1
|
Chen X, Zhou N, Yu L, Han Z, Guo Y, Ndombi SN, Zhang H, Jiang J, Duan Y, Zou Z, Ma Y, Zhu X, Chen S, Fang W. Plant resistance inducer AMHA enhances antioxidant capacities to promote cold tolerance by regulating the upgrade of glutathione S-transferase in tea plant. HORTICULTURE RESEARCH 2025; 12:uhaf073. [PMID: 40303428 PMCID: PMC12038892 DOI: 10.1093/hr/uhaf073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Accepted: 02/25/2025] [Indexed: 05/02/2025]
Abstract
Plant resistance inducers represent an alternative strategy that mitigate stress-induced damage in plants. Previously, 2-amino-3-methylhexanoic acid (AMHA), a novel natural plant resistance inducer, was shown to significantly bolster cold tolerance, thermotolerance, and pathogen resistance in plants. However, the intricate mechanisms underlying AMHA's response to cold stress remain elusive. Thus, we investigated the physiological and transcriptomic analyses of AMHA pretreatment on tea plant to determine its substantial role of AMHA under cold stress. The results showed that pretreatment with 100 nM AMHA effectively mitigated the detrimental effects of cold stress on photosynthesis and growth. Furthermore, differentially expressed genes were identified through RNA-seq during pretreatment, cold stress, and 2 days of recovery. These genes were mainly enriched in pathways related to flavonoid/anthocyanin, carotenoid, and ascorbic acid-glutathione (AsA-GSH) cycle, including GST (encoding glutathione S-transferase). Potential regulatory relationships between the identified genes and transcription factors were also established. Antisense oligodeoxynucleotide-silencing and overexpression experiments revealed that CsGSTU7 enhances cold resistance by maintaining redox homeostasis. In conclusion, our study suggests that antioxidant-related signaling molecules play a critical role in the signaling cascades and transcriptional regulation mediating AMHA-induced cold-stress resistance in tea plant.
Collapse
Affiliation(s)
- Xuejin Chen
- Tea Science Research Institute, Weed Research Laboratory, Binjiang Campus, Nanjing Agricultural University, No. 555, Binjiang Avenue, Pukou District, Nanjing, Jiangsu Province, China
| | - Ning Zhou
- Tea Science Research Institute, Weed Research Laboratory, Binjiang Campus, Nanjing Agricultural University, No. 555, Binjiang Avenue, Pukou District, Nanjing, Jiangsu Province, China
| | - Lisha Yu
- Tea Science Research Institute, Weed Research Laboratory, Binjiang Campus, Nanjing Agricultural University, No. 555, Binjiang Avenue, Pukou District, Nanjing, Jiangsu Province, China
| | - Zhaolan Han
- Tea Science Research Institute, Weed Research Laboratory, Binjiang Campus, Nanjing Agricultural University, No. 555, Binjiang Avenue, Pukou District, Nanjing, Jiangsu Province, China
| | - Yanjing Guo
- Tea Science Research Institute, Weed Research Laboratory, Binjiang Campus, Nanjing Agricultural University, No. 555, Binjiang Avenue, Pukou District, Nanjing, Jiangsu Province, China
| | - Salome Njeri Ndombi
- Tea Science Research Institute, Weed Research Laboratory, Binjiang Campus, Nanjing Agricultural University, No. 555, Binjiang Avenue, Pukou District, Nanjing, Jiangsu Province, China
| | - Huan Zhang
- Tea Science Research Institute, Weed Research Laboratory, Binjiang Campus, Nanjing Agricultural University, No. 555, Binjiang Avenue, Pukou District, Nanjing, Jiangsu Province, China
| | - Jie Jiang
- Tea Science Research Institute, Weed Research Laboratory, Binjiang Campus, Nanjing Agricultural University, No. 555, Binjiang Avenue, Pukou District, Nanjing, Jiangsu Province, China
| | - Yu Duan
- Tea Science Research Institute, Weed Research Laboratory, Binjiang Campus, Nanjing Agricultural University, No. 555, Binjiang Avenue, Pukou District, Nanjing, Jiangsu Province, China
| | - Zhongwei Zou
- Department of Biology, Wilfrid Laurier University, 75 University Avenue West, Waterloo, ON N2L 3C5, Canada
| | - Yuanchun Ma
- Tea Science Research Institute, Weed Research Laboratory, Binjiang Campus, Nanjing Agricultural University, No. 555, Binjiang Avenue, Pukou District, Nanjing, Jiangsu Province, China
| | - Xujun Zhu
- Tea Science Research Institute, Weed Research Laboratory, Binjiang Campus, Nanjing Agricultural University, No. 555, Binjiang Avenue, Pukou District, Nanjing, Jiangsu Province, China
| | - Shiguo Chen
- Tea Science Research Institute, Weed Research Laboratory, Binjiang Campus, Nanjing Agricultural University, No. 555, Binjiang Avenue, Pukou District, Nanjing, Jiangsu Province, China
| | - Wanping Fang
- Tea Science Research Institute, Weed Research Laboratory, Binjiang Campus, Nanjing Agricultural University, No. 555, Binjiang Avenue, Pukou District, Nanjing, Jiangsu Province, China
| |
Collapse
|
2
|
Liu PF, Zhao YK, Ma JN, Cao Y, Zhang MX, Yu J, Guan HB, Xing YS, Wang XQ, Jia X. Impact of various intercropping modes on soil quality, microbial communities, yield and quality of Platycodon grandiflorum (Jacq.) A. DC. BMC PLANT BIOLOGY 2025; 25:503. [PMID: 40259214 PMCID: PMC12010524 DOI: 10.1186/s12870-025-06544-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Accepted: 04/11/2025] [Indexed: 04/23/2025]
Abstract
INTRODUCTION Intercropping has the function of promoting plant growth, improving yield and quality. Platycodon grandiflorus (P. grandiflorus) is a traditional Chinese medicinal herb; continuous cropping obstacles significantly inhibit its yield and quality. However, few study have established about P. grandiflorus interaction of various crops. This study provides a theoretical foundation to explore the most effective intercropping method, enhance soil utilization efficiency, and increase the yield and quality of P. grandiflorus. We conducted field experiment, P. grandiflorus monoculture (JG-JG), P. grandiflorus and Achyranthes bidentata intercropping (JG-NX), P. grandiflorus and Saposhnikovia divaricata intercropping (JG-FF), P. grandiflorus and Glehnia littoralis (JG-SS) intercropping. Additionally, we included three main intercropping crops with P. grandiflorus, Zea mays (JG-YM), Setaria italica (JG-GZ), and Glycine max (JG-DD). The soil physicochemical properties, enzyme activity, soil microorganisms, the yield and secondary metabolite content in the roots of P. grandiflorus were determined. The results showed that intercropping significantly increased the yield and quality of P. grandiflorus, and significantly reduced the incidence rate of root rot. The intercropping system enhances the physical and chemical properties of soil, soil enzyme activity, and soil microbial diversity. JG-SS intercropping significantly increased the abundance of bacteria and fungi, stimulated soil microbial communities, promoted plant growth, significantly increased yield and content of platycodin D, enhanced the complexity of microbial co-occurrence networks. This study could provide a sustainable planting system for the cultivation of P. grandiflorus, particularly the system JG-SS. CLINICAL TRIAL NUMBER Not applicable.
Collapse
Affiliation(s)
- P F Liu
- School of Pharmacy, Inner Mongolia Medical University, Hohhot, 010110, China
| | - Y K Zhao
- Chifeng Institute of Agriculture and Animal Husbandry Science, Inner Mongolia, Chifeng, 024031, China
| | - J N Ma
- School of Pharmacy, Inner Mongolia Medical University, Hohhot, 010110, China
| | - Y Cao
- School of Pharmacy, Inner Mongolia Medical University, Hohhot, 010110, China
| | - M X Zhang
- School of Pharmacy, Inner Mongolia Medical University, Hohhot, 010110, China
| | - J Yu
- School of Pharmacy, Inner Mongolia Medical University, Hohhot, 010110, China
| | - H B Guan
- School of Pharmacy, Inner Mongolia Medical University, Hohhot, 010110, China
| | - Y S Xing
- School of Pharmacy, Inner Mongolia Medical University, Hohhot, 010110, China
| | - X Q Wang
- School of Pharmacy, Inner Mongolia Medical University, Hohhot, 010110, China.
| | - X Jia
- School of Pharmacy, Inner Mongolia Medical University, Hohhot, 010110, China.
| |
Collapse
|
3
|
Jiang Y, Lin X, Lin W. Effects of intercropping with legume forage on the rhizosphere microbial community structure of tea plants. Front Microbiol 2024; 15:1474941. [PMID: 39654675 PMCID: PMC11625550 DOI: 10.3389/fmicb.2024.1474941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 10/14/2024] [Indexed: 12/12/2024] Open
Abstract
Context Intercropping in agriculture is crucial for addressing challenges in intensive tea farming. Forage legumes reduce fertilizer dependence and significantly boost productivity. Currently, intercropping with legumes enhances the environmental conditions of tea plantations and improves tea quality. Objective However, the comprehension of the rhizosphere's impact on the associated microbes and the community structure of tea plants is still somewhat constrained. Methods Hence, four distinct planting methodologies were examined: Monoculture cultivation of Tieguanyin tea plants (MT), Laredo forage soybean (Glycine max Linn.) without partitioning in conjunction with tea (IT), intercropping with tea using plastic partitions (PPIT), and intercropping with tea facilitated by net partitions (NPIT). An absolute quantitative analysis of soil phospholipid fatty acids, labeled with the rhizosphere microbial characteristics of tea plants, was conducted through multi-ion reaction monitoring (MRM). The bacterial and fungal communities were anticipated utilizing the FAPROTAX and FUNG databases, respectively. Gas chromatography was employed to ascertain greenhouse gas emissions across diverse root interaction cultivation systems. Results and conclusion The rhizospheric influence culminated in a 44.6% increase in total phospholipid fatty acids (PLFAs) and a remarkable 100.9% escalation in the ratio of unsaturated to saturated fatty acids. This rhizospheric enhancement has significantly potentiated the ecological functionalities within the bacterial community, including xylanolysis, ureolysis, nitrogen respiration, nitrogen fixation, nitrite respiration, nitrite ammonification, and nitrate reduction. Mycorrhizomonas, encompassing both ectomycorrhizal and arbuscular forms, has notably colonized the rhizosphere. The interspecific mutualistic interactions within the rhizosphere have resulted in a significant enhancement of plant growth-promoting bacteria, including allorhizobium, bradyrhizobium, rhizobium, burkholderia, gluconacetobacter, and gluconobacter, while concurrently reducing the prevalence of pathogenic microorganisms such as xanthomonas, ralstonia, fusarium, and opportunistic fungi responsible for white and soft rot. The intercropping system showed lower total greenhouse gas emissions than monocultured tea plants, particularly reducing soil CO2 emissions due to complex interspecific rhizosphere interactions. This tea/legume intercropping approach promotes a sustainable ecosystem, enhancing microbial biomass and vitality, which helps suppress rhizospheric pathogens. Significance These findings are instrumental in enhancing our comprehension of the pivotal practical implications of rhizosphere intercropping, thereby optimizing the structure of rhizosphere communities and alleviating the impact of greenhouse gases within croplands.
Collapse
Affiliation(s)
- Yuhang Jiang
- College of Life Science, Longyan University, Longyan, China
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, Fujian Agriculture and Forestry University, College of Life Sciences, Fuzhou, China
- Key Laboratory of Crop Ecology and Molecular Physiology (Fujian Agriculture and Forestry University), Fujian Province University, College of Life Sciences, Fuzhou, China
| | - Xiaoqin Lin
- School of Resource Engineering, Longyan University, Longyan, China
| | - Wenxiong Lin
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, Fujian Agriculture and Forestry University, College of Life Sciences, Fuzhou, China
- Key Laboratory of Crop Ecology and Molecular Physiology (Fujian Agriculture and Forestry University), Fujian Province University, College of Life Sciences, Fuzhou, China
| |
Collapse
|
4
|
Shao S, Li Z, Zhu Y, Li Y, Li Y, Wu L, Rensing C, Cai P, Wang C, Zhang J, Li Q. Green manure ( Ophiopogon japonicus) cover promotes tea plant growth by regulating soil carbon cycling. Front Microbiol 2024; 15:1439267. [PMID: 39364171 PMCID: PMC11447704 DOI: 10.3389/fmicb.2024.1439267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 09/05/2024] [Indexed: 10/05/2024] Open
Abstract
Introduction In mountainous tea plantations, which are the primary mode of tea cultivation in China, issues such as soil erosion and declining soil fertility are particularly severe. Although green manure cover is an effective agricultural measure for restoring soil fertility, its application in mountainous tea plantations has been relatively understudied. Methods This study investigated the effects of continuous green manure cover using the slope-protecting plant Ophiopogon japonicus on tea plant growth and soil microbial community structure. We implemented three treatments: 1 year of green manure coverage, 2 years of coverage, and a control, to study their effects on tea plant growth, soil physicochemical properties, and soil bacterial and fungal communities. Results Results demonstrate that green manure coverage significantly promote the growth of tea plants, enhanced organic matter and pH levels in soil, and various enzyme activities, including peroxidases and cellulases. Further functional prediction results indicate that green manure coverage markedly promoted several carbon cycling functions in soil microbes, including xylanolysis, cellulolysis, degradation of aromatic compounds, and saprotrophic processes. LEfSe analysis indicated that under green manure cover, the soil tends to enrich more beneficial microbial communities with degradation functions, such as Sphingomonas, Sinomonas, and Haliangium (bacteria), and Penicillium, Apiotrichum, and Talaromyce (fungi). In addition. Random forest and structural equation models indicated that carbon cycling, as a significant differentiating factor, has a significant promoting effect on tea plant growth. Discussion In the management practices of mountainous tea plantations, further utilizing slope-protecting plants as green manure can significantly influence the soil microbial community structure and function, enriching microbes involved in the degradation of organic matter and aromatic compounds, thereby positively impacting tea tree growth and soil nutrient levels.
Collapse
Affiliation(s)
- Shuaibo Shao
- College of Tea and Food, Wuyi University, Wuyishan, China
- College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Zhongwei Li
- College of Tea and Food, Wuyi University, Wuyishan, China
- College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yanqi Zhu
- College of Tea and Food, Wuyi University, Wuyishan, China
| | - Yi Li
- College of Tea and Food, Wuyi University, Wuyishan, China
| | - Yuanping Li
- College of Tea and Food, Wuyi University, Wuyishan, China
- Institute of Environmental Microbiology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Linkun Wu
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Christopher Rensing
- Institute of Environmental Microbiology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Pumo Cai
- College of Tea and Food, Wuyi University, Wuyishan, China
| | - Caihao Wang
- College of Tea and Food, Wuyi University, Wuyishan, China
| | - Jianmin Zhang
- College of Tea and Food, Wuyi University, Wuyishan, China
| | - Qisong Li
- College of Tea and Food, Wuyi University, Wuyishan, China
| |
Collapse
|
5
|
Zhou P, Chen M, Bao Q, Wang H, Wang Y, Fu H. The Effect of Intercropping with Different Leguminous Green Manures on the Soil Environment and Tea Quality in Tea Plantations. Microorganisms 2024; 12:1721. [PMID: 39203563 PMCID: PMC11356949 DOI: 10.3390/microorganisms12081721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 08/04/2024] [Accepted: 08/16/2024] [Indexed: 09/03/2024] Open
Abstract
Intercropping with green manure is a soil-sustainable cultivation practice that has demonstrated positive impacts on tea growth and the soil environment in tea plantations. Nevertheless, research examining the effect of leguminous green manure varieties in tea plantations is scarce. This study aimed to analyze the tea quality and soil environment components in response to intercropping with three distinct leguminous green manures, Cassia sophera cv. Chafei 1 (CF), Sesbania cannabina (Retz.) Pers. (SC), and Chamaecrista rotundifolia (Pers.) Greene (CR), with 70% chemical fertilizer, and compare them to non-intercropped green manures with 100% chemical fertilizer (CK) in tea plantations. The findings indicated that intercropping with SC increased the amino acids content of tea leaves, the soil organic carbon (SOC), the soil acid phosphatase (ACP), the soil acid protease (ACPT), and the bacterial diversity compared to the CK treatment. Intercropping with CR improved the ACP activity and bacterial diversity while intercropping with CF improved the polyphenols. Proteobacteria, Acidobacteria, Actinomycetes, and Firmicutes were identified as the dominant bacterial taxa in tea plantations with intercropped green manure. A strong positive correlation was indicated between the SOC contents and the amino acids content in tea leaves after intercropping. A canonical correspondence analysis indicated significant associations between the ACP and the urease activity, and between the ACP and ACPT, and both were closely linked to SC. This finding provides an explanation that intercropping with SC may positively affect tea quality by influencing the SOC content, the soil enzyme activity, and the soil bacterial diversity. Green manure intercropping may replace part of chemical fertilizers, improve the soil environment in tea gardens, and enhance the quality of tea. These findings offer a theoretical reference for selecting leguminous green manure and advancing the sustainable development of tea plantations.
Collapse
Affiliation(s)
| | | | | | | | - Yuanjiang Wang
- Tea Research Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China; (P.Z.); (M.C.); (Q.B.); (H.W.)
| | - Haiping Fu
- Tea Research Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China; (P.Z.); (M.C.); (Q.B.); (H.W.)
| |
Collapse
|
6
|
Gao Y, Lei Z, Huang J, Sun Y, Liu S, Yao L, Liu J, Liu W, Liu Y, Chen Y. Characterization of Key Odorants in Lushan Yunwu Tea in Response to Intercropping with Flowering Cherry. Foods 2024; 13:1252. [PMID: 38672924 PMCID: PMC11049266 DOI: 10.3390/foods13081252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 04/13/2024] [Accepted: 04/17/2024] [Indexed: 04/28/2024] Open
Abstract
Lushan Yunwu tea (LSYWT) is a famous green tea in China. However, the effects of intercropping tea with flowering cherry on the overall aroma of tea have not been well understood. In this study, headspace solid-phase microextraction (HS-SPME) coupled with gas chromatography-mass spectrometry (GC-MS) was used for analysis. A total of 54 volatile compounds from eight chemical classes were identified in tea samples from both the intercropping and pure-tea-plantation groups. Principal component analysis (PCA), orthogonal partial least-squares discriminant analysis (OPLS-DA), and odor activity value (OAV) methods combined with sensory evaluation identified cis-jasmone, nonanal, and linalool as the key aroma compounds in the intercropping group. Benzaldehyde, α-farnesene, and methyl benzene were identified as the main volatile compounds in the flowering cherry using headspace solid-phase microextraction/gas chromatography-mass spectrometry (HS-SPME/GC-MS). These findings will enrich the research on tea aroma chemistry and offer new insights into the product development and quality improvement of LSYWT.
Collapse
Affiliation(s)
- Yinxiang Gao
- Institute of Jiangxi Oil-Tea Camellia, Jiujiang University, Jiujiang 332005, China; (Y.G.)
| | - Zhiyong Lei
- Institute of Jiangxi Oil-Tea Camellia, Jiujiang University, Jiujiang 332005, China; (Y.G.)
| | - Jigang Huang
- Jiujiang Agricultural Technology Extension Center, Jiujiang 332000, China
| | - Yongming Sun
- Jiangxi Institute of Red Soil and Germplasm Resources, Nanchang 330046, China
| | - Shuang Liu
- Jiujiang Agricultural Technology Extension Center, Jiujiang 332000, China
| | - Liping Yao
- Institute of Jiangxi Oil-Tea Camellia, Jiujiang University, Jiujiang 332005, China; (Y.G.)
| | - Jiaxin Liu
- Jiujiang Agricultural Technology Extension Center, Jiujiang 332000, China
| | - Wenxin Liu
- Institute of Jiangxi Oil-Tea Camellia, Jiujiang University, Jiujiang 332005, China; (Y.G.)
| | - Yanan Liu
- Institute of Jiangxi Oil-Tea Camellia, Jiujiang University, Jiujiang 332005, China; (Y.G.)
| | - Yan Chen
- Jiujiang Agricultural Technology Extension Center, Jiujiang 332000, China
| |
Collapse
|
7
|
Duan Y, Wang T, Zhang P, Zhao X, Jiang J, Ma Y, Zhu X, Fang W. The effect of intercropping leguminous green manure on theanine accumulation in the tea plant: A metagenomic analysis. PLANT, CELL & ENVIRONMENT 2024; 47:1141-1159. [PMID: 38098148 DOI: 10.1111/pce.14784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 11/15/2023] [Accepted: 12/06/2023] [Indexed: 03/05/2024]
Abstract
Intercropping is a widely recognised technique that contributes to agricultural sustainability. While intercropping leguminous green manure offers advantages for soil health and tea plants growth, the impact on the accumulation of theanine and soil nitrogen cycle are largely unknown. The levels of theanine, epigallocatechin gallate and soluble sugar in tea leaves increased by 52.87% and 40.98%, 22.80% and 6.17%, 22.22% and 29.04% in intercropping with soybean-Chinese milk vetch rotation and soybean alone, respectively. Additionally, intercropping significantly increased soil amino acidnitrogen content, enhanced extracellular enzyme activities, particularly β-glucosidase and N-acetyl-glucosaminidase, as well as soil multifunctionality. Metagenomics analysis revealed that intercropping positively influenced the relative abundances of several potentially beneficial microorganisms, including Burkholderia, Mycolicibacterium and Paraburkholderia. Intercropping resulted in lower expression levels of nitrification genes, reducing soil mineral nitrogen loss and N2 O emissions. The expression of nrfA/H significantly increased in intercropping with soybean-Chinese milk vetch rotation. Structural equation model analysis demonstrated that the accumulation of theanine in tea leaves was directly influenced by the number of intercropping leguminous green manure species, soil ammonium nitrogen and amino acid nitrogen. In summary, the intercropping strategy, particularly intercropping with soybean-Chinese milk vetch rotation, could be a novel way for theanine accumulation.
Collapse
Affiliation(s)
- Yu Duan
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Ting Wang
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Peixi Zhang
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Xinjie Zhao
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Jie Jiang
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Yuanchun Ma
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Xujun Zhu
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Wanping Fang
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
8
|
Su H, Lai H, Gao F, Zhang R, Wu S, Ge F, Li Y, Yao H. The proliferation of beneficial bacteria influences the soil C, N, and P cycling in the soybean-maize intercropping system. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:25688-25705. [PMID: 38483720 DOI: 10.1007/s11356-024-32851-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Accepted: 03/06/2024] [Indexed: 04/19/2024]
Abstract
Soybean-maize intercropping system can improve the utilization rate of farmland and the sustainability of crop production systems. However, there is a significant gap in understanding the interaction mechanisms between soil carbon (C), nitrogen (N), and phosphorus (P) cycling functional genes, rhizosphere microorganisms, and nutrient availability. To reveal the key microorganisms associated with soil nutrient utilization and C, N, and P cycling function in the soybean-maize intercropping system, we investigated the changes in soil properties, microbial community structure, and abundance of functional genes for C, N, and P cycling under soybean-maize intercropping and monocropping at different fertility stages in a pot experiment. We found that there was no significant difference in the rhizosphere microbial community between soybean-maize intercropping and monocropping at the seeding stage. As the reproductive period progressed, differences in microbial community structure between intercropping and monocropping gradually became significant, manifesting the advantages of intercropping. During the intercropping process of soybean and maize, the relative abundance of beneficial bacteria in soil rhizosphere significantly increased, particularly Streptomycetaceae and Pseudomonadaceae. Moreover, the abundances of C, N, and P cycling functional genes, such as abfA, mnp, rbcL, pmoA (C cycling), nifH, nirS-3, nosZ-2, amoB (N cycling), phoD, and ppx (P cycling), also increased significantly. Redundancy analysis and correlation analysis showed that Streptomycetaceae and Pseudomonadaceae were significantly correlated with soil properties and C, N, and P cycling functional genes. In brief, soybean and maize intercropping can change the structure of microbial community and promote the proliferation of beneficial bacteria in the soil rhizosphere. The accumulation of these beneficial bacteria increased the abundance of C, N, and P cycling functional genes in soil and enhanced the ability of plants to fully utilize environmental nutrients and promoted growth.
Collapse
Affiliation(s)
- Hao Su
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, Fujian Province, China
- Zhejiang Provincial Key Laboratory of Urban Environmental Process and Pollution Control, Ningbo (Beilun) Zhongke Haixi Industry Technology Innovation Center, Ningbo, 315800, Zhejiang Province, China
- College of JunCao Science and Ecology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Huiling Lai
- Lianhe Equator Environmental Impact Assessment Co., Ltd, Tianjin, 300042, China
| | - Fuyun Gao
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, Fujian Province, China
- Zhejiang Provincial Key Laboratory of Urban Environmental Process and Pollution Control, Ningbo (Beilun) Zhongke Haixi Industry Technology Innovation Center, Ningbo, 315800, Zhejiang Province, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ruipeng Zhang
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, Fujian Province, China
- Zhejiang Provincial Key Laboratory of Urban Environmental Process and Pollution Control, Ningbo (Beilun) Zhongke Haixi Industry Technology Innovation Center, Ningbo, 315800, Zhejiang Province, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Sixuan Wu
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, Fujian Province, China
- Zhejiang Provincial Key Laboratory of Urban Environmental Process and Pollution Control, Ningbo (Beilun) Zhongke Haixi Industry Technology Innovation Center, Ningbo, 315800, Zhejiang Province, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Furong Ge
- Beilun District Agriculture and Rural Bureau, Ningbo, 315800, Zhejiang Province, China
| | - Yaying Li
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, Fujian Province, China.
- Zhejiang Provincial Key Laboratory of Urban Environmental Process and Pollution Control, Ningbo (Beilun) Zhongke Haixi Industry Technology Innovation Center, Ningbo, 315800, Zhejiang Province, China.
| | - Huaiying Yao
- Wuhan Institute of Technology, Wuhan, 430074, China
| |
Collapse
|
9
|
Gao J, Tang J, Zhang S, Zhang C. Intercropped Flemingia macrophylla successfully traps tea aphid (Toxoptera aurantia) and alters associated networks to enhance tea quality. PEST MANAGEMENT SCIENCE 2024; 80:1474-1483. [PMID: 37947785 DOI: 10.1002/ps.7879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 10/23/2023] [Accepted: 11/10/2023] [Indexed: 11/12/2023]
Abstract
BACKGROUND The tea aphid, Toxoptera aurantia is a destructive pest causing severe damage to the quality and yield of tea, Camellia sinensis. Relying on chemical insecticides to control this pest causes adverse ecological and economic consequences. Trap plants are an eco-friendly alternative strategy to mitigate pest damage on focal plants by attracting target insects and natural enemies. Yet, the utilization of trap plants in tea plantations remains limited. Besides, the effects of the trap plant on the tea aphid-ant-predator community and tea quality and yield are unknown. RESULTS Intercropped Flemingia macrophylla successfully trapped tea aphids and enhanced the complexity of aphid-ant-predator networks over three consecutive years compared to monoculture management. Moreover, F. macrophylla significantly increased the abundance of natural predators by 3100% and species richness by 57%. The increasing predators suppressed the aphid population and hampered its spillover to neighbouring tea plants. Consequently, F. macrophylla improved tea quality by an 8% increase in soluble sugar and a 26% reduction in polyphenols to amino acids ratio. CONCLUSION The study illustrated that F. macrophylla is a suitable trap crop for tea aphid control in tea plantations. This legume increases species nodes and strengthens multiple connections in aphid-associated communities through its cascade effects, improving tea quality. These findings shed light on the potential application of trap plants in tea plantations as an efficient integrated pest management (IPM) strategy. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Jie Gao
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Science, Mengla, China
| | - Jianwei Tang
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Science, Mengla, China
| | - Sen Zhang
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Science, Mengla, China
- University of Chinese Academy of Science, Beijing, China
| | - Chunyan Zhang
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Science, Mengla, China
- University of Chinese Academy of Science, Beijing, China
| |
Collapse
|
10
|
Zhou H, Zhang M, Yang J, Wang J, Chen Y, Ye X. Returning ryegrass to continuous cropping soil improves soil nutrients and soil microbiome, producing good-quality flue-cured tobacco. Front Microbiol 2023; 14:1257924. [PMID: 37876786 PMCID: PMC10591219 DOI: 10.3389/fmicb.2023.1257924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 09/18/2023] [Indexed: 10/26/2023] Open
Abstract
The widespread and continuous cultivation of tobacco has led to soil degradation and reduced crop yields and quality. Green manure is an essential organic fertilizer that alleviates obstacles to continuous cultivation. However, the plant-soil microecological effects of green manure on flue-cured tobacco cultivation remain unclear. Thus, a positioning trail including two treatments, chemical fertilizer application only (treatment NPK) and chemical fertilizer application with turning ryegrass (treatment NPKG) was conducted, and the effect of ryegrass returning on the soil physicochemical properties, soil microbiome, crop yield, and quality of flue-cured tobacco in continuous cropping soil were investigated. Results showed that returning ryegrass to the field increased the thickness of soil humus layer from 13 cm to 15 cm, reduced the humus layer soil bulk density to 1.29 cm3/g. Ryegrass tilled and returned to the field increased soil organic matter content by 6.89-7.92%, increased rhizosphere soil available phosphorus content by 2.22-17.96%, and converted the soil non-exchangeable potassium into potassium that was available for plant absorption and utilization. Ryegrass tilling and returning to the field increased the potassium content of middle leaves of flue-cured tobacco by 7.69-10.07%, the increased potassium content in flue-cured tobacco was accompanied by increased total sugar, reducing sugar, and the ratio of reducing sugar to nicotine, which facilitated the harmonization of the chemical composition of cured tobacco leaves. Moreover, the increased number of markedly improved operational taxonomic units enhanced the complexity of the soil bacterial community and its compactness after ryegrass tillage and their return to the field. The available potassium, available phosphorus, total potassium content, pH, and sampling period of the rhizosphere soil had considerable effects on the rhizosphere microbial. Ryegrass tilling and returning to the field changed the soil microbiome, which increased the abundance of bulk soil Proteobacteria, rhizosphere soil Fibrobacterota, and microbes with anti-pathogen activity (Lysobacteria, Sphingomonas, Chaetomium, and Minimedusa); and reduced the abundance of pathogenic fungi Neocosmospore genus in the soil. In brief, ryegrass returned to the field, improved soil microecology and restored soil nutrients, and established a new dynamic balance of soil ecology, thereby improving the quality of cultivated land and the quality of flue-cured tobacco.
Collapse
Affiliation(s)
- Hanjun Zhou
- Key Laboratory of Tobacco Cultivation of Tobacco Industry, National Tobacco Cultivation & Physiology & Biochemistry Research Centre, Tobacco Science College of Henan Agricultural University, Zhengzhou, China
- College of Natural Resources and Environment, Northwest A&F University, Yangling, China
| | - Mingjie Zhang
- Key Laboratory of Tobacco Cultivation of Tobacco Industry, National Tobacco Cultivation & Physiology & Biochemistry Research Centre, Tobacco Science College of Henan Agricultural University, Zhengzhou, China
| | - Jiahao Yang
- Key Laboratory of Tobacco Cultivation of Tobacco Industry, National Tobacco Cultivation & Physiology & Biochemistry Research Centre, Tobacco Science College of Henan Agricultural University, Zhengzhou, China
| | - Jing Wang
- Key Laboratory of Tobacco Cultivation of Tobacco Industry, National Tobacco Cultivation & Physiology & Biochemistry Research Centre, Tobacco Science College of Henan Agricultural University, Zhengzhou, China
| | - Yulu Chen
- Key Laboratory of Tobacco Cultivation of Tobacco Industry, National Tobacco Cultivation & Physiology & Biochemistry Research Centre, Tobacco Science College of Henan Agricultural University, Zhengzhou, China
| | - Xiefeng Ye
- Key Laboratory of Tobacco Cultivation of Tobacco Industry, National Tobacco Cultivation & Physiology & Biochemistry Research Centre, Tobacco Science College of Henan Agricultural University, Zhengzhou, China
| |
Collapse
|
11
|
Liu C, Yu J, Ying J, Zhang K, Hu Z, Liu Z, Chen S. Integrated metagenomics and metabolomics analysis reveals changes in the microbiome and metabolites in the rhizosphere soil of Fritillaria unibracteata. FRONTIERS IN PLANT SCIENCE 2023; 14:1223720. [PMID: 37600181 PMCID: PMC10436506 DOI: 10.3389/fpls.2023.1223720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 07/18/2023] [Indexed: 08/22/2023]
Abstract
Fritillaria unibracteata (FU) is a renowned herb in China that requires strict growth conditions in its cultivation process. During this process, the soil microorganisms and their metabolites may directly affect the growth and development of FU, for example, the pathogen infection and sipeimine production. However, few systematic studies have reported the changes in the microbiome and metabolites during FU cultivation thus far. In this work, we simultaneously used metagenomics and metabolomics technology to monitor the changes in microbial communities and metabolites in the rhizosphere of FU during its cultivation for one, two, and three years. Moreover, the interaction between microorganisms and metabolites was investigated by co-occurrence network analysis. The results showed that the microbial composition between the three cultivation-year groups was significantly different (2020-2022). The dominant genera changed from Pseudomonas and Botrytis in CC1 to Mycolicibacterium and Pseudogymnoascus in CC3. The relative abundances of beneficial microorganisms decreased, while the relative abundances of harmful microorganisms showed an increasing trend. The metabolomics results showed that significant changes of the of metabolite composition were observed in the rhizosphere soil, and the relative abundances of some beneficial metabolites showed a decreasing trend. In this study, we discussed the changes in the microbiome and metabolites during the three-year cultivation of FU and revealed the relationship between microorganisms and metabolites. This work provides a reference for the efficient and sustainable cultivation of FU.
Collapse
Affiliation(s)
- Chengcheng Liu
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
- Institute of Herbgenomics, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jingsheng Yu
- Institute of Herbgenomics, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jizhe Ying
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Kai Zhang
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Zhigang Hu
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Zhixiang Liu
- Institute of Herbgenomics, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Shilin Chen
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
- Institute of Herbgenomics, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
12
|
Wang S, Zhang X, Li X, Shen J, Sun L, Zaman S, Wang Y, Ding Z. Different changes of bacterial diversity and soil metabolites in tea plants-legume intercropping systems. FRONTIERS IN PLANT SCIENCE 2023; 14:1110623. [PMID: 37008505 PMCID: PMC10060988 DOI: 10.3389/fpls.2023.1110623] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 03/03/2023] [Indexed: 06/19/2023]
Abstract
As an essential agroforestry, intercropping legumes can improve the physical, chemical, and biological fertility of the soil in tea plantations. However, the effects of intercropping different legume species on soil properties, bacterial communities, and metabolites remain elusive. In this study, the 0-20 cm and 20-40 cm soils of three planting patterns (T1: tea plants/mung bean intercropping, T2: tea plants/adzuki bean intercropping, T3: tea plants/mung bean and adzuki bean intercropping) were sampled to explore the diversity of the bacterial community and soil metabolites. The findings showed that, as compared to monocropping, intercropping systems had greater concentrations of organic matter (OM) and dissolved organic carbon (DOC). Notably, pH values were significantly lower, and soil nutrients increased in intercropping systems compared with monoculture in 20-40 cm soils, especially in T3. In addition, intercropping resulted in an increased relative abundance of Proteobacteria but a decreased relative abundance of Actinobacteria. 4-methyl-Tetradecane, acetamide, and diethyl carbamic acid were key metabolites mediating the root-microbe interactions, especially in tea plants/adzuki intercropping and tea plants/mung bean, adzuki bean mixed intercropping soils. Co-occurrence network analysis showed that arabinofuranose, abundant in tea plants and adzuki bean intercropping soils, showed the most remarkable correlation with the soil bacterial taxa. Our findings demonstrate that intercropping with adzuki beans is better at enhancing the diversity of soil bacteria and soil metabolites and is more weed-suppressing than other tea plants/legume intercropping systems.
Collapse
Affiliation(s)
- Shuangshuang Wang
- Tea Research Institute, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Xiaojia Zhang
- Tea Research Institute, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Xiaojiang Li
- Tea Research Institute, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Jiazhi Shen
- Tea Research Institute, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Litao Sun
- Tea Research Institute, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Shah Zaman
- Tea Research Institute, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Yu Wang
- Tea Research Institute, Qingdao Agricultural University, Qingdao, China
| | - Zhaotang Ding
- Tea Research Institute, Shandong Academy of Agricultural Sciences, Jinan, China
| |
Collapse
|
13
|
Wu J, Hu J, Zhao X, Sun Y, Hu G. Role of tea plantations in the maintenance of bird diversity in Anji County, China. PeerJ 2023; 11:e14801. [PMID: 36815977 PMCID: PMC9933740 DOI: 10.7717/peerj.14801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 01/04/2023] [Indexed: 02/17/2023] Open
Abstract
Background Tea plantations support regional sustainable development and have the potential to support more biodiversity than urban open spaces. Numerous studies have shown the value of low-intensity agroecosystems for preserving biodiversity, however tea plantations have received less attention. The relationship between tea plantations and the diversity of macro-organisms, such as birds, is still not fully understood. Methods We investigated the bird diversity and vegetation conditions and calculated landscape metrics in 30 tea plantations in Anji County, Zhejiang Province, China. At these 30 sampling sites, we recorded 262 individuals belonging to 37 species, which were classified into two guilds: nature- and urban-dependent birds. We used cluster analysis to group the sampling sites based on the abundance of the birds. Then we evaluated the effects of associated plant diversity in tea plantations and the surrounding landscape composition on these bird guilds using species association computation and a generalized linear model. Results The results show that the maintenance of bird diversity by tea plantations benefits both nature- and urban-dependent birds. We found that landscape-scale factors surrounding the tea plantations mainly affected the bird richness due to their habitat selection. Landscape agglomeration and habitat quality were the dominant landscape-scale metrics. Patch-scale factors of tea plantations, especially the vegetation structure, had a strong influence on the abundance of the birds. Nature-dependent birds preferred to occur in tea plantations with perennial herbs, while urban-dependent birds were attracted by the general distributed plants, as annual herbs. Therefore, we concluded that tea plantations play an important role as a transitional zone between natural habitats and urban areas, thus reducing the impact of urbanization and maintaining bird diversity in low-quality habitats.
Collapse
Affiliation(s)
- Jueying Wu
- School of Civil Engineering and Architecture, Zhejiang Sci-Tech University, Hangzhou, China
| | - Jinli Hu
- School of Civil Engineering and Architecture, Zhejiang Sci-Tech University, Hangzhou, China
| | - Xinyu Zhao
- School of Civil Engineering and Architecture, Zhejiang Sci-Tech University, Hangzhou, China
| | - Yangyang Sun
- School of Civil Engineering and Architecture, Zhejiang Sci-Tech University, Hangzhou, China
| | - Guang Hu
- School of Civil Engineering and Architecture, Zhejiang Sci-Tech University, Hangzhou, China
| |
Collapse
|
14
|
Hu Z, Zhao Q, Zhang X, Ning X, Liang H, Cao W. Winter Green Manure Decreases Subsoil Nitrate Accumulation and Increases N Use Efficiencies of Maize Production in North China Plain. PLANTS (BASEL, SWITZERLAND) 2023; 12:311. [PMID: 36679024 PMCID: PMC9866620 DOI: 10.3390/plants12020311] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/30/2022] [Accepted: 01/03/2023] [Indexed: 06/17/2023]
Abstract
Planting a deep-rooted green manure (GM) (more than 1.0 m depth) greatly improves soil fertility and reduces the loss of nutrients. However, few studies have examined the response of soil nitrogen (N) distribution in the soil profile and subsoil N recovery to the long-term planting and incorporation of deep-rooted GM. Based on a 12-year (2009−2021) experiment of spring maize-winter GMs rotation in the North China Plain (NCP), this study investigated the effects of different GMs that were planted over the winter, including ryegrass (RrG, Lolium L.) (>1.0 m), Orychophragmus violaceus (OrV, Orychophragmus violaceus L.) (>0.8 m), and hairy vetch (VvR, Vicia villosa Roth.) (>1.0 m), on the spring maize yield, N distribution in the deep soil profile, N use efficiencies, functional gene abundances involving soil nitrification−denitrification processes and N2O production. Compared with the winter fallow, the maize yield significantly increased by 11.6% after 10 years of green manuring, and water storage in 0−200 cm soil profile significantly increased by 5.0−17.1% at maize seedling stage. The total N content in the soil layer at 0−90 cm increased by 15.8−19.7%, while the nitrate content in the deep soil layer (80−120 cm) decreased by 17.8−39.6%. Planting GM significantly increased the N recovery rate (10.4−32.7%) and fertilizer N partial productivity (4.6−13.3%). Additionally, the topsoil N functional genes (ammonia-oxidizing archaea amoA, ammonia-oxidizing bacterial amoA, nirS, nirK) significantly decreased without increasing N2O production potential. These results indicated that long-term planting of the deep-rooted GM effectively reduce the accumulation of nitrates in the deep soil and improve the crop yield and N use efficiencies, demonstrating a great value in green manuring to improve the fertility of the soil, increase the crop yield, and reduce the risk of N loss in NCP.
Collapse
Affiliation(s)
- Zonghui Hu
- College of Agricultural Science and Engineering, Hohai University, Nanjing 210098, China
| | - Qiu Zhao
- Tianjin Academy of Agricultural Sciences, Tianjin 300192, China
| | - Xinjian Zhang
- Tianjin Academy of Agricultural Sciences, Tianjin 300192, China
| | - Xiaoguang Ning
- Tianjin Academy of Agricultural Sciences, Tianjin 300192, China
| | - Hao Liang
- College of Agricultural Science and Engineering, Hohai University, Nanjing 210098, China
| | - Weidong Cao
- Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture and Rural Affairs/Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
15
|
Wang N, Li L, Gou M, Jian Z, Hu J, Chen H, Xiao W, Liu C. Living grass mulching improves soil enzyme activities through enhanced available nutrients in citrus orchards in subtropical China. FRONTIERS IN PLANT SCIENCE 2022; 13:1053009. [PMID: 36570917 PMCID: PMC9772056 DOI: 10.3389/fpls.2022.1053009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 11/21/2022] [Indexed: 06/17/2023]
Abstract
Living grass mulching (LGM) is an important orchard floor management that has been applied worldwide. Although LGM can effectively enhance soil nutrient availability and fertility, its effects on microbial-mediated soil nutrient cycling and main drivers are unclear. Meanwhile, the variation of enzyme activities and soil nutrient availability with LGM duration have been rarely studied. This study aims to explore the effects of mulching age and soil layer on enzyme activities and soil nutrients in citrus orchards. In this study, three LGM (Vicia villosa) treatments were applied, i.e., mulching for eight years, mulching for four years, and no mulching (clean tillage). Their effects on the enzyme activities and soil nutrients were analyzed in different soil layers of citrus orchards in subtropical China, i.e., 0-10, 10-20, and 20-40 cm. Compared to clean tillage, mulching for four years had fewer effects on enzyme activities and soil nutrients. In contrast, mulching for eight years significantly increased available nitrogen (N), phosphorus (P) nutrients, β-glucosidase, and cellobiohydrolase activities in the soil layer of 0-20 cm. In the soil layer of 0-40 cm, microbial biomass carbon (C), N, P, N-acetylglucosaminidase, leucine aminopeptidase, and acid phosphatase activities also increased (P < 0.05). Mulching for eight years significantly promoted C, N, and P-cycling enzyme activities and total enzyme activities by 2.45-6.07, 9.29-54.42, 4.42-7.11, and 5.32-14.91 times, respectively. Redundancy analysis shows that mulching treatments for eight and four years had soil layer-dependent positive effects on soil enzyme activities. Microbial C and P showed the most significant positive correlation with enzyme activities, followed by moisture content, organic C, and available N (P < 0.05). Available nutrients contributed almost 70% to affect enzyme activities significantly and were the main drivers of the enzyme activity variation. In summary, LGM could improve soil enzyme activities by increasing available nutrients. The promotion effect was more significant under mulching for eight years. Therefore, extending mulching age and improving nutrient availability are effective development strategies for sustainable soil management in orchard systems. Our study can provide valuable guidelines for the design and implementation of more sustainable management practices in citrus orchards.
Collapse
Affiliation(s)
- Na Wang
- Key Laboratory of Forest Ecology and Environment, Nation Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing, China
| | - Le Li
- Research Institute of Tropical Forestry, Chinese Academy of Forestry, Guangzhou, China
| | - Mengmeng Gou
- Key Laboratory of Forest Ecology and Environment, Nation Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing, China
- Co–Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Zunji Jian
- Key Laboratory of Forest Ecology and Environment, Nation Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing, China
| | - Jianwen Hu
- Key Laboratory of Forest Ecology and Environment, Nation Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing, China
| | - Huiling Chen
- Key Laboratory of Forest Ecology and Environment, Nation Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing, China
| | - Wenfa Xiao
- Key Laboratory of Forest Ecology and Environment, Nation Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing, China
- Co–Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Changfu Liu
- Key Laboratory of Forest Ecology and Environment, Nation Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing, China
- Co–Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| |
Collapse
|
16
|
Xiang X, Zhang J, Li G, Leng K, Sun L, Qin W, Peng C, Xu C, Liu J, Jiang Y. Positive feedback between peanut and arbuscular mycorrhizal fungi with the application of hairy vetch in Ultisol. Front Microbiol 2022; 13:1002459. [PMID: 36225353 PMCID: PMC9549289 DOI: 10.3389/fmicb.2022.1002459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 08/29/2022] [Indexed: 11/17/2022] Open
Abstract
Multiple agricultural practices are being applied to increase crop yield in order to overcome the food shortage. Green manure has emerged as an appropriate practice to improve soil fertility and crop yield. However, the potential functions of arbuscular mycorrhizal fungi (AMF) in the below-ground ecosystems following the application of green manure in Ultisols remain largely unexplored. In this study, qPCR and high-throughput sequencing were used to investigate the response of AMF abundance and communities in different treatment groups, i.e., control (without fertilization), mineral fertilization (NPK), mineral fertilization with returning peanut straw (NPKS), and with green manure (hairy vetch; NPKG). The NPKG treatment significantly increased soil fertility compared to other treatment groups. Compared with control, the NPK, NPKS, and NPKG treatments increased peanut yield by 12.3, 13.1, and 25.4%, respectively. NPKS and NPKG treatments significantly altered the AMF community composition decreased the AMF diversity and increased AMF abundance compared to the control. The AMF network of the NPKG treatment group showed the highest complexity and stability compared to other treatment groups. The structural equation modeling revealed that the application of hairy vetch improved soil nutrients and peanut yield by increasing the soil AMF abundance and network stability. Overall, the results suggested that the application of hairy vetch might trigger positive feedback between the peanut and AMF community, contributing to fertility and yield improvement in the dryland of Ultisol.
Collapse
Affiliation(s)
- Xingjia Xiang
- School of Resources and Environmental Engineering, Anhui University, Hefei, China
- Anhui Province Key Laboratory of Wetland Ecosystem Protection and Restoration, Hefei, China
| | - Jinyi Zhang
- School of Resources and Environmental Engineering, Anhui University, Hefei, China
- Anhui Province Key Laboratory of Wetland Ecosystem Protection and Restoration, Hefei, China
| | - Guilong Li
- Soil and Fertilizer and Resources and Environment Institute, Jiangxi Academy of Agricultural Sciences, Nanchang, China
- Key Laboratory of Acidified Soil Amelioration and Utilization, Ministry of Agriculture and Rural Affairs, Nanchang, China
| | - Ke Leng
- School of Resources and Environmental Engineering, Anhui University, Hefei, China
- Anhui Province Key Laboratory of Wetland Ecosystem Protection and Restoration, Hefei, China
| | - Luyuan Sun
- Soil and Fertilizer and Resources and Environment Institute, Jiangxi Academy of Agricultural Sciences, Nanchang, China
- Key Laboratory of Acidified Soil Amelioration and Utilization, Ministry of Agriculture and Rural Affairs, Nanchang, China
| | - Wenjing Qin
- Soil and Fertilizer and Resources and Environment Institute, Jiangxi Academy of Agricultural Sciences, Nanchang, China
- Key Laboratory of Acidified Soil Amelioration and Utilization, Ministry of Agriculture and Rural Affairs, Nanchang, China
| | - Chunrui Peng
- Soil and Fertilizer and Resources and Environment Institute, Jiangxi Academy of Agricultural Sciences, Nanchang, China
- Key Laboratory of Acidified Soil Amelioration and Utilization, Ministry of Agriculture and Rural Affairs, Nanchang, China
| | - Changxu Xu
- Soil and Fertilizer and Resources and Environment Institute, Jiangxi Academy of Agricultural Sciences, Nanchang, China
- Key Laboratory of Acidified Soil Amelioration and Utilization, Ministry of Agriculture and Rural Affairs, Nanchang, China
| | - Jia Liu
- Soil and Fertilizer and Resources and Environment Institute, Jiangxi Academy of Agricultural Sciences, Nanchang, China
- Key Laboratory of Acidified Soil Amelioration and Utilization, Ministry of Agriculture and Rural Affairs, Nanchang, China
| | - Yuji Jiang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
| |
Collapse
|