1
|
Du L, Guo W, Zhang X, Yue J, Li D, Li J, Baeyens W, Gao Y. Fate of bisphenol A and nonylphenol in the lake riparian zone: Distribution, transport, and microbial response. JOURNAL OF HAZARDOUS MATERIALS 2025; 483:136662. [PMID: 39608069 DOI: 10.1016/j.jhazmat.2024.136662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 11/11/2024] [Accepted: 11/24/2024] [Indexed: 11/30/2024]
Abstract
The lake riparian zone (LRZ) is a key area of material circulation between terrestrial and aquatic ecosystems. However, the exchange of endocrine disrupting compounds (EDCs) in this area is still unknown. Thus, in this study, the distribution, convection and microbial response of two typical EDCs, bisphenol A (BPA) and nonylphenol (NP), in submerged (SS) and temporarily flooded sediment (FS) of LRZ were investigated by in-situ diffusive gradients in thin films technology. Concentrations of BPA (11.07 ± 2.49 μg/kg) and NP (20.42 ± 8.23 μg/kg) in FS significantly fluctuated with depth, conversely, their concentrations in SS increased steadily with depth (BPA: 14.01 ∼ 74.76 μg/kg; NP: 14.14 ∼ 137.01 μg/kg). BPA and NP dynamics analysis based on the DIFS (DGT-induced fluxes in sediments) model and fugacity fraction showed the water-sediment exchange capacity of BPA and NP in SS was on average 2-3 times higher than in FS. Some bacterial genera involved in nitrogen metabolism can effectively transform BPA and NP, such as Pseudomonas, Novosphingobium, and Sphingomonas, which are more active in oxygenic FS than in hypoxic SS. Considering this evidence as well as an increasing EDCs pollution, the behavior and quantification of EDCs at the water-sediment interface of the LRZ merits a further investigation.
Collapse
Affiliation(s)
- Linzhu Du
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing 100124, China
| | - Wei Guo
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing 100124, China.
| | - Xinyou Zhang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing 100124, China
| | - Junhui Yue
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing 100124, China
| | - Dongyue Li
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing 100124, China
| | - Jun Li
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing 100124, China
| | - Willy Baeyens
- Analytical, Environmental and Geochemistry (AMGC), Vrije Universiteit Brussel (VUB), 1050, Belgium
| | - Yue Gao
- Analytical, Environmental and Geochemistry (AMGC), Vrije Universiteit Brussel (VUB), 1050, Belgium.
| |
Collapse
|
2
|
Mohamed DFMS, Tarafdar A, Lee SY, Oh HB, Kwon JH. Assessment of biodegradation and toxicity of alternative plasticizer di(2-ethylhexyl) terephthalate: Impacts on microbial biofilms, metabolism, and reactive oxygen species-mediated stress response. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 355:124217. [PMID: 38797346 DOI: 10.1016/j.envpol.2024.124217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 05/04/2024] [Accepted: 05/23/2024] [Indexed: 05/29/2024]
Abstract
Although di(2-ethylhexyl) terephthalate (DOTP) is being widely adopted as a non-phthalate plasticizer, existing research primarily focuses on human and rat toxicity. This leaves a significant gap in our understanding of their impact on microbial communities. This study assessed the biodegradation and toxicity of DOTP on microbes, focusing on its impact on biofilms and microbial metabolism using Rhodococcus ruber as a representative bacterial strain. DOTP is commonly found in mass fractions between 0.6 and 20% v/v in various soft plastic products. This study used polyvinyl chloride films (PVC) with varying DOTP concentrations (range 1-10% v/v) as a surface for analysis of biofilm growth. Cell viability and bacterial stress responses were tested using LIVE/DEAD™ BacLight™ Bacterial Viability Kit and by the detection of reactive oxygen species using CellROX™ Green Reagent, respectively. An increase in the volume of dead cells (in the plastisphere biofilm) was observed with increasing DOTP concentrations in experiments using PVC films, indicating the potential negative impact of DOTP on microbial communities. Even at a relatively low concentration of DOTP (1%), signs of stress in the microbes were noticed, while concentrations above 5% compromised their ability to survive. This research provides a new understanding of the environmental impacts of alternative plasticizers, prompting the need for additional research into their wider effects on both the environment and human health.
Collapse
Affiliation(s)
- Dana Fahad M S Mohamed
- Division of Environmental Science and Ecological Engineering, Korea University, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Abhrajyoti Tarafdar
- Division of Environmental Science and Ecological Engineering, Korea University, Seongbuk-gu, Seoul, 02841, Republic of Korea; School of Food Science and Environmental Health, Technological University Dublin, City Campus, Grangegorman, Dublin, D07ADY7, Ireland
| | - So Yeon Lee
- Department of Chemistry, Sogang University, Seoul, 04107, Republic of Korea
| | - Han Bin Oh
- Department of Chemistry, Sogang University, Seoul, 04107, Republic of Korea
| | - Jung-Hwan Kwon
- Division of Environmental Science and Ecological Engineering, Korea University, Seongbuk-gu, Seoul, 02841, Republic of Korea.
| |
Collapse
|
3
|
Mitra S, Saran RK, Srivastava S, Rensing C. Pesticides in the environment: Degradation routes, pesticide transformation products and ecotoxicological considerations. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 935:173026. [PMID: 38750741 DOI: 10.1016/j.scitotenv.2024.173026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/30/2024] [Accepted: 05/04/2024] [Indexed: 05/26/2024]
Abstract
Among rising environmental concerns, emerging contaminants constitute a variety of different chemicals and biological agents. The composition, residence time in environmental media, chemical interactions, and toxicity of emerging contaminants are not fully known, and hence, their regulation becomes problematic. Some of the important groups of emerging contaminants are pesticides and pesticide transformation products (PTPs), which present a considerable obstacle to maintaining and preserving ecosystem health. This review article aims to thoroughly comprehend the occurrence, fate, and ecotoxicological importance of pesticide transformation products (PTPs). The paper provides an overview of pesticides and PTPs as contaminants of emerging concern and discusses the modes of degradation of pesticides, their properties and associated risks. The degradation of pesticides, however, does not lead to complete destruction but can instead lead to the generation of PTPs. The review discusses the properties and toxicity of PTPs and presents the methods available for their detection. Moreover, the present study examines the existing regulatory framework and suggests the need for the development of new technologies for easy, routine detection of PTPs to regulate them effectively in the environment.
Collapse
Affiliation(s)
- Suchitra Mitra
- Indian Institute of Science Education and Research, Kolkata 741245, WB, India
| | - R K Saran
- Department of Microbiology, Maharaja Ganga Singh University, Bikaner, Rajasthan, India
| | - Sudhakar Srivastava
- Plant Stress Biology Laboratory, Institute of Environment and Sustainable Development, Banaras Hindu University, Varanasi 221005, UP, India.
| | - Christopher Rensing
- Institute of Environmental Microbiology, College of Resource and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
| |
Collapse
|
4
|
Wang X, Lin X, Wu X, Lynch I. Z-scheme Fe@Fe 2O 3/BiOBr heterojunction with efficient carrier separation for enhanced heterogeneous photo-Fenton activity of tetracycline degradation: Fe 2+ regeneration, mechanism insight and toxicity evaluation. ENVIRONMENTAL RESEARCH 2024; 252:118396. [PMID: 38331143 DOI: 10.1016/j.envres.2024.118396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/25/2023] [Accepted: 01/19/2024] [Indexed: 02/10/2024]
Abstract
The recombination of photogenerated carrier leads to inefficient Fe2+ regeneration, which limits the extensive application of heterogeneous photo-Fenton. Here, a novel Fe@Fe2O3/BiOBr catalyst with Z-scheme heterojunction structure is designed, and the establishment of the Z-scheme heterojunction facilitates the separation and transfer of photogenerated carrier and maintains the superior redox capability of the system. As-prepared Fe@Fe2O3/BiOBr catalyst exhibits outstanding catalytic performance and stability, especially for the optimum composite FFB-3, its degradation efficiency of tetracycline (TC) achieves 98.22% and the mineralization degree reaches 59.48% within 90 min under natural pH. The preeminent catalytic efficiency benefited from the synergistic of heterogeneous photo-Fenton and Z-scheme carriers transfer mechanism, where Fe2+ regeneration was achieved by photogenerated electrons, and increased hydroxyl radicals were produced with the participation of H2O2 in-situ generated. The results of free-radical scavenging experiment and ESR illustrated that •OH, •O2-, 1O2 and h+ were active species participating in TC degradation. Furthermore, the TC degradation paths were proposed according to LC-MS, and the toxicity evaluation result showed that the toxicity of TC solutions was markedly decreased after degradation. This study provides an innovative strategy for heterogeneous photo-Fenton degradation of antibiotic contaminations by constructing Z-scheme heterojunctions.
Collapse
Affiliation(s)
- Xiangyu Wang
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, China; School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham, B15 2TT, UK.
| | - Xian Lin
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, China
| | - Xi Wu
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, China
| | - Iseult Lynch
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| |
Collapse
|
5
|
Devendrapandi G, Liu X, Balu R, Ayyamperumal R, Valan Arasu M, Lavanya M, Minnam Reddy VR, Kim WK, Karthika PC. Innovative remediation strategies for persistent organic pollutants in soil and water: A comprehensive review. ENVIRONMENTAL RESEARCH 2024; 249:118404. [PMID: 38341071 DOI: 10.1016/j.envres.2024.118404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/17/2024] [Accepted: 02/01/2024] [Indexed: 02/12/2024]
Abstract
Persistent organic pollutants (POPs) provide a serious threat to human health and the environment in soil and water ecosystems. This thorough analysis explores creative remediation techniques meant to address POP pollution. Persistent organic pollutants are harmful substances that may withstand natural degradation processes and remain in the environment for long periods of time. Examples of these pollutants include dioxins, insecticides, and polychlorinated biphenyls (PCBs). Because of their extensive existence, cutting-edge and environmentally friendly eradication strategies must be investigated. The most recent advancements in POP clean-up technology for soil and water are evaluated critically in this article. It encompasses a wide range of techniques, such as nanotechnology, phytoremediation, enhanced oxidation processes, and bioremediation. The effectiveness, cost-effectiveness, and environmental sustainability of each method are assessed. Case studies from different parts of the world show the difficulties and effective uses of these novel techniques. The study also addresses new developments in POP regulation and monitoring, highlighting the need of all-encompassing approaches that include risk assessment and management. In order to combat POP pollution, the integration of diverse remediation strategies, hybrid approaches, and the function of natural attenuation are also examined. Researchers, legislators, and environmental professionals tackling the urgent problem of persistent organic pollutants (POPs) in soil and water should benefit greatly from this study, which offers a complete overview of the many approaches available for remediating POPs in soil and water.
Collapse
Affiliation(s)
- Gautham Devendrapandi
- Department of Computational Biology, Institute of Bioinformatics, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Thandalam, Chennai 602105, Tamil Nadu, India.
| | - Xinghui Liu
- Key Laboratory of Western China's Environmental System, College of Science and Technology on Aerospace Chemical Power Laboratory, Hubei Institute of Aerospace Chemotechnology, Xiangyang, 441003, Hubei, China.
| | - Ranjith Balu
- Research and Development Cell, Lovely Professional University, Phagwara, 144411, India.
| | | | - Mariadhas Valan Arasu
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Mahimaluru Lavanya
- Institute of Research and Development, Duy Tan University, Da Nang, 550000, Viet Nam; Faculty of Environmental and Chemical Engineering, Duy Tan University, Da Nang, 550000, Viet Nam.
| | | | - Woo Kyoung Kim
- School of Chemical Engineering, Yeungnam University, Gyeongsan, 38541, Republic of Korea
| | - P C Karthika
- Department of Physics and Nanotechnology, SRM Institute of Science and Technology, Kattankulathur, Chennai, 603203, Tamil Nadu, India.
| |
Collapse
|
6
|
Yu Y, Wang Z, Yao B, Zhou Y. Occurrence, bioaccumulation, fate, and risk assessment of emerging pollutants in aquatic environments: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 923:171388. [PMID: 38432380 DOI: 10.1016/j.scitotenv.2024.171388] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 02/12/2024] [Accepted: 02/28/2024] [Indexed: 03/05/2024]
Abstract
Significant concerns on a global scale have been raised in response to the potential adverse impacts of emerging pollutants (EPs) on aquatic creatures. We have carefully reviewed relevant research over the past 10 years. The study focuses on five typical EPs: pharmaceuticals and personal care products (PPCPs), per- and polyfluoroalkyl substances (PFASs), drinking water disinfection byproducts (DBPs), brominated flame retardants (BFRs), and microplastics (MPs). The presence of EPs in the global aquatic environment is source-dependent, with wastewater treatment plants being the main source of EPs. Multiple studies have consistently shown that the final destination of most EPs in the water environment is sludge and sediment. Simultaneously, a number of EPs, such as PFASs, MPs, and BFRs, have long-term environmental transport potential. Some EPs exhibit notable tendencies towards bioaccumulation and biomagnification, while others pose challenges in terms of their degradation within both biological and abiotic treatment processes. The results showed that, in most cases, the ecological risk of EPs in aquatic environments was low, possibly due to potential dilution and degradation. Future research topics should include adding EPs detection items for the aquatic environment, combining pollution, and updating prediction models.
Collapse
Affiliation(s)
- Yuange Yu
- College of Environment and Ecology, Hunan Agricultural University, Changsha 410128, China
| | - Zhu Wang
- Institute of Environmental Research at Greater Bay/Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China.
| | - Bin Yao
- College of Environment and Ecology, Hunan Agricultural University, Changsha 410128, China
| | - Yaoyu Zhou
- College of Environment and Ecology, Hunan Agricultural University, Changsha 410128, China.
| |
Collapse
|
7
|
Gao Y, Zeng M, Liang H, Liu J, Ma J, Lu J. Integrated model of ozone mass transfer and oxidation kinetic: Construction, solving and analysis. CHEMOSPHERE 2024; 354:141683. [PMID: 38484987 DOI: 10.1016/j.chemosphere.2024.141683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 02/26/2024] [Accepted: 03/09/2024] [Indexed: 03/18/2024]
Abstract
Ozone-based advanced oxidation process (O3-AOPs) is rapidly evolving, but the surge of emerging pollutants brings new challenges for ozone oxidation research. Herein, we proposed a state-of-the-art model for simultaneously analyzing both ozone mass transfer and oxidation kinetics during ozone oxidation of emerging organic contaminants. The numerical solution and graphical representations of the integrated model were utilized to analyze the dynamics of ozone and pollutant concentration. An in-depth analysis of the integrated model revealed that the reaction rate constants in this present study were higher than previously reported apparent reaction rate constants, and catalysts were not always necessary. Finally, we developed an installable mobile application (APP) that allowed the simulation of the dynamic process for ozone oxidizing organic pollutants in the laboratory, which offered theoretical support for the selection of experimental conditions. The results of model simulation not only provide scientific explanations for counter-intuitive experimental phenomena, but also optimized experimental conditions to enhance ozone utilization.
Collapse
Affiliation(s)
- Yufei Gao
- College of Environmental Science and Engineering, Nankai University, Tianjin, 300050, China
| | - Minxiang Zeng
- College of Environmental Science and Engineering, Nankai University, Tianjin, 300050, China
| | - Huiqi Liang
- College of Environmental Science and Engineering, Nankai University, Tianjin, 300050, China
| | - Jianyi Liu
- College of Environmental Science and Engineering, Nankai University, Tianjin, 300050, China
| | - Jun Ma
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Jinfeng Lu
- College of Environmental Science and Engineering, Nankai University, Tianjin, 300050, China; Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, Nankai University, Tianjin, 300350, China; Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin, 300350, China.
| |
Collapse
|
8
|
Zhang S, Ye X, Lin X, Zeng X, Meng S, Luo W, Yu F, Peng T, Huang T, Li J, Hu Z. Novel insights into aerobic 17β-estradiol degradation by enriched microbial communities from mangrove sediments. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133045. [PMID: 38016312 DOI: 10.1016/j.jhazmat.2023.133045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 10/13/2023] [Accepted: 11/18/2023] [Indexed: 11/30/2023]
Abstract
Various persistent organic pollutants (POPs) including estrogens are often enriched in mangrove regions. This research investigated the estrogens pollution levels in six mangroves located in the Southern China. The estrogen levels were found to be in the range of 5.3-24.9 ng/g dry weight, suggesting that these mangroves had been seriously contaminated. The bacterial communities under estrogen stress were further enriched by supplementing 17β-estradiol (E2) as the sole carbon source. The enriched bacterial communities showed an excellent E2 degradation capacity > 95 %. These communities were able to transform E2 into estrone (E1), 4-hydroxy-estrone, and keto-estrone, etc. 16 S rDNA sequencing and metagenomics analysis revealed that bacterial taxa Oleiagrimonas, Pseudomonas, Terrimonas, and Nitratireductor etc. were the main contributors to estrogen degradation. Moreover, the genes involved in E2 degradation were enriched in the microbial communities, including the genes encoding 17β-hydroxysteroid dehydrogenase, estrone 4-hydroxylase, etc. Finally, the analyses of functional genes and binning genomes demonstrated that E2 was degraded by bacterial communities via dehydrogenation into E1 by 17β-hydroxysteroid dehydrogenase. E1 was then catabolically converted to 3aα-H-4α(3'-propanoate)- 7aβ-methylhexahydro-1,5-indanedione via 4,5-seco pathway. Alternatively, E1 could also be hydroxylated to keto-estrone, followed by B-ring cleavage. This study provides novel insights into the biodegradation of E2 by the bacterial communities in estrogen-contaminated mangroves.
Collapse
Affiliation(s)
- Shan Zhang
- Department of Biology, Shantou University, Shantou, Guangdong 515063, China
| | - Xueying Ye
- Department of Biology, Shantou University, Shantou, Guangdong 515063, China; School of Life Sciences, Huizhou University, Huizhou 510607, China
| | - Xianbin Lin
- Department of Biology, Shantou University, Shantou, Guangdong 515063, China
| | - Xiangwei Zeng
- Department of Biology, Shantou University, Shantou, Guangdong 515063, China
| | - Shanshan Meng
- Department of Biology, Shantou University, Shantou, Guangdong 515063, China
| | - Wenqi Luo
- Department of Biology, Shantou University, Shantou, Guangdong 515063, China
| | - Fei Yu
- Department of Biology, Shantou University, Shantou, Guangdong 515063, China
| | - Tao Peng
- Department of Biology, Shantou University, Shantou, Guangdong 515063, China
| | - Tongwang Huang
- Department of Biology, Shantou University, Shantou, Guangdong 515063, China
| | - Jin Li
- Department of Biology, Shantou University, Shantou, Guangdong 515063, China; College of Life Sciences, China West Normal University, Nanchong 637002, China.
| | - Zhong Hu
- Department of Biology, Shantou University, Shantou, Guangdong 515063, China.
| |
Collapse
|
9
|
He X, Xiang Y, Xu R, Gao H, Guo Z, Sun W. Bisphenol A affects microbial interactions and metabolic responses in sludge anaerobic digestion. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:19635-19648. [PMID: 38363507 DOI: 10.1007/s11356-024-32422-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 02/07/2024] [Indexed: 02/17/2024]
Abstract
The widespread use of bisphenol A (BPA) has resulted in the emergence of new pollutants in various environments, particularly concentrated in sewage sludge. This study investigated the effects of BPA on sludge anaerobic digestion, focusing specifically on the interaction of microbial communities and their metabolic responses. While the influence of BPA on methane accumulation is not significant, BPA still enhanced the conversion of soluble COD, protein, and polysaccharides. BPA also positively influenced the hydrolysis-acidogenesis process, leading to 17% higher concentrations of volatile fatty acids (VFAs). Lower BPA levels (0.2-0.5 mg/kg dw) led to decreased hydrolysis and acidogenesis gene abundance, indicating metabolic inhibition; conversely, higher concentrations (1-5 mg/kg dw) increased gene abundance, signifying metabolic enhancement. Diverse methane metabolism was observed and exhibited alterations under BPA exposure. The presence of BPA impacted both the diversity and composition of microbial populations. Bacteroidetes, Proteobacteria, Firmicutes, and Chloroflexi dominated in BPA-treated groups and varied in abundance among different treatments. Changes of specific genera Sedimentibacter, Fervikobacterium, Blvii28, and Coprothermobacter in response to BPA, affecting hydrolysis and acetogenesis. Archaeal diversity declined while the hydrogenotrophic methanogen Methanospirillum thrived under BPA exposure. BPA exposure enabled microorganisms to form structured community interaction networks and boost their metabolic activities during anaerobic digestion. The study also observed the enrichment of BPA biodegradation pathways at high BPA concentrations, which could interact and overlap to ensure efficient BPA degradation. The study provides insights into the digestion performance and interactions of microbial communities to BPA stress and sheds light on the potential effect of BPA during anaerobic digestion.
Collapse
Affiliation(s)
- Xiao He
- Institute of Environmental Engineering, School of Metallurgy and Environment, Central South University, No. 932 Lushan South Road, Changsha, 410083, People's Republic of China
| | - Yinping Xiang
- College of Environmental Science and Engineering, Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha, 410082, People's Republic of China
| | - Rui Xu
- Institute of Environmental Engineering, School of Metallurgy and Environment, Central South University, No. 932 Lushan South Road, Changsha, 410083, People's Republic of China.
| | - Hanbing Gao
- Institute of Environmental Engineering, School of Metallurgy and Environment, Central South University, No. 932 Lushan South Road, Changsha, 410083, People's Republic of China
| | - Zhaohui Guo
- Institute of Environmental Engineering, School of Metallurgy and Environment, Central South University, No. 932 Lushan South Road, Changsha, 410083, People's Republic of China
| | - Weimin Sun
- Guangdong Key Laboratory of Integrated Agro-Environmental Pollution Control and Management, Institute of Eco-Environmental and Soil Sciences, National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Academy of Sciences, Guangzhou, 510650, People's Republic of China
| |
Collapse
|
10
|
Yu Y, Wang S, Yu P, Wang D, Hu B, Zheng P, Zhang M. A bibliometric analysis of emerging contaminants (ECs) (2001-2021): Evolution of hotspots and research trends. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 907:168116. [PMID: 37884150 DOI: 10.1016/j.scitotenv.2023.168116] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 10/05/2023] [Accepted: 10/23/2023] [Indexed: 10/28/2023]
Abstract
Emerging contaminants (ECs) have attracted increasing attention in the past two decades because of their ubiquitous existence and high environmental risk. Understanding the progress of research and the evolution of hot topics is critical. This study provides a bibliometric review, along with a quantitative trend analysis of approximately 8000 publication records dated from 2001 to 2021. Wider distribution in various subjects was discovered in terms of publication numbers, indicating a strong tendency for EC research to become an interdisciplinary topic. Visualization of term co-occurrence analysis revealed that the ECs study went through three stages over time: identification and detection, traceability and risk, and process and control. Quantitative trend analysis revealed that antibiotics, microplastics, endocrine disrupting chemicals (EDCs), per/poly-fluoroalkyl substances (PFAS), pesticides, heavy metals, and nanoparticles are attracting increasing attention, whereas conventional pharmaceuticals, persistent organic pollutants, and materials such as benzotriazole, diclofenac, bisphenol A, carbamazepine, triclosan, and titanium dioxide exhibit a downward trend. PFAS and EDCs are considered potential future core hotspots for the hysteretic rise in research attention compared with conventional ECs. Furthermore, analysis of research linkage and the developing stages of ECs could be possible approach to determine the evolution of hotspots in ECs study. This study provides objective and comprehensive insights into the research landscape of ECs, which may shed light on future developmental directions for researchers interested in this field.
Collapse
Affiliation(s)
- Yang Yu
- Department of Environmental Engineering, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, China
| | - Siyu Wang
- Advanced Environmental Biotechnology Centre, Nanyang Environment & Water Research Institute, Nanyang Technological University, Singapore
| | - Pingfeng Yu
- Department of Environmental Engineering, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, China; Zhejiang Province Key Laboratory for Water Pollution Control and Environmental Safety, Hangzhou, China; Innovation Center of Yangtze River Delta, Zhejiang University, Jiashan 314100, China
| | - Dongsheng Wang
- Department of Environmental Engineering, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, China; Zhejiang Province Key Laboratory for Water Pollution Control and Environmental Safety, Hangzhou, China; Innovation Center of Yangtze River Delta, Zhejiang University, Jiashan 314100, China
| | - Baolan Hu
- Department of Environmental Engineering, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, China; Zhejiang Province Key Laboratory for Water Pollution Control and Environmental Safety, Hangzhou, China
| | - Ping Zheng
- Department of Environmental Engineering, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, China; Zhejiang Province Key Laboratory for Water Pollution Control and Environmental Safety, Hangzhou, China
| | - Meng Zhang
- Department of Environmental Engineering, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, China; Zhejiang Province Key Laboratory for Water Pollution Control and Environmental Safety, Hangzhou, China; Innovation Center of Yangtze River Delta, Zhejiang University, Jiashan 314100, China.
| |
Collapse
|
11
|
Luo Z, Wu W, Liu B, Qi Y, Chen L, Lin X. A Co-based nitrogen-doped lignin carbon catalyst with high stability and wide operating window for rapid degradation of antibiotics. Int J Biol Macromol 2023; 253:126601. [PMID: 37652326 DOI: 10.1016/j.ijbiomac.2023.126601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/23/2023] [Accepted: 08/28/2023] [Indexed: 09/02/2023]
Abstract
Co-based catalysts play a crucial role in the activation of peroxymonosulfate (PMS) for degradation contaminants. However, the practical application of such catalysts is hindered by challenges like the self-aggregation of Co nanoparticles and leaching of Co2+. In this study, the Co-based catalyst Co-N/C@CL was synthesized from carboxymethylated lignin obtained by grafting abundant carboxymethyl groups into alkali lignin, in which the presence of these carboxymethyl groups enhanced its water solubility and allowed the formation of stable macromolecular complexes with Co2+. This catalyst exhibited a high specific surface area (521.8 m2·g-1) and a uniform distribution of Co nanoparticles. Consequently, the Co-N/C@CL/PMS system could completely remove 20 ppm tetracycline (TC) in 2 min at a rate of 2.404 min-1. Experimental results and DFT calculations revealed that the synergistic effect of lignin carbon and Co NPs accelerated the cleavage and electron transfer of OO bonds, thus promoting the formation of 1O2, OH and SO4-, with 1O2 emerging as the predominant contributor. Moreover, Co-N/C@CL displayed excellent cycling stability and low Co2+ leaching. This work not only provides a feasible strategy for the preparation of highly active and stable Co-based carbon materials but also offers a promising catalyst for the efficient degradation of TC.
Collapse
Affiliation(s)
- Zhicheng Luo
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, Guangdong 510006, PR China
| | - Weidong Wu
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, Guangdong 510006, PR China
| | - Bowen Liu
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, Guangdong 510006, PR China
| | - Yi Qi
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, Guangdong 510006, PR China
| | - Liheng Chen
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, Guangdong 510006, PR China; Guangdong Key Laboratory of Plant Resources Biorefinery, Guangdong University of Technology, Guangzhou 510006, PR China; Jieyang Branch of Chemistry and Chemical Engineering Guangdong Laboratory, Jieyang 515200, PR China
| | - Xuliang Lin
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, Guangdong 510006, PR China; Guangdong Key Laboratory of Plant Resources Biorefinery, Guangdong University of Technology, Guangzhou 510006, PR China; Jieyang Branch of Chemistry and Chemical Engineering Guangdong Laboratory, Jieyang 515200, PR China.
| |
Collapse
|
12
|
Madaloz TZ, Dos Santos K, Zacchi FL, Bainy ACD, Razzera G. Nuclear receptor superfamily structural diversity in pacific oyster: In silico identification of estradiol binding candidates. CHEMOSPHERE 2023; 340:139877. [PMID: 37619748 DOI: 10.1016/j.chemosphere.2023.139877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 07/21/2023] [Accepted: 08/17/2023] [Indexed: 08/26/2023]
Abstract
The increasing presence of anthropogenic contaminants in aquatic environments poses challenges for species inhabiting contaminated sites. Due to their structural binding characteristics to ligands that inhibit or activate gene transcription, these xenobiotic compounds frequently target the nuclear receptor superfamily. The present work aims to understand the potential interaction between the hormone 17-β-estradiol, an environmental contaminant, and the nuclear receptors of Crassostrea gigas, the Pacific oyster. This filter-feeding, sessile oyster species is subject to environmental changes and exposure to contaminants. In the Pacific oyster, the estrogen-binding nuclear receptor is not able to bind this hormone as it does in vertebrates. However, another receptor may exhibit responsiveness to estrogen-like molecules and derivatives. We employed high-performance in silico methodologies, including three-dimensional modeling, molecular docking and atomistic molecular dynamics to identify likely binding candidates with the target moecule. Our approach revealed that among the C. gigas nuclear receptor superfamily, candidates with the most favorable interaction with the molecule of interest belonged to the NR1D, NR1H, NR1P, NR2E, NHR42, and NR0B groups. Interestingly, NR1H and NR0B were associated with planktonic/larval life cycle stages, while NR1P, NR2E, and NR0B were associated with sessile/adult life stages. The application of this computational methodological strategy demonstrated high performance in the virtual screening of candidates for binding with the target xenobiotic molecule and can be employed in other studies in the field of ecotoxicology in non-model organisms.
Collapse
Affiliation(s)
- Tâmela Zamboni Madaloz
- Programa de Pós-Graduação Em Bioquímica, Departamento de Bioquímica, Universidade Federal de Santa Catarina, Florianópolis, SC, 88040-900, Brazil; Laboratório de Biomarcadores de Contaminação Aquática e Imunoquímica, Universidade Federal de Santa Catarina, Florianópolis, SC, 88040-900, Brazil
| | - Karin Dos Santos
- Programa de Pós-Graduação Em Bioquímica, Departamento de Bioquímica, Universidade Federal de Santa Catarina, Florianópolis, SC, 88040-900, Brazil; Laboratório de Biomarcadores de Contaminação Aquática e Imunoquímica, Universidade Federal de Santa Catarina, Florianópolis, SC, 88040-900, Brazil
| | - Flávia Lucena Zacchi
- Laboratório de Moluscos Marinhos, Universidade Federal de Santa Catarina, Florianópolis, SC, 88061-600, Brazil
| | - Afonso Celso Dias Bainy
- Programa de Pós-Graduação Em Bioquímica, Departamento de Bioquímica, Universidade Federal de Santa Catarina, Florianópolis, SC, 88040-900, Brazil; Laboratório de Biomarcadores de Contaminação Aquática e Imunoquímica, Universidade Federal de Santa Catarina, Florianópolis, SC, 88040-900, Brazil
| | - Guilherme Razzera
- Programa de Pós-Graduação Em Bioquímica, Departamento de Bioquímica, Universidade Federal de Santa Catarina, Florianópolis, SC, 88040-900, Brazil; Laboratório de Biomarcadores de Contaminação Aquática e Imunoquímica, Universidade Federal de Santa Catarina, Florianópolis, SC, 88040-900, Brazil.
| |
Collapse
|
13
|
Merah M, Boudoukha C, Avalos Ramirez A, Haroun MF, Maane S. High biosorption of cationic dye onto a novel material based on paper mill sludge. Sci Rep 2023; 13:15926. [PMID: 37741916 PMCID: PMC10518001 DOI: 10.1038/s41598-023-43032-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 09/18/2023] [Indexed: 09/25/2023] Open
Abstract
The valorization of paper mill sludge (PMS) is the main goal of this study. The emissions of PMS continue to increase at global scale, especially from packaging paper and board sectors. The raw sludge was used to prepare an adsorbent to remove toxic pollutants from wastewater, the methylene blue (MB), an organic dye. Firstly, the physico-chemical characterization of PMS was done determining the crystalline phases of PMS fibers, the content of main elements, and the pH zero point charge, which was determined at around pH 7. The adsorption of MB on PMS powder was studied at 18 °C with an agitation of 200 rpm, being the best operating conditions 30 min of contact time, 250 mg L-1 of initial MB concentration and 0.05 g in 25 mL of adsorbent dose. Experimental data of MB adsorption was fitted to Langmuir and Freundlich isotherm equations. The Langmuir model was more accurate for the equilibrium data of MB adsorption at pH 5.1. The PFOM and PSOM were adjusted to experimental adsorption kinetics data, being PSOM, which describes better the MB adsorption by PMS powder. This was confirmed by calculating the maximum adsorption capacity with PSOM, which was 42.7 mg g-1, being nearly similar of the experimental value of 43.5 mg g-1. The analysis of adsorption thermodynamics showed that the MB was adsorbed exothermically with a ΔH0 = - 20.78 kJ mol-1, and spontaneously with ΔG0 from - 0.99 to - 6.38 kJ mol-1 in the range of temperature from 291 to 363 K, respectively. These results confirm that the sludge from paper industry can be used as biosorbent with remarkable adsorption capacity and low cost for the treatment of wastewater. PMS can be applied in the future for the depollution of the effluents from the textile industry, which are highly charged with dyes.
Collapse
Affiliation(s)
- Meriem Merah
- Department of Chemistry, Faculty of Sciences, University of Ferhat ABBAS Setif 1, 19000, El Bez, Algeria
- Centre National en Électrochimie et en Technologies Environnementales, 2263 Avenue du College, Shawinigan, QC, G9N 6V8, Canada
| | - Chahra Boudoukha
- Department of Biochemistry, Faculty of Life Sciences, University of Ferhat ABBAS Setif 1, 19000, El Bez, Algeria
| | - Antonio Avalos Ramirez
- Centre National en Électrochimie et en Technologies Environnementales, 2263 Avenue du College, Shawinigan, QC, G9N 6V8, Canada.
- Département de Génie Chimique et Génie Biotechnologique, Faculté de Génie, Université de Sherbrooke, 2500, Boul. de l'Université, Sherbrooke, QC, J1K 2R1, Canada.
| | - Mohamed Fahim Haroun
- Department of Chemistry, Faculty of Sciences, University of Ferhat ABBAS Setif 1, 19000, El Bez, Algeria
- Laboratoire de Physique Quantique et Systèmes Dynamiques (LPQSD), University of Ferhat ABBAS Setif 1, 19000, El Bez Setif, Algeria
| | - Samira Maane
- Department of Chemistry, Faculty of Sciences, University of Ferhat ABBAS Setif 1, 19000, El Bez, Algeria.
| |
Collapse
|
14
|
Ahmed HR, Hama Aziz KH, Agha NNM, Mustafa FS, Hinder SJ. Iron-loaded carbon black prepared via chemical vapor deposition as an efficient peroxydisulfate activator for the removal of rhodamine B from water. RSC Adv 2023; 13:26252-26266. [PMID: 37670993 PMCID: PMC10475974 DOI: 10.1039/d3ra04566h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Accepted: 08/28/2023] [Indexed: 09/07/2023] Open
Abstract
The excessive use of organic pollutants like organic dyes, which enter the water environment, has led to a significant environmental problem. Finding an efficient method to degrade these pollutants is urgent due to their detrimental effects on aquatic organisms and human health. Carbon-based catalysts are emerging as highly promising and efficient alternatives to metal catalysts in Fenton-like systems. They serve as persulfate activators, effectively eliminating recalcitrant organic pollutants from wastewater. In this study, iron-loaded carbon black (Fe-CB) was synthesized from tire waste using chemical vapor deposition (CVD). Fe-CB exhibited high efficiency as an activator of peroxydisulfate (PDS), facilitating the effective degradation and mineralization of rhodamine B (RhB) in water. A batch experiment and series characterization were conducted to study the morphology, composition, stability, and catalytic activity of Fe-CB in a Fenton-like system. The results showed that, at circumneutral pH, the degradation and mineralization efficiency of 20 mg L-1 RhB reached 92% and 48% respectively within 60 minutes. Fe-CB exhibited excellent reusability and low metal leaching over five cycles while maintaining almost the same efficiency. The degradation kinetics of RhB was found to follow a pseudo-first-order model. Scavenging tests revealed that the dominant role was played by sulfate (SO4-˙) and superoxide (O2-˙) radicals, whereas hydroxyl radicals (OH˙) and singlet oxygen (1O2) played a minor role in the degradation process. This study elucidates the detailed mechanism of PDS activation by Fe-CB, resulting in the generation of reactive oxygen species. It highlights the effectiveness of Fe-CB/PDS in a Fenton-like system for the treatment of water polluted with organic dye contaminants. The research provides valuable insights into the potential application of carbon black derived from tire waste for environmental remediation.
Collapse
Affiliation(s)
- Harez R Ahmed
- Department of Chemistry, College of Science, University of Sulaimani Qlyasan Street Sulaimani City 46001 Kurdistan Region Iraq
- College of Science, Department of Medical Laboratory Science, Komar University of Science and Technology Sulaimani 46001 Iraq
| | - Kosar Hikmat Hama Aziz
- Department of Chemistry, College of Science, University of Sulaimani Qlyasan Street Sulaimani City 46001 Kurdistan Region Iraq
- Department of Medical Laboratory of Science, College of Health Sciences, University of Human Development Sulaimaniyah Iraq
| | - Nian N M Agha
- Department of Chemistry, College of Science, University of Sulaimani Qlyasan Street Sulaimani City 46001 Kurdistan Region Iraq
- College of Science, Department of Medical Laboratory Science, Komar University of Science and Technology Sulaimani 46001 Iraq
| | - Fryad S Mustafa
- Department of Chemistry, College of Science, University of Sulaimani Qlyasan Street Sulaimani City 46001 Kurdistan Region Iraq
| | - Steven John Hinder
- Department of Mechanical Engineering Sciences, Faculty of Engineering and Physical Sciences, University of Surrey Guildford Surrey GU2 7XH UK
| |
Collapse
|
15
|
GadelHak Y, El-Azazy M, Shibl MF, Mahmoud RK. Cost estimation of synthesis and utilization of nano-adsorbents on the laboratory and industrial scales: A detailed review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 875:162629. [PMID: 36889388 DOI: 10.1016/j.scitotenv.2023.162629] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/14/2023] [Accepted: 02/28/2023] [Indexed: 06/18/2023]
Abstract
The recent regulations pertaining to the circular economy have unlocked new prospects for researchers. In contrast to the unsustainable models associated with the linear economy, integration of concepts of circular economy braces reducing, reusing, and recycling of waste materials into high-end products. In this regard, adsorption is a promising and cost-effective water treatment technology for handling conventional and emerging pollutants. Numerous studies are published annually to investigate the technical performance of nano-adsorbents and nanocomposites in terms of adsorption capacity and kinetics. Yet, economic performance evaluation is rarely discussed in the literature. Even if an adsorbent shows high removal efficiency towards a specific pollutant, its high preparation and/or utilization costs might hinder its real-life use. This tutorial review aims at illustrating cost estimation methods for the synthesis and utilization of conventional and nano-adsorbents. The current treatise discusses the synthesis of adsorbents on a laboratory scale where the raw material, transportation, chemical, energy, and any other costs are discussed. Moreover, equations for estimating the costs at the large-scale adsorption units for wastewater treatment are illustrated. This review focuses on introducing these topics to non-specialized readers in a detailed but simplified manner.
Collapse
Affiliation(s)
- Yasser GadelHak
- Department of Materials Science and Nanotechnology, Faculty of Postgraduate Studies for Advanced Sciences, Beni-Suef University, Beni-Suef 62511, Egypt.
| | - Marwa El-Azazy
- Department of Chemistry and Earth Sciences, College of Arts and Sciences, Qatar University, Doha 2713, Qatar.
| | - Mohamed F Shibl
- Renewable Energy Program, Center for Sustainable Development, College of Arts and Sciences, Qatar University, 2713 Doha, Qatar.
| | - Rehab K Mahmoud
- Chemistry Department. Faculty of Sciences, Beni-Suef University, Beni-Suef, Egypt.
| |
Collapse
|
16
|
Azzouz A, Kumar V, Hejji L, Kim KH. Advancements in nanomaterial-based aptasensors for the detection of emerging organic pollutants in environmental and biological samples. Biotechnol Adv 2023; 66:108156. [PMID: 37084799 DOI: 10.1016/j.biotechadv.2023.108156] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 03/16/2023] [Accepted: 04/15/2023] [Indexed: 04/23/2023]
Abstract
The combination of nanomaterials (NMs) and aptamers into aptasensors enables highly specific and sensitive detection of diverse pollutants. The great potential of aptasensors is recognized for the detection of diverse emerging organic pollutants (EOPs) in different environmental and biological matrices. In addition to high sensitivity and selectivity, NM-based aptasensors have many other advantages such as portability, miniaturization, facile use, and affordability. This work showcases the recent advances achieved in the design and fabrication of NM-based aptasensors for monitoring EOPs (e.g., hormones, phenolic contaminants, pesticides, and pharmaceuticals). On the basis of their sensing mechanisms, the covered aptasensing systems are classified as electrochemical, colorimetric, PEC, fluorescence, SERS, and ECL. Special attention has been paid to the fabrication processes, analytical achievements, and sensing mechanisms of NM-based aptasensors. Further, the practical utility of aptasensing approaches has also been assessed based on their basic performance metrics (e.g., detection limits, sensing ranges, and response times).
Collapse
Affiliation(s)
- Abdelmonaim Azzouz
- Department of Chemistry, Faculty of Science, University of Abdelmalek Essaadi, B.P. 2121, M'Hannech II, 93002 Tetouan, Morocco
| | - Vanish Kumar
- National Agri-Food Biotechnology Institute (NABI), Sector 81, SAS Nagar, Mohali, Punjab 140306, India
| | - Lamia Hejji
- Department of Chemistry, Faculty of Science, University of Abdelmalek Essaadi, B.P. 2121, M'Hannech II, 93002 Tetouan, Morocco; Department of Chemical, Environmental, and Materials Engineering, Higher Polytechnic School of Linares, University of Jaén, Campus Científico-Tecnológico, Cinturón Sur s/n, 23700 Linares, Jaén, Spain
| | - Ki-Hyun Kim
- Department of Civil and Environmental Engineering, Hanyang University, 222 Wangsimni-Ro, Seoul 04763, South Korea.
| |
Collapse
|
17
|
Li Y, Zhang C, Wang X, Liao X, Zhong Q, Zhou T, Gu F, Zou H. Pollutant impacts on bacteria in surface water and sediment: Conventional versus emerging pollutants in Taihu Lake, China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 323:121334. [PMID: 36822306 DOI: 10.1016/j.envpol.2023.121334] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/10/2023] [Accepted: 02/20/2023] [Indexed: 06/18/2023]
Abstract
Bacteria play a critical role in biogeochemical cycling, self-purification, and food web fueling in surface freshwater ecosystems. However, the comparison between the impacts of conventional and emerging pollutants on the bacteria in surface water and sediment remains unclear and requires for an in-depth understanding to assess ecological risk and select associated bioindicators. Taihu Lake, a typical shallow lake in China, was divided into pollutant impacted and less-impacted zones for sampling. Spatial distributions of conventional pollutants, emerging pharmaceuticals, and bacterial communities were investigated in surface water and sediment. The correlations of pollutants with bacterial communities and the variations in bacterial functions were analyzed to help assess the pollutant influences on bacteria. The results showed that the water quality index and trophic level index across the whole lake were at medium to good, and mesotropher to light eutropher grades, respectively, indicating a relatively good control on conventional pollutants in water. Target pharmaceuticals were at much higher concentrations in water of the impacted zone compared to the less-impacted zone, exhibiting close positive relationships with the bacterial phyla in the impacted water. The ratio of Firmicutes to Proteobacteria in surface water is suggested as a plausible bioindicator to evaluate the level of inflow pharmaceutical contamination and the risk of relevant bacterial resistance in the outflow. In sediment, no significant difference was observed for pharmaceuticals between the two zones, whereas total phosphorus and orthophosphate were substantially higher in the impacted zone. Phosphorus pollutants were tightly associated with the bacterial genera in the impacted sediment, likely relating to the increase in iron- or sulfate-reducing bacteria which implies the potential risk of phosphorus releasing from sediment to water.
Collapse
Affiliation(s)
- Yifei Li
- School of Environmental and Civil Engineering, Jiangnan University, Wuxi, 214122, PR China
| | - Chengnuo Zhang
- School of Environmental and Civil Engineering, Jiangnan University, Wuxi, 214122, PR China
| | - Xiaoxuan Wang
- School of Environmental and Civil Engineering, Jiangnan University, Wuxi, 214122, PR China
| | - Xiaolin Liao
- College of Biology and the Environment, Nanjing Forestry University, Nanjing, 210037, PR China.
| | - Qin Zhong
- Dongzhu Ecological Environment Protection Co., Ltd., Wuxi, 214101, PR China
| | - Tao Zhou
- Dongzhu Ecological Environment Protection Co., Ltd., Wuxi, 214101, PR China
| | - Fan Gu
- Dongzhu Ecological Environment Protection Co., Ltd., Wuxi, 214101, PR China
| | - Hua Zou
- School of Environmental and Civil Engineering, Jiangnan University, Wuxi, 214122, PR China
| |
Collapse
|
18
|
Jia Q, Wang S, Yu M, Wang Q, Yan F. Two QSAR models for predicting the toxicity of chemicals towards Tetrahymena pyriformis based on topological-norm descriptors and spatial-norm descriptors. SAR AND QSAR IN ENVIRONMENTAL RESEARCH 2023; 34:147-161. [PMID: 36749040 DOI: 10.1080/1062936x.2023.2171478] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 01/17/2023] [Indexed: 06/18/2023]
Abstract
Quantitative structure-activity relationship (QSAR) is important for safe, rapid and effective risk assessment of chemicals. In this study, two QSAR models were established with 1230 chemicals to predict toxicity towards Tetrahymena pyriformis using multiple linear regression (MLR) method. The topological(T)-QSAR model was developed by using topological-norm descriptors generated from the topological structure, and the spatial(S)-QSAR model were built with spatial-norm descriptors obtained from the three-dimensional structure of molecules and topological-norm descriptors. The r2training and r2test are 0.8304 and 0.8338 for the T-QSAR model, and 0.8485 and 0.8585 for the S-QSAR model, which means that T-QSAR model and S-QSAR model can be used to predict toxicity quickly and accurately. In addition, we also conducted validation on the developed models. Satisfying validation results and statistical parameters demonstrated that QSAR models based on the topological-norm descriptors and spatial-norm descriptors proposed in this paper could be further utilized to estimate the toxicity of chemicals towards Tetrahymena pyriformis.
Collapse
Affiliation(s)
- Q Jia
- School of Marine and Environmental Science, Tianjin Marine Environmental Protection and Restoration Technology Engineering Center, Tianjin University of Science and Technology, Tianjin, PR China
| | - S Wang
- School of Marine and Environmental Science, Tianjin Marine Environmental Protection and Restoration Technology Engineering Center, Tianjin University of Science and Technology, Tianjin, PR China
| | - M Yu
- School of Chemical Engineering and Material Science, Tianjin University of Science and Technology, Tianjin, PR China
| | - Q Wang
- School of Chemical Engineering and Material Science, Tianjin University of Science and Technology, Tianjin, PR China
| | - F Yan
- School of Chemical Engineering and Material Science, Tianjin University of Science and Technology, Tianjin, PR China
| |
Collapse
|
19
|
Karimi P, Azarpira H, Rasolevandi T, Sarkhosh M, Azizi S, Mohseni SM, Sadani M. Simultaneous Cr (VI) reduction and diazinon oxidation with organometallic sludge formation under photolysis: kinetics, degradation pathways, and mechanism. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:14630-14640. [PMID: 36161559 DOI: 10.1007/s11356-022-22892-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Accepted: 09/01/2022] [Indexed: 06/16/2023]
Abstract
In this study, simultaneous removal of an organic matter (diazinon, DIZ) and an inorganic substance (chromium, Cr) was used. Breaking down of organic matter by UV irradiation produces various radicals, including sulfides, carboxyl, hydroxyl, hydrated electrons, and various organic radicals that are highly reactive and help us to precipitation inorganic substance (Cr). The optimal condition was 30:1 DIZ:Cr molar ratio, pH 9, and about 100% and 82.3% of DIZ and Cr were obtained in 30 min. Cr deposition was very slow at first. After the destruction of the DIZ structure, Cr deposition began, and various types of sludge with disturbed properties were formed. These sledges were analyzed by FTIR analysis and showed that green sludge could be chromium (III) hydroxide; brown sludge due to chromium (III) hydroxide, tiny green crystals from chromium (III) oxide, red brick from chromium (II) acetate chromium trioxide, as well as black sludge caused by chromium oxide were identified. In UV/DIZ/Cr process, kobs and robs range obtained 0.33-0.15 and 16.8-23.4 $ with both Cr and DIZ concentration increased from 50 to 150 mg L-1. Also, EEO for Cr precipitation was 24.65 to 5.74 and for DIZ 12.54 to 4.73 (kwh m-3). Depending on the amount of energy consumption, TCS was 37.19 to 10.47 for Cr precipitation and 4.46 to 1.25 $. It is important to note that when both pollutants are exposed to ultraviolet light, more energy and cost are generally required from UV/DIZ process and less than of UV/Cr process. But it should be noted that in fact 50 mg L-1 of chromium and 50 mg L-1 of DIZ are being removed at the same time. In UV/DIZ and UV/Cr processes that are exposed to ultraviolet radiation alone, only one of them is removed. Also, when these two pollutants are being removed at the same time, the total amount of energy is much less than the total energy consumption of the pollutants one by one.
Collapse
Affiliation(s)
- Pouria Karimi
- Student Research Committee, School of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hossein Azarpira
- Environmental Health Engineering Department, Social Determinants of Health Research Center, Saveh University of Medical Sciences, Saveh, Iran
| | - Tayebeh Rasolevandi
- Environmental Health Engineering Department, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Sarkhosh
- Environmental Health Engineering Department, School of Public Health, Mashhad University of Medical Sciences, Mashhad, Iran
- UNESCO-UNISA Africa Chair in Nanosciences and Nanotechnology, College of Graduate Studies, University of South Africa, Muckleneuk Ridge, PO Box 392, Pretoria, 0002, South Africa
- Nanosciences African Network (NANOAFNET), iThemba LABS-National Research Foundation, 1 Old Faure Road, Somerset West 7129, PO Box 722, Somerset West, Western Cape, 7131, South Africa
| | - Shohreh Azizi
- UNESCO-UNISA Africa Chair in Nanosciences and Nanotechnology, College of Graduate Studies, University of South Africa, Muckleneuk Ridge, PO Box 392, Pretoria, 0002, South Africa
- Nanosciences African Network (NANOAFNET), iThemba LABS-National Research Foundation, 1 Old Faure Road, Somerset West 7129, PO Box 722, Somerset West, Western Cape, 7131, South Africa
| | - Seyed Mohsen Mohseni
- Student Research Committee, School of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Environmental Health Engineering Department, School of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohsen Sadani
- Environmental Health Engineering Department, School of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
20
|
Dong M, He L, Jiang M, Zhu Y, Wang J, Gustave W, Wang S, Deng Y, Zhang X, Wang Z. Biochar for the Removal of Emerging Pollutants from Aquatic Systems: A Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:1679. [PMID: 36767042 PMCID: PMC9914318 DOI: 10.3390/ijerph20031679] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/11/2023] [Accepted: 01/15/2023] [Indexed: 06/18/2023]
Abstract
Water contaminated with emerging pollutants has become a serious environmental issue globally. Biochar is a porous and carbon-rich material produced from biomass pyrolysis and has the potential to be used as an integrated adsorptive material. Many studies have shown that biochar is capable to adsorb emerging pollutants from aquatic systems and could be used to solve the water pollution problem. Here, we provided a dual perspective on removing emerging pollutants from aquatic systems using biochar and analyzed the emerging pollutant removal efficiency from the aspects of biochar types, pollutant types and coexistence with heavy metals, as well as the associated mechanisms. The potential risks and future research directions of biochar utilization are also presented. This review aims to assist researchers interested in using biochar for emerging pollutants remediation in aquatic systems and facilitate research on emerging pollutants removal, thereby reducing their environmental risk.
Collapse
Affiliation(s)
- Mingying Dong
- Institute of Environmental Processes and Pollution Control, School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China
| | - Lizhi He
- Key Laboratory of Soil Contamination Bioremediation of Zhejiang Province, Zhejiang A & F University, Lin’an 311300, China
| | - Mengyuan Jiang
- Institute of Environmental Processes and Pollution Control, School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China
| | - Yi Zhu
- Institute of Environmental Processes and Pollution Control, School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China
| | - Jie Wang
- Institute of Environmental Processes and Pollution Control, School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China
| | - Williamson Gustave
- School of Chemistry, Environmental & Life Sciences, University of the Bahamas, Nassau 4912, Bahamas
| | - Shuo Wang
- Institute of Environmental Processes and Pollution Control, School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China
| | - Yun Deng
- Institute of Environmental Processes and Pollution Control, School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China
| | - Xiaokai Zhang
- Institute of Environmental Processes and Pollution Control, School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China
| | - Zhenyu Wang
- Institute of Environmental Processes and Pollution Control, School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China
- Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, China
| |
Collapse
|
21
|
Maddela NR, Ramakrishnan B, Dueñas-Rivadeneira AA, Venkateswarlu K, Megharaj M. Chemicals/materials of emerging concern in farmlands: sources, crop uptake and potential human health risks. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2022; 24:2217-2236. [PMID: 36444949 DOI: 10.1039/d2em00322h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Certain chemicals/materials that are contaminants of emerging concern (CECs) have been widely detected in water bodies and terrestrial systems worldwide while other CECs occur at undetectable concentrations. The primary sources of CECs in farmlands are agricultural inputs, such as wastewater, biosolids, sewage sludge, and agricultural mulching films. The percent increase in cropland area during 1950-2016 was 30 and the rise in land use for food crops during 1960-2018 was 100-500%, implying that there could be a significant CEC burden in farmlands in the future. In fact, the alarming concentrations (μg kg-1) of certain CECs such as PBDEs, PAEs, and PFOS that occur in farmlands are 383, 35 400 and 483, respectively. Also, metal nanoparticles are reported even at the mg kg-1 level. Chronic root accumulation followed by translocation of CECs into plants results in their detectable concentrations in the final plant produce. Thus, there is a continuous flow of CECs from farmlands to agricultural produce, causing a serious threat to the terrestrial food chain. Consequently, CECs find their way to the human body directly through CEC-laden plant produce or indirectly via the meat of grazing animals. Thus, human health could be at the most critical risk since several CECs have been shown to cause cancers, disruption of endocrine and cognitive systems, maternal-foetal transfer, neurotoxicity, and genotoxicity. Overall, this comprehensive review provides updated information on contamination of chemicals/materials of concern in farmlands globally, sources for their entry, uptake by crop plants, and their likely impact on the terrestrial food chain and human health.
Collapse
Affiliation(s)
- Naga Raju Maddela
- Departamento de Ciencias Biológicas, Facultad de Ciencias de la Salud, Universidad Técnica de Manabí, Portoviejo 130105, Ecuador
- Instituto de Investigación, Universidad Técnica de Manabí, Portoviejo 130105, Ecuador
| | | | - Alex Alberto Dueñas-Rivadeneira
- Departamento de Procesos Agroindustriales, Facultad de Ciencias Zootécnicas, Universidad Técnica de Manabí, Av. Urbina y Che Guevara, Portoviejo, Ecuador
| | - Kadiyala Venkateswarlu
- Formerly Department of Microbiology, Sri Krishnadevaraya University, Anantapuramu 515003, India
| | - Mallavarapu Megharaj
- Global Centre for Environmental Remediation (GCER), and Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE), Faculty of Science, The University of Newcastle, ATC Building University Drive, Callaghan, 2308, NSW, Australia.
| |
Collapse
|
22
|
Wang C, Wei W, Chen Z, Wang Y, Chen X, Ni BJ. Polystyrene microplastics and nanoplastics distinctively affect anaerobic sludge treatment for hydrogen and methane production. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 850:158085. [PMID: 35981580 DOI: 10.1016/j.scitotenv.2022.158085] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/12/2022] [Accepted: 08/13/2022] [Indexed: 06/15/2023]
Abstract
Microplastics and nanoplastics generally accumulated in waste activated sludge (WAS) after biological wastewater treatment. Currently, researches mainly focused on how plastics affected a particular sludge treatment method, without the comparison of different sludge systems. Herein, distinct responses of hydrogen-producing and methane-producing sludge systems were comprehensively evaluated with polystyrene microplastics (PS-MPs) and nanoplastics (PS-NPs) existence. Experimental results showed that PS particles would stimulate inhibition on anaerobic gas production except that PS-MPs were conducive to hydrogen accumulation, which was caused by the enhanced solubilization. Mechanistic investigation demonstrated that severe inhibition of PS-NPs to hydrogen production was derived from the excessively inhibitory hydrolysis despite of improving solubilization. Varying degrees of inhibition to acidification and methanation collectively contributed to reduced methane accumulation with exposure to PS-MPs and PS-NPs. Excessive oxidative stress would be generated in the presence of PS-MPs or PS-NPs, deteriorating microbial activities and richness of species responsible for hydrogen or methane production.
Collapse
Affiliation(s)
- Chen Wang
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Wei Wei
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Zhijie Chen
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Yun Wang
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Xueming Chen
- Fujian Provincial Engineering Research Center of Rural Waste Recycling Technology, College of Environment and Safety Engineering, Fuzhou University, Fujian 350116, China
| | - Bing-Jie Ni
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia.
| |
Collapse
|
23
|
Zheng Z, Man JHK, Lo IMC. Integrating Reactive Chlorine Species Generation with H 2 Evolution in a Multifunctional Photoelectrochemical System for Low Operational Carbon Emissions Saline Sewage Treatment. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:16156-16166. [PMID: 36326170 DOI: 10.1021/acs.est.2c04139] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Conventional wastewater treatment plants (WWTPs) suffer from high carbon emissions and are inefficient in removing emerging organic pollutants (EOPs). Consequently, we have developed a low operational carbon emissions multifunctional photoelectrochemical (PEC) system for saline sewage treatment to simultaneously remove organic pollutants, ammonia, and bacteria, coupled with H2 evolution. A reduced BiVO4 (r-BiVO4) photoanode with enhanced PEC properties, ascribed to constructing sufficient oxygen vacancies and V4+ species, was synthesized for the aforementioned technique. The PEC/r-BiVO4 process could treat saline sewage to meet local WWTPs' discharge standard in 40 min at 2.0 V vs Ag/AgCl and completely degrade carbamazepine (one of EOPs), coupled with 633 μmol of H2 production; 93.29% reduction in operational carbon emissions and 77.82% decrease in direct emissions were achieved by the PEC/r-BiVO4 process compared with large-scale WWTPs, attributed to the restrained generation of CH4 and N2O. The PEC system activated chloride ions in sewage to generate numerous reactive chlorine species and facilitate •OH production, promoting contaminants removal. The PEC system exhibited operational feasibility at varying pH and total suspended solids concentrations and has outstanding reusability and stability, confirming its promising practical potential. This study proposed a novel PEC reaction for reducing operational carbon emissions from saline sewage treatment.
Collapse
Affiliation(s)
- Zexiao Zheng
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Hong Kong999077, China
| | - Justin H K Man
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Hong Kong999077, China
| | - Irene M C Lo
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Hong Kong999077, China
- Institute for Advanced Study, The Hong Kong University of Science and Technology, Hong Kong999077, China
| |
Collapse
|
24
|
Yaashikaa PR, Devi MK, Kumar PS. Engineering microbes for enhancing the degradation of environmental pollutants: A detailed review on synthetic biology. ENVIRONMENTAL RESEARCH 2022; 214:113868. [PMID: 35835162 DOI: 10.1016/j.envres.2022.113868] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 05/28/2022] [Accepted: 07/06/2022] [Indexed: 06/15/2023]
Abstract
Anthropogenic activities resulted in the deposition of huge quantities of contaminants such as heavy metals, dyes, hydrocarbons, etc into an ecosystem. The serious ill effects caused by these pollutants to all living organisms forced in advancement of technology for degrading or removing these pollutants. This degrading activity is mostly depending on microorganisms owing to their ability to survive in harsh adverse conditions. Though native strains possess the capability to degrade these pollutants the development of genetic engineering and molecular biology resulted in engineering approaches that enhanced the efficiency of microbes in degrading pollutants at faster rate. Many bioinformatics tools have been developed for altering/modifying genetic content in microbes to increase their degrading potency. This review provides a detailed note on engineered microbes - their significant importance in degrading environmental contaminants and the approaches utilized for modifying microbes. The genes responsible for degrading the pollutants have been identified and modified fir increasing the potential for quick degradation. The methods for increasing the tolerance in engineered microbes have also been discussed. Thus engineered microbes prove to be effective alternate compared to native strains for degrading pollutants.
Collapse
Affiliation(s)
- P R Yaashikaa
- Department of Biotechnology, Saveetha School of Engineering, SIMATS, Chennai, 602105, India
| | - M Keerthana Devi
- Department of Biotechnology, Saveetha School of Engineering, SIMATS, Chennai, 602105, India
| | - P Senthil Kumar
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Chennai, 603110, India; Centre of Excellence in Water Research (CEWAR), Sri Sivasubramaniya Nadar College of Engineering, Chennai, 603110, India.
| |
Collapse
|
25
|
González-González RB, Flores-Contreras EA, Parra-Saldívar R, Iqbal HMN. Bio-removal of emerging pollutants by advanced bioremediation techniques. ENVIRONMENTAL RESEARCH 2022; 214:113936. [PMID: 35932833 DOI: 10.1016/j.envres.2022.113936] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 07/05/2022] [Accepted: 07/17/2022] [Indexed: 06/15/2023]
Abstract
This review highlights the relevance of bioremediation techniques for the removal of emerging pollutants (EPs). The EPs are chemical or biological pollutants that are not currently monitored or regulated by environmental authorities, but which can enter the environment and cause harmful effects to the environment and human health. In recent times, an ample range of EPs have been found in water bodies, where they can unbalance ecosystems and cause negative effects on non-target species. In addition, some EPs have shown high rates of bioaccumulation in aquatic species, thus affecting the safety and quality of seafood. The negative impacts of emerging pollutants, their wide distribution in the environment, their bioaccumulation rates, and their resistance to wastewater treatment plants processes have led to research on sustainable remediation. Remediation techniques have been recently directed to advanced biological remediation technologies. Such technologies have exhibited numerous advantages like in-situ remediation, low costs, eco-friendliness, high public acceptance, and so on. Thus, the present review has compiled the most recent studies on bioremediation techniques for water decontamination from emerging pollutants to extend the current knowledge on sustainable remediation technologies. Biological emerging contaminants, agrochemicals, endocrine-disrupting chemicals, and pharmaceutical and personal care products were considered for this review study, and their removal by bioremediation techniques involving plants, bacteria, microalgae, and fungi. Finally, further research opportunities are presented based on current challenges from an economic, biological, and operation perspective.
Collapse
Affiliation(s)
| | | | | | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey, 64849, Mexico.
| |
Collapse
|
26
|
Anand U, Vaishnav A, Sharma SK, Sahu J, Ahmad S, Sunita K, Suresh S, Dey A, Bontempi E, Singh AK, Proćków J, Shukla AK. Current advances and research prospects for agricultural and industrial uses of microbial strains available in world collections. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 842:156641. [PMID: 35700781 DOI: 10.1016/j.scitotenv.2022.156641] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 06/08/2022] [Accepted: 06/08/2022] [Indexed: 06/15/2023]
Abstract
Microorganisms are an important component of the ecosystem and have an enormous impact on human lives. Moreover, microorganisms are considered to have desirable effects on other co-existing species in a variety of habitats, such as agriculture and industries. In this way, they also have enormous environmental applications. Hence, collections of microorganisms with specific traits are a crucial step in developing new technologies to harness the microbial potential. Microbial culture collections (MCCs) are a repository for the preservation of a large variety of microbial species distributed throughout the world. In this context, culture collections (CCs) and microbial biological resource centres (mBRCs) are vital for the safeguarding and circulation of biological resources, as well as for the progress of the life sciences. Ex situ conservation of microorganisms tagged with specific traits in the collections is the crucial step in developing new technologies to harness their potential. Type strains are mainly used in taxonomic study, whereas reference strains are used for agricultural, biotechnological, pharmaceutical research and commercial work. Despite the tremendous potential in microbiological research, little effort has been made in the true sense to harness the potential of conserved microorganisms. This review highlights (1) the importance of available global microbial collections for man and (2) the use of these resources in different research and applications in agriculture, biotechnology, and industry. In addition, an extensive literature survey was carried out on preserved microorganisms from different collection centres using the Web of Science (WoS) and SCOPUS. This review also emphasizes knowledge gaps and future perspectives. Finally, this study provides a critical analysis of the current and future roles of microorganisms available in culture collections for different sustainable agricultural and industrial applications. This work highlights target-specific potential microbial strains that have multiple important metabolic and genetic traits for future research and use.
Collapse
Affiliation(s)
- Uttpal Anand
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Anukool Vaishnav
- Department of Biotechnology, Institute of Applied Sciences & Humanities, GLA University, Mathura, Uttar Pradesh 281406, India; Department of Plant and Microbial Biology, University of Zürich, Zollikerstrasse 107, CH-8008 Zürich, Switzerland; Plant-Soil Interaction Group, Agroscope (Reckenholz), Reckenholzstrasse 191, 8046 Zürich, Switzerland
| | - Sushil K Sharma
- National Agriculturally Important Microbial Culture Collection (NAIMCC), ICAR-National Bureau of Agriculturally Important Microorganisms (ICAR-NBAIM), Mau 275 103, Uttar Pradesh, India.
| | - Jagajjit Sahu
- GyanArras Academy, Gothapatna, Malipada, Bhubaneswar, Odisha 751029, India
| | - Sarfaraz Ahmad
- Department of Botany, Jai Prakash University, Saran, Chhapra 841301, Bihar, India
| | - Kumari Sunita
- Department of Botany, Faculty of Science, Deen Dayal Upadhyay Gorakhpur University, Gorakhpur, Uttar Pradesh 273009, India
| | - S Suresh
- Department of Chemical Engineering, Maulana Azad National Institute of Technology, Bhopal 462 003, Madhya Pradesh, India
| | - Abhijit Dey
- Department of Life Sciences, Presidency University, 86/1 College Street, Kolkata 700073, West Bengal, India
| | - Elza Bontempi
- INSTM and Chemistry for Technologies Laboratory, Department of Mechanical and Industrial Engineering, University of Brescia, Via Branze, 38, 25123 Brescia, Italy
| | - Amit Kishore Singh
- Department of Botany, Bhagalpur National College, (A Constituent unit of Tilka Manjhi Bhagalpur University), Bhagalpur 812007, Bihar, India
| | - Jarosław Proćków
- Department of Plant Biology, Institute of Environmental Biology, Wrocław University of Environmental and Life Sciences, Kożuchowska 5b, 51-631 Wrocław, Poland.
| | - Awadhesh Kumar Shukla
- Department of Botany, K.S. Saket P.G. College, Ayodhya (affiliated to Dr. Rammanohar Lohia Avadh University, Ayodhya) 224123, Uttar Pradesh, India.
| |
Collapse
|
27
|
Eraky M, Elsayed M, Qyyum MA, Ai P, Tawfik A. A new cutting-edge review on the bioremediation of anaerobic digestate for environmental applications and cleaner bioenergy. ENVIRONMENTAL RESEARCH 2022; 213:113708. [PMID: 35724728 DOI: 10.1016/j.envres.2022.113708] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 06/05/2022] [Accepted: 06/14/2022] [Indexed: 06/15/2023]
Abstract
Circular agriculture and economy systems have recently emerged around the world. It is a long-term environmental strategy that promotes economic growth and food security while reducing negative environmental consequences. Anaerobic digestion (AD) process has a high contribution and effective biodegradation route for bio-wastes valorization and reducing greenhouse gases (GHGs) emissions. However, the remaining massive digestate by-product contains non-fermented organic fractions, macro and/or micro-nutrients, heavy metals, and metalloids. Direct application of digestate in agriculture negatively affected the properties of the soil due to the high load of nutrients as well as the residuals of GHGs are emitted to the environment. Recycling and valorizing of anaerobic digestate is the main challenge for the sustainable biogas industry and nutrients recovery. To date, there is no global standard process for the safe digestate handling. This review described the biochemical composition and separation processes of anaerobic digestate. Further, advanced physical, chemical, and biological remediation's of the diverse digestate are comprehensively discussed. Moreover, recycling technologies such as phyco-remediation, bio-floc, and entomoremediation were reviewed as promising solutions to enhance energy and nutrient recovery, making the AD technology more sustainable with additional profits. Finally, this review gives an in-depth discussion of current biorefinery technologies, key roles of process parameters, and identifies challenges of nutrient recovery from digestate and prospects for future studies at large scale.
Collapse
Affiliation(s)
- Mohamed Eraky
- College of Engineering, Huazhong Agricultural University, 430070, Wuhan, China
| | - Mahdy Elsayed
- Department of Agricultural Engineering, Faculty of Agriculture, Cairo University, 12613, Giza, Egypt
| | - Muhammad Abdul Qyyum
- Department of Petroleum and Chemical Engineering, College of Engineering, Sultan Qaboos University, Muscat, Oman.
| | - Ping Ai
- College of Engineering, Huazhong Agricultural University, 430070, Wuhan, China.
| | - Ahmed Tawfik
- National Research Centre, Water Pollution Research Department, P.O. Box 12622, Giza, Egypt.
| |
Collapse
|
28
|
A BaTiO 3/WS 2 composite for piezo-photocatalytic persulfate activation and ofloxacin degradation. Commun Chem 2022; 5:95. [PMID: 36697648 PMCID: PMC9814951 DOI: 10.1038/s42004-022-00707-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 07/18/2022] [Indexed: 01/28/2023] Open
Abstract
Piezoelectric fields can decrease the recombination rate of photogenerated electrons and holes in semiconductors and therewith increase their photocatalytic activities. Here, a BaTiO3/WS2 composite is synthesized and characterized, which combines piezoelectric BaTiO3 nanofibers and WS2 nanosheets. The piezo-photocatalytic effect of the composite on the persulfate activation is studied by monitoring Ofloxacin (OFL) degradation efficiency. Under mechanical forces, LED lamp irradiation, and the addition of 10 mM persulfate, the OFL degradation efficiency reaches ~90% within 75 min, which is higher than efficiencies obtained for individual BaTiO3, WS2, or TiO3, widely used photocatalysts in the field of water treatment. The boosted degradation efficiency can be ascribed to the promotion of charge carrier separation, resulting from the synergetic effect of the heterostructure and the piezoelectric field induced by the vibration. Moreover, the prepared composite displays good stability over five successive cycles of the degradation process. GC-MS analysis is used to survey the degradation pathway of OFL during the degradation process. Our results offer insight into strategies for preparing highly effective piezo-photocatalysts in the field of water purification.
Collapse
|
29
|
Tawfik A, Ismail S, Elsayed M, Qyyum MA, Rehan M. Sustainable microalgal biomass valorization to bioenergy: Key challenges and future perspectives. CHEMOSPHERE 2022; 296:133812. [PMID: 35149012 DOI: 10.1016/j.chemosphere.2022.133812] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 01/19/2022] [Accepted: 01/28/2022] [Indexed: 05/16/2023]
Abstract
The global trend is shifting toward circular economy systems. It is a sustainable environmental approach that sustains economic growth from the use of resources while minimizing environmental impacts. The multiple industrial use of microalgal biomass has received great attention due to its high content of essential nutrients and elements. Nevertheless, low biomass productivity, unbalanced carbon to nitrogen (C/N) ratio, resistant cellular constituents, and the high cost of microalgal harvesting represent the major obstacles for valorization of algal biomass. In recent years, microalgae biomass has been a candidate as a potential feedstock for different bioenergy generation processes with simultaneous treating wastewater and CO2 capture. An overview of the appealing features and needed advancements is urgently essential for microalgae-derived bioenergy generation. The present review provides a timely outlook and evaluation of biomethane production from microalgal biomass and related challenges. Moreover, the biogas recovery potential from microalgal biomass through different pretreatments and synergistic anaerobic co-digestion (AcoD) with other biowastes are evaluated. In addition, the removal of micropollutants and heavy metals by microalgal cells via adsorption and bioaccumulation in their biomass is discussed. Herein, a comprehensive review is presented about a successive high-throughput for anaerobic digestion (AD) of the microalgal biomass in order to achieve for sustainable energy source. Lastly, the valorization of the digestate from AD of microalgae for agricultural reuse is highlighted.
Collapse
Affiliation(s)
- Ahmed Tawfik
- Water Pollution Research Department, National Research Centre, Giza, 12622, Egypt.
| | - Sherif Ismail
- Environmental Engineering Department, Zagazig University, Zagazig, 44519, Egypt
| | - Mahdy Elsayed
- Agricultural Engineering Department, Faculty of Agriculture, Cairo University, 12613, Giza, Egypt
| | - Muhammad Abdul Qyyum
- Department of Petroleum & Chemical Engineering, Sultan Qaboos University, Muscat, Oman.
| | - Mohammad Rehan
- Center of Excellence in Environmental Studies (CEES), King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
30
|
Recent Advances of Emerging Organic Pollutants Degradation in Environment by Non-Thermal Plasma Technology: A Review. WATER 2022. [DOI: 10.3390/w14091351] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Emerging organic pollutants (EOPs), including endocrine disrupting compounds (EDCs), pharmaceuticals and personal care products (PPCPs), and persistent organic pollutants (POPs), constitute a problem in the environmental field as they are difficult to completely degrade by conventional treatment methods. Non-thermal plasma technology is a novel advanced oxidation process, which combines the effects of free radical oxidation, ozone oxidation, ultraviolet radiation, shockwave, etc. This paper summarized and discussed the research progress of non-thermal plasma remediation of EOPs-contaminated water and soil. In addition, the reactive species in the process of non-thermal plasma degradation of EOPs were summarized, and the degradation pathways and degradation mechanisms of EOPs were evaluated of selected EOPs for different study cases. At the same time, the effect of non-thermal plasma in synergy with other techniques on the degradation of EOPs in the environment was evaluated. Finally, the bottleneck problems of non-thermal plasma technology are summarized, and some suggestions for the future development of non-thermal plasma technology in the environmental remediation were presented. This review contributes to our better understanding of non-thermal plasma technology for remediation of EOPs-contaminated water and soil, hoping to provide reference for relevant practitioners.
Collapse
|
31
|
Mixed Contaminants: Occurrence, Interactions, Toxicity, Detection, and Remediation. Molecules 2022; 27:molecules27082577. [PMID: 35458775 PMCID: PMC9029723 DOI: 10.3390/molecules27082577] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 04/13/2022] [Accepted: 04/14/2022] [Indexed: 12/18/2022] Open
Abstract
The ever-increasing rate of pollution has attracted considerable interest in research. Several anthropogenic activities have diminished soil, air, and water quality and have led to complex chemical pollutants. This review aims to provide a clear idea about the latest and most prevalent pollutants such as heavy metals, PAHs, pesticides, hydrocarbons, and pharmaceuticals—their occurrence in various complex mixtures and how several environmental factors influence their interaction. The mechanism adopted by these contaminants to form the complex mixtures leading to the rise of a new class of contaminants, and thus resulting in severe threats to human health and the environment, has also been exhibited. Additionally, this review provides an in-depth idea of various in vivo, in vitro, and trending biomarkers used for risk assessment and identifies the occurrence of mixed contaminants even at very minute concentrations. Much importance has been given to remediation technologies to understand our current position in handling these contaminants and how the technologies can be improved. This paper aims to create awareness among readers about the most ubiquitous contaminants and how simple ways can be adopted to tackle the same.
Collapse
|
32
|
Żyłła R, Foszpańczyk M, Kamińska I, Kudzin M, Balcerzak J, Ledakowicz S. Impact of Polymer Membrane Properties on the Removal of Pharmaceuticals. MEMBRANES 2022; 12:150. [PMID: 35207072 PMCID: PMC8874440 DOI: 10.3390/membranes12020150] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 01/14/2022] [Accepted: 01/17/2022] [Indexed: 02/01/2023]
Abstract
The influence of various factors on the removal efficiency of selected pharmaceuticals by membrane filtration was investigated. Several commercial polymer membranes were used for nanofiltration (NF) from various manufacturers. The studies were conducted for ibuprofen (IBF), amoxicillin (AMX), diclofenac (DCF), tetracycline (TRC), salicylic acid (SA) and acetylsalicylic acid (ASA). The influence of the structure and properties of the tested compounds on the retention coefficient and filtration rate was investigated. The influence of pH on the filtration parameters was also checked. The properties of selected membranes influencing the retention of pharmaceuticals and filtrate flux were analysed. An extensive analysis of the retention coefficients dependence on the contact angle and surface free energy was performed. It was found that there is a correlation between the hydrophilicity of the membrane and the effectiveness and efficiency of the membrane. As the contact angle of membrane increased, the flow rate of the filtrate stream increased, while the retention coefficient decreased. The studies showed that the best separation efficiency was achieved for compounds with a molecular weight (MW) greater than 300 g/mol. During the filtration of pharmaceuticals with MW ranging from 300 to 450 g/mol, the type of membrane used practically did not affect the filtration efficiency and a high degree of retention was achieved. In the case of low MW molecules (SA and ASA), a significant decrease in the separation efficiency during the process was noted.
Collapse
Affiliation(s)
- Renata Żyłła
- Łukasiewicz Research Network-Textile Research Institute, ul. Brzezińska 5/15, 92-103 Łódź, Poland; (M.F.); (I.K.); (M.K.)
| | - Magdalena Foszpańczyk
- Łukasiewicz Research Network-Textile Research Institute, ul. Brzezińska 5/15, 92-103 Łódź, Poland; (M.F.); (I.K.); (M.K.)
| | - Irena Kamińska
- Łukasiewicz Research Network-Textile Research Institute, ul. Brzezińska 5/15, 92-103 Łódź, Poland; (M.F.); (I.K.); (M.K.)
| | - Marcin Kudzin
- Łukasiewicz Research Network-Textile Research Institute, ul. Brzezińska 5/15, 92-103 Łódź, Poland; (M.F.); (I.K.); (M.K.)
| | - Jacek Balcerzak
- Department of Molecular Engineering, Faculty of Process and Environmental Engineering, Lodz University of Technology, Wólczańska 213, 93-005 Łódź, Poland;
| | - Stanisław Ledakowicz
- Department of Bioprocess Engineering, Faculty of Process and Environmental Engineering, Lodz University of Technology, ul. Wólczańska 213, 93-005 Łódź, Poland;
| |
Collapse
|