1
|
de Souza AR, Bernardes RC, Barbosa WF, Dos Santos Araújo R, Martins GF, Lima MAP. A mixture of mesotrione and atrazine harms adults and larvae of the predatory wasp Polistes satan. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 923:171526. [PMID: 38458447 DOI: 10.1016/j.scitotenv.2024.171526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 02/26/2024] [Accepted: 03/04/2024] [Indexed: 03/10/2024]
Abstract
Herbicides have been intensively used for weed control, raising concerns about their potentially adverse effects on non-target organisms. Research on the effects of these common agrochemicals on beneficial insects and the ecosystem services they provide (e.g., predation and pollination) is scarce. Therefore, we tested whether a commercial formulation comprising a mixture of mesotrione and atrazine was detrimental to adult females and larvae of the Neotropical predatory social wasp Polistes satan, which is an effective natural enemy of crop pests. Wasps were individually fed syrups contaminated with different concentrations of the herbicide above and below the maximum label rate (MLR = 12 mL/L). Survival was assessed. The locomotor activity, immune response, and midgut morphology of adults as well as the immune response of the larvae were also studied. Herbicide concentrations far above the MLR (12, 40, and 100 times) caused adult mortality, whereas lower concentrations (0.5, 1, and 6 times) did not. Herbicide exposure at 0.5 to 12 times the MLR increased adult activity. Adult exposure at 0.1 or 0.5 times the MLR did not affect melanotic encapsulation of foreign bodies but led to changes in the morphology of the midgut epithelium and peritrophic matrix. In larvae, the ingestion of herbicide at 0.1 or 0.2 times the MLR (corresponding to 9.6 and 19.2 ng of herbicide per individual) did not cause mortality but decreased their melanization-encapsulation response. Increased locomotor activity in herbicide-exposed adults can affect their foraging activity. The altered midgut morphology of adults coupled with the decreased immune response in larvae caused by herbicide exposure at realistic concentrations can increase the susceptibility of wasps to infections. Therefore, herbicides are toxic to predatory wasps.
Collapse
Affiliation(s)
- André Rodrigues de Souza
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, São Paulo, SP, Brazil.
| | | | | | - Renan Dos Santos Araújo
- Istituto de Ciências Biológicas e da Saúde, Campus Universitário do Araguaia, Universidade Federal de Mato Grosso, Pontal do Araguaia, MT, Brazil
| | | | | |
Collapse
|
2
|
Cappa F, De Fazi L, Baracchi D, Cervo R. Adverse effects of the fungal biopesticide Beauveria bassiana on a predatory social wasp. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 908:168202. [PMID: 37914122 DOI: 10.1016/j.scitotenv.2023.168202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/27/2023] [Accepted: 10/27/2023] [Indexed: 11/03/2023]
Abstract
Biopesticides are considered eco-friendly alternatives to synthetic agrochemicals. However, their impact on non-target organisms is still poorly understood. Social wasps, in particular, are a largely neglected group when it comes to risk assessment of plant protection products, despite the relevant ecological and economic services provided by these insects. In the present study, we evaluated the impact of a common biopesticide, the entomopathogenic fungus Beauveria bassiana, on the paper wasp Polistes dominula. We adopted a holistic approach in ecotoxicology by focusing not only on the detrimental effects on isolated individuals, but also on the whole colony. Both adult wasps belonging to different castes and immature larvae were topically exposed to a field-realistic concentration of fungal spores from the commercial strain of B. bassiana ATCC 74040 to assess the impact of the biopesticide on their survival, behavior and physiology. Our results showed that the fungus causes a number of adverse effects on P. dominula, that include increased mortality, altered locomotion and feeding rate, selective ejection of exposed larvae from nests, reduced oviposition rate and ovary development in foundresses, and colony failure. Our findings provide new insights on the often-neglected sublethal effects of pollutants that can jeopardize not only individual beneficial insects, but also the delicate social balance of their colonies and their valuable ecosystem services, highlighting that the natural origin of plant-protection products does not always guarantee environmental safety.
Collapse
Affiliation(s)
- Federico Cappa
- Dipartimento di Biologia, Università degli Studi di Firenze, Via Madonna del Piano, 6, 50019 Sesto Fiorentino, Italy.
| | - Livia De Fazi
- Dipartimento di Biologia, Università degli Studi di Firenze, Via Madonna del Piano, 6, 50019 Sesto Fiorentino, Italy
| | - David Baracchi
- Dipartimento di Biologia, Università degli Studi di Firenze, Via Madonna del Piano, 6, 50019 Sesto Fiorentino, Italy
| | - Rita Cervo
- Dipartimento di Biologia, Università degli Studi di Firenze, Via Madonna del Piano, 6, 50019 Sesto Fiorentino, Italy
| |
Collapse
|
3
|
Paula MCD, Batista NR, Cunha DADS, Santos PGD, Antonialli-Junior WF, Cardoso CAL, Simionatto E. Impacts of the insecticide thiamethoxam on the native stingless bee Plebeia catamarcensis (Hymenoptera, Apidae, Meliponini). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 339:122742. [PMID: 37839683 DOI: 10.1016/j.envpol.2023.122742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 10/11/2023] [Accepted: 10/12/2023] [Indexed: 10/17/2023]
Abstract
Agricultural production and the indiscriminate use of insecticides such as thiamethoxam have put at risk the biodiversity and ecosystem services provided by bees, including native stingless species. Since most of the native species do not present economic importance, they may suffer "silent extinction", due to lack of monitoring of their colonies. Therefore, this study aimed to determine the lethal and sublethal concentrations of the insecticide thiamethoxam, with evaluation of its sublethal effects on mobility, in the stingless bee Plebeia catamarcensis (Holmberg, 1903). Foraging bees were collected and exposed to thiamethoxam to determine lethal (LC50) and sublethal concentrations. The 24 h LC50 was 0.408 ng a.i./μL, a value demonstrating that this species may be as sensitive as other stingless bees already studied. Sublethal concentrations influenced the locomotion abilities of the bees, making them hyperactive when exposed to LC50/10 and lethargic when exposed to LC50/100. The effects of sublethal concentrations on individuals may have collective consequences, especially in colonies with few individuals, as is the case of P. catamarcensis. The findings reinforce the hypothesis that thiamethoxam may contribute to the decline of native stingless bees, which can be significantly impacted when chronically exposed to agricultural production systems that use this insecticide, consequently affecting the ecosystem services provided by these bees.
Collapse
Affiliation(s)
- Michele Castro de Paula
- Laboratório de Óleos e Extratos (LAPOEX), Programa de Pós-Graduação em Recursos Naturais (PGRN), Universidade Estadual de Mato Grosso do Sul (UEMS), CEP, 79950-000, Naviraí, MS, Brazil; Programa de Pós-Graduação em Recursos Naturais (PGRN), Centro de Estudos em Recursos Naturais (CERNA), Universidade Estadual de Mato Grosso do Sul (UEMS), PC 351, CEP, 79804-970, Dourados, MS, Brazil.
| | - Nathan Rodrigues Batista
- Laboratório de Ecologia Comportamental (LABECO), Universidade Estadual de Mato Grosso do Sul (UEMS), CP 351, CEP, 79804-970, Dourados, MS, Brazil; Programa de Pós-Graduação em Entomologia e Conservação da Biodiversidade, Universidade Federal da Grande Dourados (UFGD), PC 533, CEP, 79804-970, Dourados, MS, Brazil.
| | - Dayana Alves da Silva Cunha
- Programa de Pós-Graduação em Recursos Naturais (PGRN), Centro de Estudos em Recursos Naturais (CERNA), Universidade Estadual de Mato Grosso do Sul (UEMS), PC 351, CEP, 79804-970, Dourados, MS, Brazil; Laboratório de Ecologia Comportamental (LABECO), Universidade Estadual de Mato Grosso do Sul (UEMS), CP 351, CEP, 79804-970, Dourados, MS, Brazil.
| | - Poliana Galvão Dos Santos
- Laboratório de Ecologia Comportamental (LABECO), Universidade Estadual de Mato Grosso do Sul (UEMS), CP 351, CEP, 79804-970, Dourados, MS, Brazil; Programa de Pós-Graduação em Entomologia e Conservação da Biodiversidade, Universidade Federal da Grande Dourados (UFGD), PC 533, CEP, 79804-970, Dourados, MS, Brazil.
| | - William Fernando Antonialli-Junior
- Programa de Pós-Graduação em Recursos Naturais (PGRN), Centro de Estudos em Recursos Naturais (CERNA), Universidade Estadual de Mato Grosso do Sul (UEMS), PC 351, CEP, 79804-970, Dourados, MS, Brazil; Laboratório de Ecologia Comportamental (LABECO), Universidade Estadual de Mato Grosso do Sul (UEMS), CP 351, CEP, 79804-970, Dourados, MS, Brazil; Programa de Pós-Graduação em Entomologia e Conservação da Biodiversidade, Universidade Federal da Grande Dourados (UFGD), PC 533, CEP, 79804-970, Dourados, MS, Brazil.
| | - Claudia Andrea Lima Cardoso
- Programa de Pós-Graduação em Recursos Naturais (PGRN), Centro de Estudos em Recursos Naturais (CERNA), Universidade Estadual de Mato Grosso do Sul (UEMS), PC 351, CEP, 79804-970, Dourados, MS, Brazil.
| | - Euclésio Simionatto
- Laboratório de Óleos e Extratos (LAPOEX), Programa de Pós-Graduação em Recursos Naturais (PGRN), Universidade Estadual de Mato Grosso do Sul (UEMS), CEP, 79950-000, Naviraí, MS, Brazil; Programa de Pós-Graduação em Recursos Naturais (PGRN), Centro de Estudos em Recursos Naturais (CERNA), Universidade Estadual de Mato Grosso do Sul (UEMS), PC 351, CEP, 79804-970, Dourados, MS, Brazil.
| |
Collapse
|
4
|
Batista NR, Farder-Gomes CF, Nocelli RCF, Antonialli-Junior WF. Effects of chronic exposure to sublethal doses of neonicotinoids in the social wasp Polybia paulista: Survival, mobility, and histopathology. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 904:166823. [PMID: 37683853 DOI: 10.1016/j.scitotenv.2023.166823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 08/29/2023] [Accepted: 09/02/2023] [Indexed: 09/10/2023]
Abstract
Several studies have investigated the consequences of exposure to neonicotinoids in honeybees. Given the lack of studies concerning the consequences of exposure of social wasps to neonicotinoids, as well as the ecological importance of these insects, the objective of this study was to test the hypothesis that chronic exposure to sublethal concentrations of thiamethoxam decreases survival and mobility by causing damage to the brain and midgut of the social wasp Polybia paulista. The wasps were exposed to different concentrations of thiamethoxam, in order to obtain the mean lethal concentration (LC50), which was used as a reference for calculation of two sublethal concentrations (LC50/100 and LC50/10) employed in subsequent experiments. To calculate survival, groups of exposed (EW) and unexposed (UW) wasps were monitored until death, allowing calculation of the average lethal time. The EW and UW groups were evaluated after 12, 24, 48, and 72 h of exposure, considering their mobility and histopathological parameters of the midgut and brain. A lesion index based on semiquantitative analyses was used for comparison of histopathological damage. The results demonstrated that exposure to the LC50/10 led to a significantly shorter survival time of the P. paulista workers, compared to unexposed wasps. In addition, both sublethal concentrations decreased mobility and caused damage to the intestine (loss of brush border, presence of spherocrystals, loss of cytoplasmic material, and pyknosis) and the brain (loss of cell contact and pyknosis), regardless of the exposure time. The findings showed that, like bees, social wasps are nontarget insects susceptible to the detrimental consequences of neonicotinoid use, with exposure leading to impaired survival, locomotion, and physiology.
Collapse
Affiliation(s)
- Nathan Rodrigues Batista
- Centro de Estudos em Recursos Naturais, Laboratório de Ecologia Comportamental, Universidade Estadual de Mato Grosso Do Sul, Dourados, MS, Brazil; Programa de Pós-Graduação em Entomologia e Conservação da Biodiversidade, Universidade Federal da Grande Dourados, Dourados, MS, Brazil.
| | - Cliver Fernandes Farder-Gomes
- Universidade Federal de São Carlos Campus Araras, Centro de Ciências Agrárias, Departamento de Ciências da Natureza, Matemática e Educação, Rodovia Anhanguera (SP-330), Km 174, Araras, SP, 13600-970, Brazil
| | - Roberta Cornélio Ferreira Nocelli
- Universidade Federal de São Carlos Campus Araras, Centro de Ciências Agrárias, Departamento de Ciências da Natureza, Matemática e Educação, Rodovia Anhanguera (SP-330), Km 174, Araras, SP, 13600-970, Brazil
| | - William Fernando Antonialli-Junior
- Centro de Estudos em Recursos Naturais, Laboratório de Ecologia Comportamental, Universidade Estadual de Mato Grosso Do Sul, Dourados, MS, Brazil; Programa de Pós-Graduação em Entomologia e Conservação da Biodiversidade, Universidade Federal da Grande Dourados, Dourados, MS, Brazil
| |
Collapse
|
5
|
de Souza AR, Prato A, Franca W, Santos S, Lima LD, Alves DA, Bernardes RC, Santos EF, do Nascimento FS, Lima MAP. A predatory social wasp does not avoid nestmates contaminated with a fungal biopesticide. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:103851-103861. [PMID: 37695481 DOI: 10.1007/s11356-023-29770-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Accepted: 09/04/2023] [Indexed: 09/12/2023]
Abstract
Fungus-based biopesticides have been used worldwide for crop pest control as a safer alternative to chemical pesticides such as neonicotinoids. Both agrochemicals can be lethal and may also trigger side effects on the behavioral traits of non-target social insects, which play a crucial role in providing essential biological pest control services in agroecosystems. Here, we evaluated whether a commercial formulation of the entomopathogenic fungus Beauveria bassiana or the neonicotinoid imidacloprid causes mortality in foragers of Mischocyttarus metathoracicus. These social wasps are natural enemies of caterpillars and other herbivorous insects and inhabit both urban and agricultural environments in Brazil. We also tested whether wasps discriminate between biopesticide-exposed and unexposed conspecifics. Through a combination of laboratory (survival assay) and field experiments (lure presentation), along with chemical analyses (cuticular hydrocarbon profiles), we showed that topic exposure to the label rate of each pesticide causes a lethal effect, with the biopesticide exhibiting a slower effect. Moreover, wasps do not discriminate biopesticide-exposed from unexposed conspecifics, likely because of the similarity of their cuticular chemical profiles 24 h after exposure. Overall, the delayed lethal time at the individual level, combined with the indistinctive chemical cues of exposure and the lack of discrimination by conspecifics suggests that the fungal biopesticide may ultimately pose a threat to the colony survival of this predatory wasp.
Collapse
Affiliation(s)
- André Rodrigues de Souza
- Department of Biology, Faculdade de Filosofia, Ciências E Letras de Ribeirão Preto, University of São Paulo, Av Bandeirantes 2900, Ribeirão Preto, SP, 14040-901, Brazil.
| | - Amanda Prato
- Department of Biology, Faculdade de Filosofia, Ciências E Letras de Ribeirão Preto, University of São Paulo, Av Bandeirantes 2900, Ribeirão Preto, SP, 14040-901, Brazil
| | - Wilson Franca
- Department of Biology, Faculdade de Filosofia, Ciências E Letras de Ribeirão Preto, University of São Paulo, Av Bandeirantes 2900, Ribeirão Preto, SP, 14040-901, Brazil
| | - Sircio Santos
- Department of Biology, Faculdade de Filosofia, Ciências E Letras de Ribeirão Preto, University of São Paulo, Av Bandeirantes 2900, Ribeirão Preto, SP, 14040-901, Brazil
| | - Luan Dias Lima
- Department of Biology, Faculdade de Filosofia, Ciências E Letras de Ribeirão Preto, University of São Paulo, Av Bandeirantes 2900, Ribeirão Preto, SP, 14040-901, Brazil
| | - Denise Araujo Alves
- Department of Entomology and Acarology, University of São Paulo, São Paulo, Brazil
| | | | - Eduardo Fernando Santos
- Department of Zoology E Botany, Sao Paulo State University "Júlio de Mesquita Filho", São Paulo, Brazil
| | - Fábio Santos do Nascimento
- Department of Biology, Faculdade de Filosofia, Ciências E Letras de Ribeirão Preto, University of São Paulo, Av Bandeirantes 2900, Ribeirão Preto, SP, 14040-901, Brazil
| | | |
Collapse
|
6
|
Crispim PD, de Oliveira VES, Batista NR, Nocelli RCF, Antonialli-Junior WF. Lethal and Sublethal Dose of Thiamethoxam and Its Effects on the Behavior of a Non-target Social Wasp. NEOTROPICAL ENTOMOLOGY 2023; 52:422-430. [PMID: 36729292 DOI: 10.1007/s13744-023-01028-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 01/17/2023] [Indexed: 05/13/2023]
Abstract
In the last few years, with the increase in agricultural productivity, there has also been an increase in the use of insecticides to combat insects considered pests. However, these chemical compounds end up affecting nontarget insects that also interact with the crops. Studies have shown that social bees are among the insects that are suffering most from the effects of these compounds, resulting in negative ecological and economic impacts, considering that these insects provide pollination services in ecosystems. At the same time, social wasps also interact with plants, including cultivated ones, and perform ecological services similar to those of social bees, so it can be hypothesized that insecticides are also affecting social wasp colonies. Therefore, the purpose of this study was to evaluate contamination and sublethal effects of neonicotinoids on the mobility of the social wasp Protopolybia exigua (Saussure). In the first step, oral exposure experiments were performed to determine lethal and sublethal concentrations. In a second step, the wasps were exposed to sublethal concentrations, in order to evaluate the effects on their mobility. The results demonstrated that this species is more susceptible to exposure to neonicotinoids, compared to several bee species that have so far been studied, but lower than others. Exposure to sublethal concentrations can significantly reduce wasp mobility, which can have short-term consequences both for worker wasps and for the maintenance of their colonies.
Collapse
Affiliation(s)
- Paula Danyelle Crispim
- Centro de Estudos em Recursos Naturais, Lab de Ecologia Comportamental, Univ Estadual de Mato Grosso do Sul, Dourados, MS, Brazil
- Programa de Pós-Graduação em Recursos Naturais, Univ Estadual de Mato Grosso do Sul, Dourados, MS, Brazil
| | | | - Nathan Rodrigues Batista
- Centro de Estudos em Recursos Naturais, Lab de Ecologia Comportamental, Univ Estadual de Mato Grosso do Sul, Dourados, MS, Brazil.
- Programa de Pós-Graduação em Entomologia e Conservação da Biodiversidade, Univ Federal da Grande Dourados, Dourados, MS, Brazil.
| | | | - William Fernando Antonialli-Junior
- Centro de Estudos em Recursos Naturais, Lab de Ecologia Comportamental, Univ Estadual de Mato Grosso do Sul, Dourados, MS, Brazil
- Programa de Pós-Graduação em Recursos Naturais, Univ Estadual de Mato Grosso do Sul, Dourados, MS, Brazil
- Programa de Pós-Graduação em Entomologia e Conservação da Biodiversidade, Univ Federal da Grande Dourados, Dourados, MS, Brazil
| |
Collapse
|
7
|
Cappa F, Baracchi D, Cervo R. Biopesticides and insect pollinators: Detrimental effects, outdated guidelines, and future directions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 837:155714. [PMID: 35525339 DOI: 10.1016/j.scitotenv.2022.155714] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 04/29/2022] [Accepted: 05/01/2022] [Indexed: 06/14/2023]
Abstract
As synthetic pesticides play a major role in pollinator decline worldwide, biopesticides have been gaining increased attention to develop more sustainable methods for pest management in agriculture. These biocontrol agents are usually considered as safe for non-target species, such as pollinators. Unfortunately, when it comes to non-target insects, only the acute or chronic effects on survival following exposure to biopesticides are tested. Although international boards have highlighted the need to include also behavioral and morphophysiological traits when assessing risks of plant protection products on pollinators, no substantial concerns have been raised about the risks associated with sublethal exposure to these substances. Here, we provide a comprehensive review of the studies investigating the potential adverse effects of biopesticides on different taxa of pollinators (bees, butterflies, moths, beetles, flies, and wasps). We highlight the fragmentary knowledge on this topic and the lack of a systematic investigation of these negative effects of biopesticides on insect pollinators. We show that all the major classes of biopesticides, besides their direct toxicity, can also cause a plethora of more subtle detrimental effects in both solitary and social species of pollinators. Although research in this field is growing, the current risk assesment approach does not suffice to properly assess all the potential side-effects that these agents of control may have on pollinating insects. Given the urgent need for a sustainable agriculture and wildlife protection, it appears compelling that these so far neglected detrimental effects should be thoroughly assessed before allegedly safe biopesticides can be used in the field and, in this view, we provide a perspective for future directions.
Collapse
Affiliation(s)
- Federico Cappa
- Department of Biology, University of Florence, Via Madonna del Piano, 6, 50019 Sesto Fiorentino, Italy.
| | - David Baracchi
- Department of Biology, University of Florence, Via Madonna del Piano, 6, 50019 Sesto Fiorentino, Italy
| | - Rita Cervo
- Department of Biology, University of Florence, Via Madonna del Piano, 6, 50019 Sesto Fiorentino, Italy
| |
Collapse
|