
| | - Wenzhi Liu
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden of the Chinese Academy of Sciences, Wuhan 430074, PR China
| | - Jun Xu
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, PR China.
| |
Collapse
|
2
|
Wang W, Wang X, Shu X, Yang Y, Liu W, Zhang Q. Internal transformation and damming regulate the longitudinal variation of DOM bioavailability in a large river. ENVIRONMENTAL RESEARCH 2024; 260:119605. [PMID: 39002632 DOI: 10.1016/j.envres.2024.119605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 07/02/2024] [Accepted: 07/10/2024] [Indexed: 07/15/2024]
Abstract
Understanding the spatial patterns of dissolved organic matter (DOM) and factors that influence them is crucial for maintaining river ecosystem functions and riverine health, considering the significant role of DOM in water quality and aquatic ecosystems. Nevertheless, there is limited knowledge regarding the spatial variation of DOM bioavailability and the factors driving them in large river systems. This study involved 39 sampling locations along the main stem of the Changjiang River, spanning its entire length (>5000 km) during a dry season. Spatial patterns of DOM were assessed by measurements of DOC concentrations and eight fluorescence DOM indices, namely fluorescence index (FI-A and FI-B), Trytophan/Tyrosine, Humic A, Humic C, humification indices (HIX-A and HIX-B), and Freshness index (β/α). The results revealed that the water DOM in the main stem of the Changjiang River primarily originated from terrestrial sources. A decline in DOM bioavailability was observed from the upper to the lower basin, aligning with the carbon processing prediction rather than the river continuum concept (RCC). The pure effect of physicochemical factors (25.30%) was greater than that of geographic factors (9.40%). The internal transformation processes determined the significant longitudinal decreases of DOM bioavailability. While no significant difference in DOM bioavailability was observed between reaches before and after the dams, the construction of dams was found to improve DOM bioavailability at the subsection scale and reduce the spatial autocorrelation of DOM bioavailability across the entire basin.
Collapse
Affiliation(s)
- Weibo Wang
- CAS Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, PR China; Danjiangkou Wetland Ecosystem Field Scientific Observation and Research Station, The Chinese Academy of Sciences & Hubei Province, Wuhan, 430074, PR China; Hubei Key Laboratory of Wetland Evolution & Ecological Restoration, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, PR China
| | - Xu Wang
- CAS Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, PR China
| | - Xiao Shu
- CAS Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, PR China
| | - Yuyi Yang
- CAS Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, PR China
| | - Wenzhi Liu
- CAS Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, PR China
| | - Quanfa Zhang
- CAS Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, PR China; Danjiangkou Wetland Ecosystem Field Scientific Observation and Research Station, The Chinese Academy of Sciences & Hubei Province, Wuhan, 430074, PR China.
| |
Collapse
|
3
|
Yang R, Song H, Qin Q, Chen Y, Li D, Qiu Y, Lu K, Tan Y, Chen Q, Cao X, Liu S. The shifting pattern of CO 2 source sink in a subtropical urbanizing lightly eutrophic lake. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 946:174376. [PMID: 38964398 DOI: 10.1016/j.scitotenv.2024.174376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 06/16/2024] [Accepted: 06/27/2024] [Indexed: 07/06/2024]
Abstract
Globally, numerous freshwater lakes exist, and rapid urbanization has impacted carbon biogeochemical cycling at the interface where water meets air in these bodies. However, there is still a limited understanding of CO2 absorption/emission in eutrophic urbanizing lakes. This study therefore involved biweekly in-situ monitoring to evaluate fluctuations in the partial pressure (pCO2) and flux (fCO2) of CO2 and associated parameters from January to September 2020 (7:00-17:00 CST) in an urbanizing lake in southwestern China. Our study revealed that during the daylight hours of the 11 sampling days, both pCO2 and fCO2 consistently demonstrated decreasing trends from the early morning period to the late afternoon period, with notable increases on May 7th and August 15th, respectively. Interestingly, unlike our previous findings, an nonsignificant difference (p > 0.05) in mean pCO2 and fCO2 was observed between the morning period and the afternoon period (n = 22). Furthermore, the mean pCO2 in January (~105 μatm; n = 4) and April (133-212 μatm; n = 8) was below the typical atmospheric CO2 level (C-sink), while that in the other months surpassed 410 μatm (C-source), although the average values (n = 44) of pCO2 and fCO2 were 960 ± 841 μatm and 57 ± 85 mmol m-2 h-1, respectively. Moreover, the pCO2 concentration was significantly greater in summer (May to August, locally reaching 1087 μatm) than in spring (January to April at 112 μatm), indicating a seasonal shift between the C-sink (spring) and the C-source (summer). In addition, a significant positive correlation in pCO2/fCO2 with chlorophyll-a/nitrate but a negative correlation in dissolved oxygen and total phosphorus were recorded, suggesting that photosynthesis and respiration were identified as the main drivers of CO2 absorption/emissions, while changes in nitrate and phosphorus may be attributed to urbanization. Overall, our investigations indicated that this lightly eutrophic lake demonstrated a distinct shifting pattern of CO2 source-sink variability at daily and seasonal scales.
Collapse
Affiliation(s)
- Rongjie Yang
- School of Tourism and Culture Industry, Chengdu University, Chengdu 610106, China; College of Landscape Architecture, Sichuan Agricultural University, Chengdu 611130, China.
| | - Huixing Song
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu 611130, China.
| | - Qiao Qin
- The First Construction Engineering Co., Ltd., China Construction Third Engineering Bureau, Wuhan 430040, China
| | - Yingying Chen
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu 611130, China
| | - Di Li
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu 611130, China; Geophysical Exploration Brigade of Hubei Geological Bureau, Wuhan 430056, China
| | - Yuling Qiu
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu 611130, China
| | - Kezhu Lu
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu 611130, China
| | - Yike Tan
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu 611130, China
| | - Qingqing Chen
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu 611130, China
| | - Xinhao Cao
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu 611130, China
| | - Shiliang Liu
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu 611130, China; Sichuan Yuze Landscape Planning and Design Co., Ltd., Chengdu 610093, China.
| |
Collapse
|
4
|
Zhang L, Xu YJ, Li S. Changes in CO 2 concentration and degassing of eutrophic urban lakes associated with algal growth and decline. ENVIRONMENTAL RESEARCH 2023; 237:117031. [PMID: 37660875 DOI: 10.1016/j.envres.2023.117031] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 07/28/2023] [Accepted: 08/30/2023] [Indexed: 09/05/2023]
Abstract
Urban lakes are numerous in the world, but their role in carbon storage and emission is not well understood. This study aimed to answer the critical questions: How does algal growing season influence carbon dioxide concentration (cCO2) and exchange flux (FCO2) in eutrophic urban lakes? We investigated trophic state, seasonality of algal productivity, and their association with CO2 dynamics in four urban lakes in Central China. We found that these lightly-to moderately-eutrophic urban lakes showed a shifting pattern of CO2 source-sink dynamics. In the non-algal bloom phase, the moderately-eutrophic lakes outgassed on average of 12.18 ± 24.37 mmol m-2 d-1 CO2; but, during the algal bloom phase, the lakes sequestered an average 1.07 ± 6.22 mmol m-2 d-1 CO2. The lightly-eutrophic lakes exhibited lower CO2 emission in the algal bloom (0.60 ± 10.24 mmol m-2 d-1) compared to the non-algal bloom (3.84 ± 12.38 mmol m-2 d-1). Biological factors such as Chl-a (chlorophyll a) and AOU (apparent oxygen utilization), were found to be important factors to potentially affect the shifting pattern of lake CO2 source-sink dynamics in moderately-eutrophic lakes, explaining 48% and 34% of the CO2 variation in the non-algal and algal bloom phases, respectively. Moreover, CO2 showed positive correlations with AOU, and negative correlations with Chl-a in both phases. In the lightly-eutrophic lakes, biological factors explained a higher proportion of CO2 variations (29%) in the non-algal bloom phase, with AOU accounting for 19%. Our results indicate that algal growth and decline phases largely affect dissolved CO2 level and exchange flux by regulating in-lake respiration and photosynthesis. Based on the findings, we conclude that shallow urban lakes can act as both sources and sinks of CO2, with algal growth seasonality and trophic state playing pivotal roles in controlling their carbon dynamics.
Collapse
Affiliation(s)
- Liuqing Zhang
- School of Environmental Ecology and Biological Engineering, Institute of Changjiang Water Environment and Ecological Security, Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Wuhan Institute of Technology, Wuhan, 430205, China; Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China; Chongqing School, University of Chinese Academy of Sciences, Chongqing, 400714, China
| | - Y Jun Xu
- School of Renewable Natural Resources, Louisiana State University Agricultural Center, Baton Rouge, LA, 70803, USA; Coastal Studies Institute, Louisiana State University, Baton Rouge, LA, 70803, USA
| | - Siyue Li
- School of Environmental Ecology and Biological Engineering, Institute of Changjiang Water Environment and Ecological Security, Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Wuhan Institute of Technology, Wuhan, 430205, China.
| |
Collapse
|
5
|
Tang W, Xu YJ, Ni M, Li S. Land use and hydrological factors control concentrations and diffusive fluxes of riverine dissolved carbon dioxide and methane in low-order streams. WATER RESEARCH 2023; 231:119615. [PMID: 36682236 DOI: 10.1016/j.watres.2023.119615] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 12/03/2022] [Accepted: 01/13/2023] [Indexed: 06/17/2023]
Abstract
We analyzed the impacts of land use/land cover types on carbon dioxide (CO2) and methane (CH4) concentration and diffusion in 1st to 4th Strahler order tributaries of the Longchuan River to the upper Yangtze River in China by using headspace equilibration method and CO2SYS program. Field sampling and measurements were conducted during the dry and wet seasons from 2017 to 2019. The average of calculated CO2 partial pressure (pCO2, mean ± SD: 2389 ± 3220 μatm) by CO2SYS program was 1.9-fold higher than the value (mean ± SD: 1230 ± 1440 μatm) 10 years ago in the Longchuan River basin, where the urban land area increased by a factor of 7 times. Further analysis showed that corrected pCO2 by headspace method and dissolved CH4 (dCH4) decrease as the stream order and flow velocity increase. The pCO2 and dCH4 in the wet season was lower than that in the dry season. The explanatory ability of land use types on the variation of corrected pCO2 and dCH4 was stronger at the reach scale than at the riparian and catchment scales in two seasons. Urban land at reach scale further showed much higher explanation on corrected pCO2 and dCH4 than cropland, grassland and forest land in the wet season. The Longchuan River emits approximately 112.5 kt CO2-C and 1.0 kt CH4-C per year, being 1.7-fold of the total lateral export of dissolved inorganic and dissolved organic carbon (68.3 kt C y-1). The findings highlight the scale effects of land use on the observed seasonality in dissolved carbon gases in low-order streams.
Collapse
Affiliation(s)
- Wei Tang
- Key Laboratory of Reservoir Aquatic Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China
| | - Y Jun Xu
- School of Renewable Natural Resources, Coastal Studies Institute, Louisiana State University, Baton Rouge, Louisiana 70803, USA
| | - Maofei Ni
- College of Eco-Environmental Engineering, The karst environmental geological hazard prevention laboratory of Guizhou Minzu University, Guizhou Minzu University, Guiyang 550025, China
| | - Siyue Li
- Institute of Changjiang Water Environment and Ecological Security, School of Environmental Ecology and Biological Engineering, Key Laboratory for Green Chemical Process of Ministry of Education, Engineering Research Center of Phosphorus Resources Development and Utilization of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Wuhan Institute of Technology, Wuhan 430205, China.
| |
Collapse
|
6
|
Liu F, Zhao Q, Ding J, Li L, Wang K, Zhou H, Jiang M, Wei J. Sources, characteristics, and in situ degradation of dissolved organic matters: A case study of a drinking water reservoir located in a cold-temperate forest. ENVIRONMENTAL RESEARCH 2023; 217:114857. [PMID: 36427638 DOI: 10.1016/j.envres.2022.114857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 11/11/2022] [Accepted: 11/17/2022] [Indexed: 06/16/2023]
Abstract
Dissolved organic matter (DOM) plays a pivotal role in the biogeochemical cycles of elements and the regulation of forest ecosystem functions. However, studies on the regional and seasonal characteristics of DOM in cold-temperate montane forests are still not comprehensive. In this study, samples of water, soil, and sediment from different sites in the forest drainage basin were collected, and their DOM was characterized by an excitation-emission matrix and parallel factor analysis (EEM-PARAFAC). The results showed that terrestrial-sourced humic-like substances were the dominant DOM in the studied reservoir and inflowing rivers. The quality and quantity of DOM exhibited spatiotemporal variations with the influence of terrain and monsoonal precipitation. The average concentration of dissolved organic carbon (DOC) in the wet season was 11.62 mg/L, which was higher than that in the dry season (8.18 mg/L). Higher humification index (HIX) values were observed in the wet season and upstream water than in the dry season and reservoir water. Fourier transform ion cyclotron resonance mass spectrometry (FTICR-MS) was used to further develop a molecular-level understanding of the in situ degradation process of DOM. The results indicated that photodegradation rather than biodegradation may play a dominant role in the in situ degradation of terrestrial-sourced humic-like substances under natural conditions. The biodegradability of DOM was enhanced after the in situ degradation process. Additionally, a significant decrease in the precursors of disinfectant byproducts in DOM was observed after in situ degradation. To our knowledge, this is the first study of the sources, characteristics, and in situ degradation of DOM in a reservoir in a cold-temperate forest. These findings help better understand the quality, quantity, and biogeochemical process of DOM in the studied reservoir and may contribute to the selection of drinking water treatment technologies for water supply.
Collapse
Affiliation(s)
- Fan Liu
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Qingliang Zhao
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Jing Ding
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China.
| | - Lili Li
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Kun Wang
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Huimin Zhou
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Miao Jiang
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Jian Wei
- Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| |
Collapse
|
7
|
Zhang L, Xu YJ, Li S. Source and quality of dissolved organic matter in streams are reflective to land use/land cover, climate seasonality and pCO 2. ENVIRONMENTAL RESEARCH 2023; 216:114608. [PMID: 36272594 DOI: 10.1016/j.envres.2022.114608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/30/2022] [Accepted: 10/14/2022] [Indexed: 06/16/2023]
Abstract
Sources and quality of dissolved organic matter (DOM) in streams may be largely controlled by the landscape and season. In this study, we attempted to answer three critical questions: 1) Do land use/land cover (LULC) types affect DOM characteristics? 2) Is there a seasonal fluctuation in DOM components? 3) How do DOM quality and LULC types influence aqueous carbon dioxide partial pressure (pCO2). To achieve this, we investigated the fluorescence characteristics of DOM and its implication for pCO2 in three streams draining land with different urban intensities under distinctive dry and wet seasons. Four fluorescence components were identified, including two terrestrial humic-like components, one protein-like component and one microbial humic-like component. We found a significant positive relationship of the maximum fluorescence intensity (Fmax) of the four components and fluorescence index (FI370) with urbanization intensity in both the dry and wet seasons. The mean Fmax, biological index (BIX) and FI370 all exhibited an increasing trend from upstream to downstream in the stream with highest proportions of urban and cropland. The fluorescence characteristics were negatively related to proportion of forested land in the both seasons. The terrestrial humic-like DOM was dominating in the studied streams. Moreover, the seasonality altered the DOM composition, with protein-like component emerging only in stream waters during the dry season, while microbial humic-like component exclusively occurred during the wet season. pCO2 values were positively related to terrestrial humic-like and biological protein-like components, and urban land. The dry season had much higher pCO2 than the wet season. Results from the Partial Least Squares Path (PLS-PM) models further indicated that LULC types were important in mediating fluorescence DOM whilst pCO2 was more sensitive to the direct effect from FDOM dynamics. We conclude that DOM source and quality in streams are reflective to LULC and climate seasonality, and are good indicators of pCO2 via source tracer and quality of fluorescence components.
Collapse
Affiliation(s)
- Liuqing Zhang
- Institute of Changjiang Water Environment and Ecological Security, School of Environmental Ecology and Biological Engineering, Key Laboratory for Green Chemical Process of Ministry of Education, Engineering Research Center of Phosphorus Resources Development and Utilization of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Wuhan Institute of Technology, Wuhan, 430205, China; Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China; Chongqing School, University of Chinese Academy of Sciences, Chongqing, 400714, China
| | - Y Jun Xu
- School of Renewable Natural Resources, Louisiana State University Agricultural Center, Baton Rouge, LA, 70803, USA; Coastal Studies Institute, Louisiana State University, Baton Rouge, LA, 70803, USA
| | - Siyue Li
- Institute of Changjiang Water Environment and Ecological Security, School of Environmental Ecology and Biological Engineering, Key Laboratory for Green Chemical Process of Ministry of Education, Engineering Research Center of Phosphorus Resources Development and Utilization of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Wuhan Institute of Technology, Wuhan, 430205, China.
| |
Collapse
|
8
|
Ni M, Li S. Dynamics and internal links of dissolved carbon in a karst river system: Implications for composition, origin and fate. WATER RESEARCH 2022; 226:119289. [PMID: 36323213 DOI: 10.1016/j.watres.2022.119289] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 10/20/2022] [Accepted: 10/21/2022] [Indexed: 06/16/2023]
Abstract
Dissolved carbon (DC) deciphers biotic and abiotic processes in aquatic ecosystems, representing a critical component of global carbon cycling. However, underlying drivers of riverine DC dynamics and internal links have yet to be studied. Here, we investigated fluvial physicochemical characteristics, dissolved inorganic carbon (DIC) species, carbon dioxide (CO2) exchange, dissolved organic carbon (DOC) compositions and properties in a karst river system Qijiang, Southwest China. Carbonate dissolution combined with photosynthetic uptake could explain dynamics of DIC species. Carbon sequestration caused low-magnitude of partial pressure of aqueous CO2 (pCO2, 620.3 ± 1028.7 μatm) and water-air CO2 flux (F, 154.3 ± 772.6 mmol/m2/d), yielding an annual CO2 emission of 0.079 Tg CO2/y. Relatively high biological index (BIX, 0.77-0.96 on average) but low humification index (HIX, 0.67-0.78 on average) indicated notable autochthonous processes. Humic-like component was the predominant DOC, accounting for 39.0%-75.2% with a mean of 57.2% ± 6.17%. Meanwhile, tryptophan-like component (5.84% ± 2.31%) was also identified as collective DOC by parallel factor analysis (PARAFAC) across samples. Biological metabolism established internal linkages between DIC and DOC in the karst river system. Our findings highlighted biological process as a determinant for DC cycling in karst aquatic ecosystems.
Collapse
Affiliation(s)
- Maofei Ni
- College of Eco-Environmental Engineering, Guizhou Minzu University, Guiyang 550025, China; The Karst Environmental Geological Hazard Prevention Laboratory, Guizhou Minzu University, Guiyang 550025, China
| | - Siyue Li
- Institute of Changjiang Water Environment and Ecological Security, School of Environmental Ecology and Biological Engineering, Key Laboratory for Green Chemical Process of Ministry of Education, Engineering Research Center of Phosphorus Resources Development and Utilization of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Wuhan Institute of Technology, Wuhan 430205, China.
| |
Collapse
|
9
|
Increased Compound Droughts and Heatwaves in a Double Pack in Central Asia. REMOTE SENSING 2022. [DOI: 10.3390/rs14132959] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Compound droughts and heatwaves (CDHWs) are likely to cause more severe natural disasters than a single extreme event, and they have been exacerbated by rapid global warming. Based on high-resolution grid data, this study combines the daily-scale ERA5-Land dataset and the monthly-scale SPEI dataset with multiple indicators to analyze CDHWs. We calculated and analyzed the temporal and spatial modal distribution of CDHWs in Central Asia from 1981 to 2018, and in this paper, we discuss the sequence relationship between drought events, heatwave events, and CDHWs. The results show that the number of CDHWs in the study region have increased over time and expanded in terms of area, especially in eastern and southwestern Central Asia. The tsum (total frequency of CDHWs) was 0.5 times higher than the total heatwave frequency and it increased at a rate of 0.17/yr. The maximum duration of tmax (maximum duration of CDHWs in days) was 17 days. Furthermore, the occurrence rate of tmax was 96.67%, and the AH (CDHWs’ accumulated heat) had a rate of 97.78%, which, upon examination of the spatial trend pattern, accounted for the largest increase in terms of area. We also found that the TAH (CDHWs’ average temperature anomalies, SPEI < −0.5) shows obvious seasonality, with the increases in winter and spring being significantly greater than the increases in summer and autumn. The intensity of the CDHWs was stronger than that of a single extreme event, the temperature anomaly was higher than the average of 0.4–0.8 °C, and there was a north–south spatial pattern across the study region. In eastern and northwestern Central Asia, the AH and heatwaves (SPEI < −0.5) increased by 15–30 times per year on average. During the transition from the base period to the reference period, CDHWs increased by 25%, and the number of dry days prior to the CDHWs decreased by 7.35 days. The conclusion of our study can provide a theoretical basis for coping with climate change in arid zones.
Collapse
|