1
|
Liu Z, Liu X, Wang H, Man S, Yan Q. Ferrihydrite regulated nitrogen metabolic pathway at biocathode of bioelectrochemical system - Insight into biofilm formation and bacterial composition. BIORESOURCE TECHNOLOGY 2025; 424:132275. [PMID: 39986621 DOI: 10.1016/j.biortech.2025.132275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 02/10/2025] [Accepted: 02/19/2025] [Indexed: 02/24/2025]
Abstract
To further understand the nitrogen metabolism disrupted by anthropogenic activities, 2.5 g/L of ferrihydrite were added into cathodic chamber of bioelectrochemical system to expediate the nitrogen removal process. It was found that the nitrate removal constant was significantly improved and maintained at around 0.09 h-1 with ferrihydrite addition, while the control group maintained only at around 0.05 h-1. Besides, it seemed that the addition of ferrihydrite lead to less biomass accumulation but higher biofilm viability. Meanwhile, ferrihydrite selectively enriched OTUs capable of participating in both iron and nitrogen metabolism, relative abundance of OTU1631 (Thiobacillus) and OTU1467 (Comamonas granuli) was accordingly upped to 58.75 % and 5.11 %, respectively. Moreover, denitrification related genes were enhanced while genes related to nitrogen fixation, dissimilatory nitrate reduction, assimilatory nitrate reduction and nitrification were downregulated, further confirming the redirected electron transfer for the promotion of denitrification.
Collapse
Affiliation(s)
- Zeqi Liu
- School of Environment and Ecology, Jiangnan University, Wuxi 214122, China
| | - Xiaojie Liu
- Shanghai Urban Construction Vocational College, Shanghai 201415, China
| | - Han Wang
- School of Environment and Ecology, Jiangnan University, Wuxi 214122, China; Jiangsu Key Laboratory of Anaerobic Biotechnology, Wuxi 214122, China
| | - Shuaishuai Man
- School of Environment and Ecology, Jiangnan University, Wuxi 214122, China
| | - Qun Yan
- School of Environment and Ecology, Jiangnan University, Wuxi 214122, China; Jiangsu Key Laboratory of Anaerobic Biotechnology, Wuxi 214122, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou 215011, China.
| |
Collapse
|
2
|
Li D, Wei W, Xu W, Li C, Yang Y, Chu Z, Zheng B. The interactive application and impacts of iron/nitrogen biogeochemical cycling in distributed ponds for non-point source pollution control in a watershed. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 379:124797. [PMID: 40058038 DOI: 10.1016/j.jenvman.2025.124797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 02/27/2025] [Accepted: 03/01/2025] [Indexed: 03/22/2025]
Abstract
The linkages of distributed ponds are utilized in conjunction with one another to remediate non-point source (NPS) pollution in a water-scarce basin. This study provides an overview of a state-of-the-art thorough evaluation of ponds, which offers insight into the majority of topics covered by the ongoing scientific studies, including their various functions and factors affecting their functioning on the hydrological, physicochemical, and biological processes, such as environmental climate factors and basin-specific landscape configuration parameters, as well as process parameters for design, operation and management aspects. The linkages of ponds provide a variety of sustainable services (6R functions), such as resources, restoration, reduction, reuse, recycling, and recovery. The significance of regional environmental geochemical substrates in the ponds, such as red soil, as a hotspot for microbial reaction is emphasized to demonstrate the significant contribution of the migration and transformation of Fe/N cycles to the pollution removal process. In this review, 178 original research publications were thoroughly analyzed to improve our knowledge of the iron-nitrogen cycle in wetlands. From a molecular biology standpoint, the identification of functional microbe species and genes linked to microbially driven iron-nitrogen cycle activities is delved. Reliable data and homogeneous datasets from 42 studies were collected. The correlation analysis results demonstrated Feammox rates contributed to the N loss amount (r = 0.871; p < 0.01), and they had a positive correlation with Fe(III) concentration (r = 0.965; p < 0.01). The proposal for the treatment of NPS pollution by large-scale linkages of ponds in a basin involves optimizing Fe/N microbial processes to promote iron crystallization and efficient circulation of Fe(II) and Fe(III). The co-benefits of geochemistry, biotechnology, and environmental science should be considered when managing contamination in engineering applications. The linkages framework for integrated ponds, which incorporates macro (watershed management) and micro (biogeochemical cycle mechanism) investigations, provides a systematic approach to the application of integrated ponds and sustainable water management for NPS pollution control.
Collapse
Affiliation(s)
- Dan Li
- College of Urban Construction, Nanjing Tech University, Nanjing, 211816, China.
| | - Weiwei Wei
- State Environmental Protection Key Laboratory of Lake Pollution Control, National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Wenyi Xu
- Department of Soil and Environment, Swedish University of Agricultural Sciences (SLU), Lennart Hjelms väg 9, 75007, Uppsala, Sweden
| | - Chunhua Li
- State Environmental Protection Key Laboratory of Lake Pollution Control, National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Yinchuan Yang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Zhaosheng Chu
- State Environmental Protection Key Laboratory of Lake Pollution Control, National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Binghui Zheng
- State Environmental Protection Key Laboratory of Lake Pollution Control, National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| |
Collapse
|
3
|
Wang T, Zhang M, Jiang N, Jiang X, Li N, Lobo FL, Chen M, Wang X. Enhanced ammonium oxidation and iron cycle of Feammox under micro-oxygen condition. ENVIRONMENTAL RESEARCH 2025; 275:121443. [PMID: 40118323 DOI: 10.1016/j.envres.2025.121443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Revised: 03/18/2025] [Accepted: 03/19/2025] [Indexed: 03/23/2025]
Abstract
Autotrophic anaerobic ammonium oxidation coupled to Fe(III) reduction (Feammox) is a promising technology for treating low C/N wastewater. However, Feammox still faces bottlenecks of slow ammonium oxidation rate and the continuous supply of Fe(III) source. This study adopts micro-oxygen strategy to overcome these obstacles. Micro-oxygen increased the ammonium oxidation rate up to 5.7 times higher than under anaerobic condition, and drove the iron cycle in the form of vivianite [Fe(II)] and leucophosphite [Fe(III)]. Furthermore, it was confirmed that the ammonium oxidation in Feammox relies on ammonia monooxygenase (AMO), as evidenced by 10 times increase in the relative amo expression and 1.2 times increase in AMO activity under micro-oxygen compared to anaerobic condition. Additionally, this approach enhanced the growth and co-metabolism of functional bacteria. Long-term experiments demonstrated the sustainability of the Feammox system with iron cycle under micro-oxygen condition. These findings provide valuable insights into the practical application of Feammox process.
Collapse
Affiliation(s)
- Tuo Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin 300350, China
| | - Mou Zhang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin 300350, China
| | - Nana Jiang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin 300350, China
| | - Xinlei Jiang
- Tianjin Key Laboratory of Aquatic Science and Technology, School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin, 300384, China
| | - Nan Li
- School of Environmental Science and Engineering, Tianjin University, No. 92 Weijin Road, Nankai District, Tianjin, 300072, China
| | - Fernanda Leite Lobo
- Federal University of Ceará, Department of Hydraulic and Environmental Engineering, Brazil
| | - Mei Chen
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin 300350, China.
| | - Xin Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin 300350, China.
| |
Collapse
|
4
|
Zhu X, Zhang X, Gao B, Ji L, Zhao R, Wu P. A critical review of Mnammox coupled with the NDMO for innovative nitrogen removal. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175453. [PMID: 39137844 DOI: 10.1016/j.scitotenv.2024.175453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 08/08/2024] [Accepted: 08/09/2024] [Indexed: 08/15/2024]
Abstract
In the context of increasing global nitrogen pollution, traditional biological nitrogen removal technologies like nitrification and denitrification are hindered by high energy consumption. Additionally, the deployment of anaerobic ammonium oxidation (Anammox) technology is constrained due to the slow growth rate of Anammox bacteria and there is a bottleneck in nitrogen removal efficiency. To overcome these technical bottlenecks, researchers have discovered a revolutionary nitrogen removal technology that cleverly combines the redox cycling of manganese with nitrification and denitrification reactions. In this new process, manganese dependent anaerobic ammonium oxidation (Mnammox) bacteria can convert NH4+ to N2 under anaerobic conditions, while nitrate/nitrite dependent manganese oxidation (NDMO) bacteria use NO3-/NO2- as electron acceptors to oxidize Mn2+ to Mn4+. Mn4+ acts as an electron acceptor in Mnammox reaction, thereby realizing the autotrophic nitrogen removal process. This innovative method not only simplifies the steps of biological denitrification, but also significantly reduces the consumption of oxygen and organic carbon, providing a more efficient and environmentally friendly solution to the problem of nitrogen pollution. The article initially provides a concise overview of prevalent nitrogen removal technologies and the application of manganese in these processes, and discusses the role of manganese in biogeochemical cycles, including its discovery, mechanism of action, microbial communities involved, and its impact on these key factors in the process. Subsequently, metabolic principles, benefits, advantages, and environmental considerations of Mnammox coupled with the NDMO process are analyzed in detail. Finally, this article summarizes the shortcomings of current research and looks forward to future research directions. The goal of this article is to provide a valuable reference for researchers to fully understand the application of manganese in nitrogen removal processes.
Collapse
Affiliation(s)
- Xurui Zhu
- National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Xiaonong Zhang
- National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Bo Gao
- National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Luomiao Ji
- National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Rui Zhao
- National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Peng Wu
- National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China.
| |
Collapse
|
5
|
Kadam R, Kim M, Yang H, Jo S, Jun H, Park J. Magnetite addition reduces nitrite requirement for efficient anaerobic ammonium oxidation by facilitating mutualism of ANAMMOX and FEAMMOX bacteria. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 946:174497. [PMID: 38969131 DOI: 10.1016/j.scitotenv.2024.174497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 06/16/2024] [Accepted: 07/02/2024] [Indexed: 07/07/2024]
Abstract
Partial nitrification (PN) is crucial for anaerobic ammonium oxidation (ANAMMOX), but faces challenges such as high energy demands and process control. Recent research has highlighted additives like magnetite as potential alternatives to conventional electron acceptors (O₂ and NO₂-) for enhancing ammonium (NH4+) oxidation with lower energy consumption. This study investigated the effect of adding 50 mg/L of magnetite to ANAMMOX reactors, resulting in improved nitrogen (N) removal efficiency. The magnetite-added ANAMMOX (M-ANA) reactor yielded N removal efficiencies of 71 %, 66 %, and 57 % for NH4+:NO2- molar ratios of 1:1.3, 1:0.8, and 1:0.5, respectively. The M-ANA reactor operated under a 0.5 mol lower NO2- concentration achieved similar performance to the control ANAMMOX (C-ANA) reactor operated with a theoretical amount of NO2-. Moreover, the M-ANA reactor showed the potential to remove NH4+ by 56 % without any NO2- supplementation. Metagenomic analysis showed that the addition of magnetite significantly improved the relative abundance of microorganisms involved in the FEAMMOX reaction, such as Fimbriimonas ginsengisoli and Pseudomonas stutzeri. It also facilitated positive mutualism between ANAMMOX and FEAMMOX reactions. In addition, M-ANA granules exhibited a dense and compact structure compared with C-ANA, and the presence of magnetite facilitated the formation of resilient granules. Notably, the useful protein (Heme C) concentration and specific microbial activity in the M-ANA reactor were 1.3 and 2.2 times higher than those in the C-ANA reactor. Overall, the results demonstrate that an appropriate amount of magnetite can enhance the N removal efficiency while reducing the energy input requirements and associated carbon emissions. These findings can guide the future development of carbon- and energy-neutral N removal processes.
Collapse
Affiliation(s)
- Rahul Kadam
- Department of Advanced Energy Engineering, Chosun University, Gwangju 61457, Republic of Korea
| | - Minji Kim
- Department of Environmental Engineering, Chungbuk National University, Cheongju 28644, Republic of Korea
| | - Hyeonmyeong Yang
- Department of Environmental Engineering, Chungbuk National University, Cheongju 28644, Republic of Korea
| | - Sangyeol Jo
- Department of Advanced Energy Engineering, Chosun University, Gwangju 61457, Republic of Korea
| | - Hangbae Jun
- Department of Environmental Engineering, Chungbuk National University, Cheongju 28644, Republic of Korea
| | - Jungyu Park
- Department of Advanced Energy Engineering, Chosun University, Gwangju 61457, Republic of Korea.
| |
Collapse
|
6
|
Ma D, Wang J, Fang J, Jiang Y, Yue Z. Asynchronous characteristics of Feammox and iron reduction from paddy soils in Southern China. ENVIRONMENTAL RESEARCH 2024; 252:118843. [PMID: 38582429 DOI: 10.1016/j.envres.2024.118843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 03/25/2024] [Accepted: 03/29/2024] [Indexed: 04/08/2024]
Abstract
Recently, the newly discovered anaerobic ammonium oxidation coupled with iron reduction (i.e., Feammox) has been proven to be a widespread nitrogen (N) loss pathway in ecosystems and has an essential contribution to gaseous N loss in paddy soil. However, the mechanism of iron-nitrogen coupling transformation and the role of iron-reducing bacteria (IRB) in Feammox were poorly understood. This study investigated the Feammox and iron reduction changes and microbial community evolution in a long-term anaerobic incubation by 15N isotope labeling combined with molecular biological techniques. The average rates of Feammox and iron reduction during the whole incubation were 0.25 ± 0.04 μg N g-1 d-1 and 40.58 ± 3.28 μg Fe g-1 d-1, respectively. High iron oxide content increased the Feammox rate, but decreased the proportion of Feammox-N2 in three Feammox pathways. RBG-13-54-9, Brevundimonas, and Pelomonas played a vital role in the evolution of microbial communities. The characteristics of asynchronous changes between Feammox and iron reduction were found through long-term incubation. IRB might not be the key species directly driving Feammox, and it is necessary to reevaluate the role of IRB in Feammox process.
Collapse
Affiliation(s)
- Ding Ma
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, Anhui 230009, China; Anhui Engineering Research Center of Industrial Wastewater Treatment and Resource Recovery, Hefei University of Technology, Hefei, Anhui 230009, China; Key Laboratory of Nanominerals and Pollution Control of Anhui Higher Education Institutes, Hefei University of Technology, Hefei, Anhui 230009, China
| | - Jin Wang
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, Anhui 230009, China; Anhui Engineering Research Center of Industrial Wastewater Treatment and Resource Recovery, Hefei University of Technology, Hefei, Anhui 230009, China; Key Laboratory of Nanominerals and Pollution Control of Anhui Higher Education Institutes, Hefei University of Technology, Hefei, Anhui 230009, China
| | - Jintao Fang
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, Anhui 230009, China
| | - Yifan Jiang
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, Anhui 230009, China
| | - Zhengbo Yue
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, Anhui 230009, China; Anhui Engineering Research Center of Industrial Wastewater Treatment and Resource Recovery, Hefei University of Technology, Hefei, Anhui 230009, China; Key Laboratory of Nanominerals and Pollution Control of Anhui Higher Education Institutes, Hefei University of Technology, Hefei, Anhui 230009, China.
| |
Collapse
|
7
|
Cerda Á, Rodríguez C, González M, González H, Serrano J, Leiva E. Feammox bacterial biofilm formation in HFMB. CHEMOSPHERE 2024; 358:142072. [PMID: 38657691 DOI: 10.1016/j.chemosphere.2024.142072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 04/08/2024] [Accepted: 04/16/2024] [Indexed: 04/26/2024]
Abstract
Nitrogen pollution has been increasing with the development of industrialization. Consequently, the excessive deposition of reactive nitrogen in the environment has generated the loss of biodiversity and eutrophication of different ecosystems. In 2005, a Feammox process was discovered that anaerobically metabolizes ammonium. Feammox with the use of hollow fiber membrane bioreactors (HFMB), based on the formation of biofilms of bacterial communities, has emerged as a possible efficient and sustainable method for ammonium removal in environments with high iron concentrations. This work sought to study the possibility of implementing, at laboratory scale, an efficient method by evaluating the use of HFMB. Samples from an internal circulation reactor (IC) incubated in culture media for Feammox bacteria. The cultures were enriched in a batch reactor to evaluate growth conditions. Next, HFMB assembly was performed, and Feammox parameters were monitored. Also, conventional PCR and scanning electron microscopy (SEM) analysis were performed to characterize the bacterial communities associated with biofilm formation. The use of sodium acetate presented the best performance for Feammox activity. The HFMB operation showed an ammonium (NH4+) removal of 50%. SEM analysis of the fibers illustrated the formation of biofilm networks formed by bacteria, which were identified as Albidiferax ferrireducens, Geobacter spp, Ferrovum myxofaciens, Shewanella spp., and Anammox. Functional genes Archaea/Bacteria ammonia monooxygenase, nrxA, hzsB, nirS and nosZ were also identified. The implementation of HFMB Feammox could be used as a sustainable tool for the removal of ammonium from wastewater produced because of anthropogenic activities.
Collapse
Affiliation(s)
- Ámbar Cerda
- Departamento de Química Inorgánica, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Avenida Vicuña Mackenna 4860, Macul, 7820436, Santiago, Chile.
| | - Carolina Rodríguez
- Departamento de Química Inorgánica, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Avenida Vicuña Mackenna 4860, Macul, 7820436, Santiago, Chile.
| | - Macarena González
- Departamento de Química Inorgánica, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Avenida Vicuña Mackenna 4860, Macul, 7820436, Santiago, Chile.
| | - Heylin González
- Departamento de Ingeniería Hidráulica y Ambiental, Pontificia Universidad Católica de Chile, Avenida Vicuña Mackenna 4860, Macul, 7820436, Santiago, Chile.
| | - Jennyfer Serrano
- Escuela de Biotecnología, Universidad Mayor, Camino La Pirámide 5750, Huechuraba, Santiago 8580745, Chile.
| | - Eduardo Leiva
- Departamento de Química Inorgánica, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Avenida Vicuña Mackenna 4860, Macul, 7820436, Santiago, Chile; Departamento de Ingeniería Hidráulica y Ambiental, Pontificia Universidad Católica de Chile, Avenida Vicuña Mackenna 4860, Macul, 7820436, Santiago, Chile.
| |
Collapse
|
8
|
Xiu W, Gai R, Chen S, Ren C, Lloyd JR, Bassil NM, Nixon SL, Polya DA, Hou S, Guo H. Ammonium-Enhanced Arsenic Mobilization from Aquifer Sediments. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024. [PMID: 38317381 DOI: 10.1021/acs.est.3c09640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
Ammonium-related pathways are important for groundwater arsenic (As) enrichment, especially via microbial Fe(III) reduction coupled with anaerobic ammonium oxidation; however, the key pathways (and microorganisms) underpinning ammonium-induced Fe(III) reduction and their contributions to As mobilization in groundwater are still unknown. To address this gap, aquifer sediments hosting high As groundwater from the western Hetao Basin were incubated with 15N-labeled ammonium and external organic carbon sources (including glucose, lactate, and lactate/acetate). Decreases in ammonium concentrations were positively correlated with increases in the total produced Fe(II) (Fe(II)tot) and released As. The molar ratios of Fe(II)tot to oxidized ammonium ranged from 3.1 to 3.7 for all incubations, and the δ15N values of N2 from the headspace increased in 15N-labeled ammonium-treated series, suggesting N2 as the key end product of ammonium oxidation. The addition of ammonium increased the As release by 16.1% to 49.6%, which was more pronounced when copresented with organic electron donors. Genome-resolved metagenomic analyses (326 good-quality MAGs) suggested that ammonium-induced Fe(III) reduction in this system required syntrophic metabolic interactions between bacterial Fe(III) reduction and archaeal ammonium oxidation. The current results highlight the significance of syntrophic ammonium-stimulated Fe(III) reduction in driving As mobilization, which is underestimated in high As groundwater.
Collapse
Affiliation(s)
- Wei Xiu
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing 100083, PR China
- Institute of Earth sciences, China University of Geosciences (Beijing), Beijing 100083, PR China
- MWR Key Laboratory of Groundwater Conservation and School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing 100083, PR China
- Williamson Research Centre for Molecular Environmental Science, School of Earth and Environmental Sciences, The University of Manchester, Manchester M13 9PL, United Kingdom
| | - Ruixuan Gai
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing 100083, PR China
- Institute of Earth sciences, China University of Geosciences (Beijing), Beijing 100083, PR China
| | - Songze Chen
- Shenzhen Ecological and Environmental Monitoring Center of Guangdong Province, Shenzhen 518049, China
- Shenzhen Key Laboratory of Marine Archaea Geo-Omics, Department of Ocean Science and Department of Ocean Science & Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Cui Ren
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing 100083, PR China
- MWR Key Laboratory of Groundwater Conservation and School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing 100083, PR China
| | - Jonathan R Lloyd
- Williamson Research Centre for Molecular Environmental Science, School of Earth and Environmental Sciences, The University of Manchester, Manchester M13 9PL, United Kingdom
| | - Naji M Bassil
- Williamson Research Centre for Molecular Environmental Science, School of Earth and Environmental Sciences, The University of Manchester, Manchester M13 9PL, United Kingdom
| | - Sophie L Nixon
- Williamson Research Centre for Molecular Environmental Science, School of Earth and Environmental Sciences, The University of Manchester, Manchester M13 9PL, United Kingdom
- Manchester Institute of Biotechnology, The University of Manchester, Manchester M1 7DN, U.K
| | - David A Polya
- Williamson Research Centre for Molecular Environmental Science, School of Earth and Environmental Sciences, The University of Manchester, Manchester M13 9PL, United Kingdom
| | - Shengwei Hou
- Shenzhen Key Laboratory of Marine Archaea Geo-Omics, Department of Ocean Science and Department of Ocean Science & Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Huaming Guo
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing 100083, PR China
- MWR Key Laboratory of Groundwater Conservation and School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing 100083, PR China
| |
Collapse
|
9
|
Chen J, Hu G, Liu J, Poulain AJ, Pu Q, Huang R, Meng B, Feng X. The divergent effects of nitrate and ammonium application on mercury methylation, demethylation, and reduction in flooded paddy slurries. JOURNAL OF HAZARDOUS MATERIALS 2023; 460:132457. [PMID: 37669605 DOI: 10.1016/j.jhazmat.2023.132457] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 07/30/2023] [Accepted: 08/30/2023] [Indexed: 09/07/2023]
Abstract
The production of methylmercury (MeHg) in flooded paddy fields determines its accumulation in rice grains; this, in turn, results in MeHg exposure risks for not only rice-eating humans but also wildlife. Nitrogen (N) fertilizers have been widely applied in rice cultivation fields to supply essential nutrients. However, the effects of N fertilizer addition on mercury (Hg) transformations are not unclear. This limits our understanding of MeHg formation in rice paddy ecosystems. In this study, we spiked three Hg tracers (200HgII, Me198Hg, and 202Hg0) in paddy slurries fertilized with urea, ammonium, and nitrate. The influences of N fertilization on Hg methylation, demethylation, and reduction and the underlying mechanisms were elucidated. The results revealed that dissimilatory nitrate reduction was the dominant process in the incubated paddy slurries. Nitrate addition inhibited HgII reduction, HgII methylation, and MeHg demethylation. Competition between nitrates and other electron acceptors (e.g., HgII, sulfate, or carbon dioxide) under dark conditions was the mechanism underlying nitrate-regulated Hg transformation. Ammonium and urea additions promoted HgII reduction, and anaerobic ammonium oxidation coupled with HgII reduction (Hgammox) was likely the reason. This work highlighted that nitrate addition not only inhibited HgII methylation but also reduced the demethylation of MeHg and therefore may generate more accumulation of MeHg in the incubated paddy slurries. Findings from this study link the biogeochemical cycling of N and Hg and provide crucial knowledge for assessing Hg risks in intermittently flooded wetland ecosystems.
Collapse
Affiliation(s)
- Ji Chen
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, China; State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Gongren Hu
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, China
| | - Jiang Liu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Alexandre J Poulain
- Biology Department, University of Ottawa, 30 Marie Curie, Ottawa, ON K1N 6N5, Canada
| | - Qiang Pu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Rong Huang
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China
| | - Bo Meng
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China.
| | - Xinbin Feng
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| |
Collapse
|
10
|
Bai B, Zhang L, Dong H, Huang Y. Coupled Fe(III) reduction and phenanthrene degradation by marine-derived Kocuria oceani FXJ8.057 under aerobic condition. JOURNAL OF HAZARDOUS MATERIALS 2023; 459:132237. [PMID: 37595472 DOI: 10.1016/j.jhazmat.2023.132237] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 06/29/2023] [Accepted: 08/04/2023] [Indexed: 08/20/2023]
Abstract
Diverse aerobic actinobacteria possess the capacity to degrade polycyclic aromatic hydrocarbons (PAHs) and have recently been shown to reduce Fe(III). However, the coupling of the two processes under oxic conditions remains unclear. Here, the co-metabolism of phenanthrene (PHE) and Fe(III) by marine-derived Kocuria oceani FXJ8.057 was realized under aerobic condition. In the presence of both PHE and Fe(III), the rates of PHE degradation (83.91 %) and Fe(III) reduction (50.00 %) were synchronously enhanced, compared to those with PHE (67.34 %) or Fe(III) (38.00 %) alone. Transcriptome analysis detected upregulation of PHE biodegradation and riboflavin biosynthesis in the strain cultured with both PHE and Fe(III) compared to that with PHE alone. Metabolite analysis indicated that, with the addition of Fe(III), the strain could efficiently degrade PHE via three pathways. Moreover, the strain secreted riboflavin, which acted as a shuttle to promote electron transfer from PHE to Fe(III). It also secreted organic acids that could delay Fe(II) reoxidation. Finally, H2O2 secreted by the strain caused extracellular Fenton reaction to generate •OH, which also played a minor role in the PHE degradation. These findings provide the first example of an aerobic bacterium that couples PAH degradation to Fe(III) reduction and extend our understanding of Fe(III)-reducing microorganisms.
Collapse
Affiliation(s)
- Bingbing Bai
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Limin Zhang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China.
| | - Hailiang Dong
- Center for Geomicrobiology and Biogeochemistry Research, State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing 100083, China
| | - Ying Huang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
11
|
Jiang Y, Chen Y, Wang Y, Chen X, Zhou X, Qing K, Cao W, Zhang Y. Novel insight into the inhibitory effects and mechanisms of Fe(II)-mediated multi-metabolism in anaerobic ammonium oxidation (anammox). WATER RESEARCH 2023; 242:120291. [PMID: 37413747 DOI: 10.1016/j.watres.2023.120291] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 05/23/2023] [Accepted: 06/28/2023] [Indexed: 07/08/2023]
Abstract
Fe(II) participates in complex Fe-N cycles and effects on the microbial metabolism in the anaerobic ammonium oxidation (anammox) dominated system. In this study, the inhibitory effects and mechanisms of Fe(II)-mediated multi-metabolism in anammox were revealed, and the potential role of Fe(II) in the nitrogen cycle was evaluated. The results showed that the long-term accumulation of high Fe(II) concentrations (70-80 mg/L) led to a hysteretic inhibition of anammox. High Fe(II) concentrations induced the generation of high levels of intracellular ·O2-, whereas the antioxidant capacity was insufficient to eliminate the excess ·O2-, thus causing ferroptosis to anammox cells. In addition, Fe(II) was oxidized via nitrate-dependent anaerobic ferrous-oxidation (NAFO) process, and mineralized to coquimbite and phosphosiderite. They formed crusts on the surface of the sludge, leading to mass transfer obstruction. The results of the microbial analysis showed that the addition of appropriate Fe(II) increased the abundance of Candidatus Kuenenia, and served as a potential electron donor to enrich Denitratisoma, promoting anammox and NAFO coupled with nitrogen removal, while high Fe(II) concentrations reduced the enrichment level. In this study, the understanding of Fe(II)-mediated multi-metabolism in the nitrogen cycle was deepened, providing the basis for the development of Fe(II)-based anammox technologies.
Collapse
Affiliation(s)
- Yushi Jiang
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystem, College of the Environment & Ecology, Xiamen University, Xiamen, Fujian Province, 361102, China
| | - Yuqi Chen
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystem, College of the Environment & Ecology, Xiamen University, Xiamen, Fujian Province, 361102, China
| | - Ying Wang
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystem, College of the Environment & Ecology, Xiamen University, Xiamen, Fujian Province, 361102, China
| | - Xueming Chen
- Fujian Provincial Engineering Research Center of Rural Waste Recycling Technology, College of Environment and Safety Engineering, Fuzhou University, Fuzhou 350116, China
| | - Xuanfan Zhou
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystem, College of the Environment & Ecology, Xiamen University, Xiamen, Fujian Province, 361102, China
| | - Kexin Qing
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystem, College of the Environment & Ecology, Xiamen University, Xiamen, Fujian Province, 361102, China
| | - Wenzhi Cao
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystem, College of the Environment & Ecology, Xiamen University, Xiamen, Fujian Province, 361102, China
| | - Yanlong Zhang
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystem, College of the Environment & Ecology, Xiamen University, Xiamen, Fujian Province, 361102, China; Fujian Key Laboratory of Coastal Pollution Prevention and Control (CPPC), College of Environment and Ecology, Xiamen University, Xiamen, Fujian Province, 361102, China.
| |
Collapse
|
12
|
Wang G, Li B, Zhang Y. Ammonia-mediated iron cycle for oxidizing agent activation in advanced oxidation process. WATER RESEARCH 2023; 242:120295. [PMID: 37429134 DOI: 10.1016/j.watres.2023.120295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 06/25/2023] [Accepted: 06/30/2023] [Indexed: 07/12/2023]
Abstract
Removing ammonia (NH4+-N) and recalcitrant organics from low carbon/nitrogen wastewater requires a large amount of chemical reagents and energy. This work reports a new advanced oxidation process to remove recalcitrant organics with the assistant of NH4+-N in low carbon/nitrogen wastewater. Specifically, NH4+-N in wastewater mediated Fe(II)/Fe(III) cycle for the activation of oxidation reagent (e.g., H2O2) (ammonia-mediated AOP) to improve the removal of recalcitrant organics. In ammonia-mediated AOP, NH4+-N, recalcitrant organics, and PO4-P in wastewater were removed by 88.2%, 80.5% and 84%, respectively, with a low H2O2 consuming of only 5 mg/L. The removal efficiency of recalcitrant organics in the ammonia-mediated AOP increased as the concentration of NH4+-N in wastewater increased. Recalcitrant organics can be removed with an efficiency of 74∼82%, when the influent pH was 6∼6.8. This work provides a new and cost-effective approach to drive the iron cycle in Fenton treatment using NH4+-N from wastewater as mediator.
Collapse
Affiliation(s)
- Guan Wang
- Department of Environmental and Resource Engineering, Technical University of Denmark, Lyngby DK-2800, Denmark
| | - Biao Li
- Department of Environmental and Resource Engineering, Technical University of Denmark, Lyngby DK-2800, Denmark
| | - Yifeng Zhang
- Department of Environmental and Resource Engineering, Technical University of Denmark, Lyngby DK-2800, Denmark.
| |
Collapse
|
13
|
Effects of reducing, stabilizing, and antibiotic agents on "Candidatus Kuenenia stuttgartiensis". Appl Microbiol Biotechnol 2023; 107:1829-1843. [PMID: 36752812 PMCID: PMC10006275 DOI: 10.1007/s00253-023-12375-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/05/2023] [Accepted: 01/09/2023] [Indexed: 02/09/2023]
Abstract
Anaerobic ammon ium oxidizing (anammox) bacteria oxidize ammonium and reduce nitrite, producing N2, and could play a major role in energy-optimized wastewater treatment. However, sensitivity to various environmental conditions and slow growth currently hinder their wide application. Here, we attempted to determine online the effect of environmental stresses on anammox bacteria by using an overnight batch activity test with whole cells, in which anammox activity was calculated by quantifying N2 production via headspace-pressure monitoring. A planktonic mixed culture dominated by "Candidatus Kuenenia stuttgartiensis" strain CSTR1 was cultivated in a 30-L semi-continuous stirring tank reactor. In overnight resting-cell anammox activity tests, oxygen caused strong inhibition of anammox activity, which was reversed by sodium sulfite (30 µM). The tested antibiotics sulfamethoxazole, kanamycin, and ciprofloxacin elicited their effect on a dose-dependent manner; however, strain CSTR1 was highly resistant to sulfamethoxazole. Anammox activity was improved by activated carbon and Fe2O3. Protein expression analysis from resting cells after anammox activity stimulation revealed that NapC/NirT family cytochrome c (KsCSTR_12840), hydrazine synthase, hydrazine dehydrogenase, hydroxylamine oxidase, and nitrate:nitrite oxidoreductase were upregulated, while a putative hydroxylamine oxidoreductase HAO (KsCSTR_49490) was downregulated. These findings contribute to the growing knowledge on anammox bacteria physiology, eventually leading to the control of anammox bacteria growth and activity in real-world application. KEY POINTS: • Sulfite additions can reverse oxygen inhibition of the anammox process • Anammox activity was improved by activated carbon and ferric oxide • Sulfamethoxazole marginally affected anammox activity.
Collapse
|
14
|
Chen M, Mei H, Qin H, Yang X, Guo F, Chen Y. Pyrite coupled with biochar alleviating the toxicity of silver nanoparticles on pollutants removal in constructed wetlands. ENVIRONMENTAL RESEARCH 2023; 219:115074. [PMID: 36528047 DOI: 10.1016/j.envres.2022.115074] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 12/06/2022] [Accepted: 12/13/2022] [Indexed: 06/17/2023]
Abstract
Silver nanoparticles (AgNPs) has been widely detected in the substrates of constructed wetlands (CWs), posing threaten to pollutants removal efficiency of CWs. However, the way to alleviate the toxicity of AgNPs on CWs is unclear. In this study, the gravel (GR), biochar (BC), pyrite (PY) and pyrite coupled with biochar matrix (PYBC) were selected as substrates to restore the pollutants removal efficiency of CWs under the exposure to the environment (0.2 mg/L) and accumulation (10 mg/L) concentration of AgNPs. Results showed that the BC and PY showed limited mitigation effects, while the PYBC alleviated the toxicity significantly. Especially in the exposure to the accumulation concentration of AgNPs, the removal of NH4+-N, TN, COD and TP in the PYBC were 10.2%, 8.3%, 9.4% and 10.7% higher than that in the GR, respectively. Mechanism analysis verified that AgNPs were transformed into Ag-Fe-S core shell aggregates (size >200 nm) decreasing bioavailability and the damage to cytomembrane. The PYBC restored the nitrogen removal efficiency by increasing the abundance of Nitrospira and Geothrix, which these bacteria were defined as nitrifiers and Feammox bacteria. This study provides a promising strategy to mitigate AgNPs' toxicity on the pollutant removal efficiency in CWs.
Collapse
Affiliation(s)
- Mengli Chen
- College of Environment and Ecology, Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, China
| | - Han Mei
- College of Environment and Ecology, Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, China
| | - Hao Qin
- College of Environment and Ecology, Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, China
| | - Xiangyu Yang
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Fucheng Guo
- College of Environment and Ecology, Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, China
| | - Yi Chen
- College of Environment and Ecology, Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, China.
| |
Collapse
|
15
|
Xia Q, Ai Z, Huang W, Yang F, Liu F, Lei Z, Huang W. Recent progress in applications of Feammox technology for nitrogen removal from wastewaters: A review. BIORESOURCE TECHNOLOGY 2022; 362:127868. [PMID: 36049707 DOI: 10.1016/j.biortech.2022.127868] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 08/24/2022] [Accepted: 08/25/2022] [Indexed: 06/15/2023]
Abstract
Feammox process is crucial for the global nitrogen cycle and has great potentials for the treatment of low COD/NH4+-N wastewaters. This work provides a systematic and comprehensive overview of the Feammox process. Specifically, underlying mechanisms and functional microbes mediating the Feammox process are summarized in detail. And key influencing factors including pH, temperature, dissolved oxygen, organic carbon, source of Fe(III) as well as various electron shuttles are discussed. Additionally, recent development trends and attempts of the Feammox technology in wastewater treatment applications are reviewed, and perspectives for future development are presented. A thorough review of the recent progress in Feammox process is expected to provide valuable information for further process optimization, which is helpful to achieve a more economical operation and better nitrogen removal performance in future field applications.
Collapse
Affiliation(s)
- Qing Xia
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, College of Ecology and Environment, Hainan University, 58 Renmin Avenue, Meilan District, Haikou 570228, China
| | - Ziyin Ai
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, College of Ecology and Environment, Hainan University, 58 Renmin Avenue, Meilan District, Haikou 570228, China
| | - Wenli Huang
- MOE Key Laboratory of Pollution Process and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, No. 94 Weijin Road, Nankai District, Tianjin 300071, China
| | - Fei Yang
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, College of Ecology and Environment, Hainan University, 58 Renmin Avenue, Meilan District, Haikou 570228, China
| | - Fei Liu
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, College of Ecology and Environment, Hainan University, 58 Renmin Avenue, Meilan District, Haikou 570228, China
| | - Zhongfang Lei
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Weiwei Huang
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, College of Ecology and Environment, Hainan University, 58 Renmin Avenue, Meilan District, Haikou 570228, China.
| |
Collapse
|
16
|
Liao T, Wang S, Stüeken EE, Luo H. Phylogenomic Evidence for the Origin of Obligate Anaerobic Anammox Bacteria Around the Great Oxidation Event. Mol Biol Evol 2022; 39:msac170. [PMID: 35920138 PMCID: PMC9387917 DOI: 10.1093/molbev/msac170] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
The anaerobic ammonium oxidation (anammox) bacteria can transform ammonium and nitrite to dinitrogen gas, and this obligate anaerobic process accounts for up to half of the global nitrogen loss in surface environments. Yet its origin and evolution, which may give important insights into the biogeochemistry of early Earth, remain enigmatic. Here, we performed a comprehensive phylogenomic and molecular clock analysis of anammox bacteria within the phylum Planctomycetes. After accommodating the uncertainties and factors influencing time estimates, which include implementing both a traditional cyanobacteria-based and a recently developed mitochondria-based molecular dating approach, we estimated a consistent origin of anammox bacteria at early Proterozoic and most likely around the so-called Great Oxidation Event (GOE; 2.32-2.5 Ga) which fundamentally changed global biogeochemical cycles. We further showed that during the origin of anammox bacteria, genes involved in oxidative stress adaptation, bioenergetics, and anammox granules formation were recruited, which might have contributed to their survival on an increasingly oxic Earth. Our findings suggest the rising levels of atmospheric oxygen, which made nitrite increasingly available, was a potential driving force for the emergence of anammox bacteria. This is one of the first studies that link the GOE to the evolution of obligate anaerobic bacteria.
Collapse
Affiliation(s)
- Tianhua Liao
- Simon F. S. Li Marine Science Laboratory, School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR 999077, China
| | - Sishuo Wang
- Simon F. S. Li Marine Science Laboratory, School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR 999077, China
| | - Eva E Stüeken
- School of Earth and Environmental Sciences and Centre for Exoplanet Science, University of St Andrews, Bute Building, Queen’s Terrace KY16 9TS, United Kingdom
| | - Haiwei Luo
- Simon F. S. Li Marine Science Laboratory, School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR 999077, China
| |
Collapse
|
17
|
Xiu W, Wu M, Nixon SL, Lloyd JR, Bassil NM, Gai R, Zhang T, Su Z, Guo H. Genome-Resolved Metagenomic Analysis of Groundwater: Insights into Arsenic Mobilization in Biogeochemical Interaction Networks. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:10105-10119. [PMID: 35763428 DOI: 10.1021/acs.est.2c02623] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
High-arsenic (As) groundwaters, a worldwide issue, are critically controlled by multiple interconnected biogeochemical processes. However, there is limited information on the complex biogeochemical interaction networks that cause groundwater As enrichment in aquifer systems. The western Hetao basin was selected as a study area to address this knowledge gap, offering an aquifer system where groundwater flows from an oxidizing proximal fan (low dissolved As) to a reducing flat plain (high dissolved As). The key microbial interaction networks underpinning the biogeochemical pathways responsible for As mobilization along the groundwater flow path were characterized by genome-resolved metagenomic analysis. Genes associated with microbial Fe(II) oxidation and dissimilatory nitrate reduction were noted in the proximal fan, suggesting the importance of nitrate-dependent Fe(II) oxidation in immobilizing As. However, genes catalyzing microbial Fe(III) reduction (omcS) and As(V) detoxification (arsC) were highlighted in groundwater samples downgradient flow path, inferring that reductive dissolution of As-bearing Fe(III) (oxyhydr)oxides mobilized As(V), followed by enzymatic reduction to As(III). Genes associated with ammonium oxidation (hzsABC and hdh) were also positively correlated with Fe(III) reduction (omcS), suggesting a role for the Feammox process in driving As mobilization. The current study illustrates how genomic sequencing tools can help dissect complex biogeochemical systems, and strengthen biogeochemical models that capture key aspects of groundwater As enrichment.
Collapse
Affiliation(s)
- Wei Xiu
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing 100083, P. R. China
- Institute of Earth sciences, China University of Geosciences (Beijing), Beijing 100083, P. R. China
- School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing 100083, P. R. China
- Williamson Research Centre for Molecular Environmental Science, Department of Earth and Environmental Sciences, The University of Manchester, Manchester M13 9PL, U.K
| | - Min Wu
- Williamson Research Centre for Molecular Environmental Science, Department of Earth and Environmental Sciences, The University of Manchester, Manchester M13 9PL, U.K
| | - Sophie L Nixon
- Manchester Institute of Biotechnology, The University of Manchester, Manchester M1 7DN, U.K
- Williamson Research Centre for Molecular Environmental Science, Department of Earth and Environmental Sciences, The University of Manchester, Manchester M13 9PL, U.K
| | - Jonathan R Lloyd
- Williamson Research Centre for Molecular Environmental Science, Department of Earth and Environmental Sciences, The University of Manchester, Manchester M13 9PL, U.K
| | - Naji M Bassil
- Williamson Research Centre for Molecular Environmental Science, Department of Earth and Environmental Sciences, The University of Manchester, Manchester M13 9PL, U.K
| | - Ruixuan Gai
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing 100083, P. R. China
- Institute of Earth sciences, China University of Geosciences (Beijing), Beijing 100083, P. R. China
| | - Tianjing Zhang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing 100083, P. R. China
- Institute of Earth sciences, China University of Geosciences (Beijing), Beijing 100083, P. R. China
| | - Zhan Su
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing 100083, P. R. China
- Institute of Earth sciences, China University of Geosciences (Beijing), Beijing 100083, P. R. China
| | - Huaming Guo
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing 100083, P. R. China
- School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing 100083, P. R. China
| |
Collapse
|