1
|
Tari K, Samarghandi MR, Shokoohi R, Asgari G, Poorasgari E, Pezhman Karami, Afshar S. Nutrient removal performance and microbial composition analysis in hybrid membrane bioreactor for municipal wastewater treatment. Bioprocess Biosyst Eng 2025; 48:665-678. [PMID: 39955700 DOI: 10.1007/s00449-025-03135-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Accepted: 01/28/2025] [Indexed: 02/17/2025]
Abstract
The removal of nutrients from wastewater to reduce the toxicity of these compounds to the environment requires more space in wastewater treatment plants to establish anaerobic, anoxic and aerobic treatment stages. To address this limitation, researchers have developed practical, intensive hybrid treatment systems that enhance nutrient removal performance while requiring less space. However, the implementation of hybrid systems within a reactor introduces the interaction between the attached and suspended growth that can influence the microbial community structure and the performance of the system, so it is crucial to understand the composition of the microbial communities involved in hybrid growth to optimize control strategies in these systems. This study investigated the microbial community structure of the integrated moving bed membrane bioreactor (IMBMBR) system and its impact on nutrient removal in municipal wastewater. The findings demonstrated that the effluent quality was improved with the IMBMBR. The efficiency of removing COD, BOD5,NH 4 + -N andPO 4 3 - -P in the IMBMBR were 91 ± 4.0%, 95 ± 4.0%, 99 ± 0.2% and 24 ± 3.0%, respectively. The IMBMBR had better nitrite oxidation and complete nitrification by increasing the diversity and abundance of effective bacteria. The abundance of Proteobacteria, Bacteroidetes and Nitrospira was enhanced in IMBMBR. Coexistence of ammonia-oxidizing bacteria (AOB) and nitrite-oxidizing bacteria (NOB) in IMBMBR led to increased nutrient removal. The study results suggest that IMBMBR can be an effective process for nutrient removal, achieving quality standards that comply with legal requirements for wastewater in municipal and industries with limited space for establishing treatment facilities. Additionally, this process can be quickly implemented as an upgrade to existing wastewater treatment plants, avoiding the need to develop an entirely new system.
Collapse
Affiliation(s)
- Kamran Tari
- Department of Environmental Health Engineering, School of Public Health, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Mohammad Reza Samarghandi
- Department of Environmental Health Engineering, Faculty of Health and Research Center for Health Sciences, Hamadan University of Medical Sciences, Hamadan, Iran.
| | - Reza Shokoohi
- Department of Environmental Health Engineering, Faculty of Health and Research Center for Health Sciences, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Ghorban Asgari
- Department of Environmental Health Engineering, School of Public Health, Social Determinants of Health Research Center (SDHRC), Hamadan University of Medical Sciences, Hamadan, Iran
| | - Eskandar Poorasgari
- Department of Civil, Geological and Environmental Engineering, University of Saskatchewan, 57 Campus Drive, Saskatoon, SK, S7N 5A9, Canada
| | - Pezhman Karami
- Infectious Disease Research Center, Avicenna Institute of Clinical Sciences, Avicenna Health Research Institute, Hamadan University of Medical Sciences, Hamadan, Iran
- Department of Microbiology, Faculty of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Saeid Afshar
- Cancer Research Center, Institute of cancer, Hamadan University of Medical Sciences, Hamadan, Iran
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
2
|
Kumar D, Gupta SK. Sustainable approach for the treatment of dye-containing wastewater – a critical review. REV CHEM ENG 2024; 40:723-763. [DOI: 10.1515/revce-2023-0030] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
Abstract
In the world’s rapidly expanding economy, textile industries are recognized as a substantial contributor to economic growth, but they are one of the most significant polluting industrial sectors. Dye-contaminated water sources can pose serious public health concerns, including toxicity, mutagenicity, and carcinogenicity among other adverse health effects. Despite a limited understanding of efficacious decolorization methodologies, the pursuit of a sustainable strategy for the treatment of a wide spectrum of dyes remains a formidable challenge. This article conducted an exhaustive review of extant literature pertaining to diverse physical, chemical, biological, and hybrid processes with the aim of ascertaining their efficacy. It also elucidates the advantages and disadvantages, cost considerations, as well as scalability impediments of the treatment methodologies, thereby facilitating the identification of optimal strategies for establishing techno-economically efficient processes in the sustainable handling of these effluents. The hybrid configuration exhibited superior efficiency and was documented to surmount the limitations and constraints inherent to individual techniques. The study also revealed that most of the proven and established dye removal techniques share a common limitation viz., the generation of secondary pollution (i.e., sludge generation, toxic intermediates, etc.) to the ecosystem.
Collapse
Affiliation(s)
- Diwakar Kumar
- Department of Environmental Science and Engineering , Indian Institute of Technology (Indian School of Mines) Dhanbad , Dhanbad , 826004 Jharkhand , India
| | - Sunil Kumar Gupta
- Department of Environmental Science and Engineering , Indian Institute of Technology (Indian School of Mines) Dhanbad , Dhanbad , 826004 Jharkhand , India
| |
Collapse
|
3
|
Zhang W, Liang W, Jin J, Meng S, He Z, Ali M, Saikaly PE. Filtration performance of biofilm membrane bioreactor: Fouling control by threshold flux operation. CHEMOSPHERE 2024; 362:142458. [PMID: 38810811 DOI: 10.1016/j.chemosphere.2024.142458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 03/19/2024] [Accepted: 05/25/2024] [Indexed: 05/31/2024]
Abstract
Membrane fouling is the major factor that restricts the furtherly widespread use of membrane bioreactor (MBR). As a new generation of MBR, biofilm membrane bioreactor (BF-MBR) demonstrates high treatment efficiency and low sludge growth rate, however the filtration performance improvement and membrane fouling control are still the challenges for its further development. This work investigated the filtration performance using resistance in series model and membrane fouling control via threshold flux for BF-MBR. At first, the flux behavior and filtration resistance under various operating conditions, including agitation speed, membrane and TMP, were explored by resistance in series model. Because of the desirable anti-fouling capacity, UP100 and UP030 had the high threshold flux (100 and 90 L m-2 h-1) and low irreversible fouling resistance (1 and 1.3 × 10-10 m-1). Higher shear stress produced by higher agitation speed could reduce membrane fouling, while greatly promote the threshold flux (138 L m-2 h-1) and membrane cleaning efficiency (96%). Moreover, increasing shear stress or selecting membrane with large pore size could decrease the fouling rate and raise the threshold flux. As for TMP, high TMP reduced the removal rate for organic and nutrient, and enhanced the irreversible fouling. Besides, the aerobic-BF-MBR (101 L m-2 h-1 and 1.3 × 10-10 m-1) with lower foulant concentration had a better filtration performance than anoxic-BF-MBR (90 L m-2 h-1 and 1.5 × 10-10 m-1). Additionally, the long-term tests with 10 cycles were conducted to evaluate the industrial application value of BF-MBR (45-58 L m-2 h-1). This work provides the technical support for sustainable filtration performance of BF-MBR.
Collapse
Affiliation(s)
- Wenxiang Zhang
- Guangdong Basic Research Center of Excellence for Ecological Security and Green Development, Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China.
| | - Wenzhong Liang
- State Environmental Protection Key Laboratory of Water Environmental Simulation and Pollution Control, South China Institute of Environmental Sciences, Ministry of Ecology and Environment of the People's Republic of China, Guangzhou, 510655, China.
| | - Jiarou Jin
- School of Materials Science and Engineering, Beihang University, Beijing, 100191, China
| | - Shujuan Meng
- School of Materials Science and Engineering, Beihang University, Beijing, 100191, China
| | - Ziqiang He
- Key Laboratory of Electromechanical Equipment Safety in Western Complex Environment for State Market Regulation, Chongqing Special Equipment Inspection and Research Institute, Chongqing, 401121, China.
| | - Muhammad Ali
- Department of Civil, Structural & Environmental Engineering, Trinity College Dublin, The University of Dublin, Dublin, 2, Ireland
| | - Pascal E Saikaly
- Environmental Science and Engineering Program, Biological and Environmental Science and Engineering (BESE) Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| |
Collapse
|
4
|
Liu L, Guo Z, Wang Y, Yin L, Zuo W, Tian Y, Zhang J. Low energy-consumption oriented membrane fouling control strategy in anaerobic fluidized membrane bioreactor. CHEMOSPHERE 2024; 359:142254. [PMID: 38714253 DOI: 10.1016/j.chemosphere.2024.142254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 04/24/2024] [Accepted: 05/03/2024] [Indexed: 05/09/2024]
Abstract
Anaerobic fluidized membrane bioreactors (AFMBR) has attracted growing interest as an emerging wastewater treatment technology towards energy recovery from wastewater. AFMBR combines the advantages of anaerobic digestion and membrane bioreactors and shows great potential in overcoming limiting factors such as membrane fouling and low efficiency in treating low-strength wastewater such as domestic sewage. In AFMBR, the fluidized media performs significant role in reducing the membrane fouling, as well as improving the anaerobic microbial activity of AFMBRs. Despite extensive research aimed at mitigating membrane fouling in AFMBR, there has yet to emerge a comprehensive review focusing on strategies for controlling membrane fouling with an emphasis on low energy consumption. Thus, this work overviews the recent progress of AFMBR by summarizing the factors of membrane fouling and energy consumption in AFMBR, and provides targeted in-depth analysis of energy consumption related to membrane fouling control. Additionally, future development directions for AFMBR are also outlooked, and further promotion of AFMBR engineering application is expected. By shedding light on the relationship between energy consumption and membrane fouling control, this review offers a useful information for developing new AFMBR processes with an improved efficiency, low membrane fouling and low energy consumption, and encourages more research efforts and technological advancements in the domain of AFMBR.
Collapse
Affiliation(s)
- Lu Liu
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| | - Ze Guo
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| | - Yihe Wang
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| | - Linlin Yin
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| | - Wei Zuo
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| | - Yu Tian
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| | - Jun Zhang
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| |
Collapse
|
5
|
Mazioti AA, Vyrides I. Treatment of high-strength saline bilge wastewater by four pilot-scale aerobic moving bed biofilm reactors and comparison of the microbial communities. ENVIRONMENTAL TECHNOLOGY 2024; 45:1066-1080. [PMID: 36315853 DOI: 10.1080/09593330.2022.2137436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 10/08/2022] [Indexed: 06/16/2023]
Abstract
Four Pilot-scale Moving Bed Biofilm Reactors (MBBRs) were operated for the treatment of real, saline, bilge wastewater. The MBBRs were connected in pairs to create two system configurations with different filling ratios (20%, 40%) and were operated in parallel. The inflow organic loading rate (OLR) varied from 3.6 ± 0.2 to 7.8 ± 0.6 g COD L-1 d-1, salinity was >15 ppt and three hydraulic residence times (HRTs) were tested 48, 30 and 24 h. In both systems, the first-stage bioreactors (R1 and R3) eliminated the higher part of the organic load (57%-65%). The second-stage bioreactors (R2 and R4) removed an additional fraction (18%-31%) of the organic load received by the effluent of R1 and R3, respectively. The microbial communities of the influent wastewater, suspended, and attached biomass were determined using 16S rRNA gene amplicon sequencing analysis. The evolution of the microbial communities was investigated and compared over the different operational phases. The microbial communities of the biofilm presented higher diversity and greater stability in composition over time, while the suspended biomass exhibited intense and rapid changes in the dominance of genera. Proteobacteria, Bacteroidetes and Firmicutes were highly present in the biofilm. The genera Celeribacter, Novispirillum, Roseovarius (class: Alphaproteobacteria) and Formosa (class: Flavobacteriia) were highly present during all operational phases. Principal Component Analysis (PCA) was used to identify similarities between samples, exhibiting high relation of samples according to the series of the bioreactor (1st, 2nd).
Collapse
Affiliation(s)
- Aikaterini A Mazioti
- Department of Chemical Engineering, Cyprus University of Technology, Limassol, Cyprus
- Department of Marine Sciences, University of the Aegean, Mytilene, Greece
| | - Ioannis Vyrides
- Department of Chemical Engineering, Cyprus University of Technology, Limassol, Cyprus
| |
Collapse
|
6
|
Wang Q, Zheng W, Wang Y, Zhang T, Zhou Z, Wu Z. Insights into effects of operating temperature on the removal of pharmaceuticals/pesticides/synthetic organic compounds by membrane bioreactor process. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 335:122145. [PMID: 37422084 DOI: 10.1016/j.envpol.2023.122145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/17/2023] [Accepted: 07/03/2023] [Indexed: 07/10/2023]
Abstract
In this study, the removal efficiency and mechanism of 8 kinds of typical micropollutants by membrane bioreactor (MBR) at different temperatures (i.e. 15, 25 and 35 °C) were investigated. MBR exhibited the high removal rate (>85%) for 3 kinds of industrial synthetic organic micropollutants (i.e. bisphenol A (BPA), 4-tert-octylphenol (TB) and 4-n-nonylphenol (NP)) with similar functional groups, structures and high hydrophobicity (Log D > 3.2). However, the removal rates of ibuprofen (IBU), carbamazepine (CBZ) and sulfamethoxazole (SMX) with pharmaceutical activity showed great discrepancy (i.e. 93%, 14.2% and 29%, respectively), while that of pesticides (i.e. acetochlor (Ac) and 2,4-dichlorophenoxy acetic acid (2,4-D) were both lower than 10%. The results showed that the operating temperature played a significant role in microbial growth and activities. High temperature (35 °C) led to a decreased removal efficiency for most of hydrophobic organic micropollutants, and was also not conducive for refractory CBZ due to the temperature sensitivity. At lower temperature (15 °C), a large amount of exopolysaccharides and proteins were released by microorganisms, which caused the inhibited microbial activity, poor flocculation and sedimentation, resulting in the polysaccharide-type membrane fouling. It was proved that dominant microbial degradation of 61.01%-92.73% and auxiliary adsorption of 5.29%-28.30% were the main mechanisms for micropollutant removal in MBR system except for pesticides due to the toxicity. Therefore, the removal rates of most micropollutants were highest at 25 °C due to the high activity sludge so as to enhance microbial adsorption and degradation.
Collapse
Affiliation(s)
- Qiaoying Wang
- State Key Laboratory of Pollution Control and Resource Reuse, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Wenjia Zheng
- State Key Laboratory of Pollution Control and Resource Reuse, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Yan Wang
- State Key Laboratory of Pollution Control and Resource Reuse, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Tong Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China.
| | - Zhen Zhou
- College of Environmental and Chemical Engineering, Shanghai Institute of Pollution Control and Ecological Security, Shanghai University of Electric Power, Shanghai, 200090, China
| | - Zhichao Wu
- State Key Laboratory of Pollution Control and Resource Reuse, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| |
Collapse
|
7
|
Hu QH, Tang DY, Xiang YL, Chen X, Lin J, Zhou QH. Magnetic ion-imprinted polyacrylonitrile-chitosan electro-spun nanofibrous membrane as recyclable adsorbent with selective heavy metal removal and antibacterial fouling in water treatment. Int J Biol Macromol 2023; 241:124620. [PMID: 37119910 DOI: 10.1016/j.ijbiomac.2023.124620] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 04/12/2023] [Accepted: 04/23/2023] [Indexed: 05/01/2023]
Abstract
Water pollution has become one of the most concerned environmental issues on the worldwide scale. Due to the harmfulness of the heavy metal ions and microorganisms in wastewater, novel filtration membranes for water treatment are expected to simultaneously clear these pollutants. Herein, the electro-spun polyacrylonitrile (PAN) based magnetic ion-imprinted membrane (MIIM) were fabricated to achieve both selective removal of Pb(II) ions and excellent antibacterial efficiency. The competitive removal experiments showed that the MIIM displayed efficiently selective removal of Pb(II) (45.4 mg·g-1). Pseudo-second-order mode and Langmuir isotherm equation is well matched with the equilibrium adsorption. The MIIM showed sustained removal performance (~79.0 %) against Pb(II) ions after 7 adsorption-desorption cycles with negligible Fe ions loss of 7.3 %. Moreover, the MIIM exhibited excellent antibacterial properties that >90 % of E. coli and S. aureus were killed by the MIIM. In conclusion, the MIIM provides a novel technological platform for integration of multi-function with selective metal ions removal, excellent cycling reusability, and enhanced antibacterial fouling property, which can be potentially utilized as a promising adsorbent in actual treatment of polluted water.
Collapse
Affiliation(s)
- Qiu-Hui Hu
- Key Laboratory of Pollution Control Chemistry and Environmental Functional Materials for Qinghai-Tibet Plateau of the National Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, First Ring Road, 4th Section No.16, Chengdu, Sichuan 610041, China
| | - De-Yu Tang
- Key Laboratory of Pollution Control Chemistry and Environmental Functional Materials for Qinghai-Tibet Plateau of the National Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, First Ring Road, 4th Section No.16, Chengdu, Sichuan 610041, China
| | - Ya-Li Xiang
- Key Laboratory of Pollution Control Chemistry and Environmental Functional Materials for Qinghai-Tibet Plateau of the National Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, First Ring Road, 4th Section No.16, Chengdu, Sichuan 610041, China
| | - Xiao Chen
- Key Laboratory of Pollution Control Chemistry and Environmental Functional Materials for Qinghai-Tibet Plateau of the National Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, First Ring Road, 4th Section No.16, Chengdu, Sichuan 610041, China
| | - Juan Lin
- School of Biomedical Sciences and Technology, Chengdu Medical College, Xindu Road No.783, Chengdu, Sichuan 610500, China.
| | - Qing-Han Zhou
- Key Laboratory of Pollution Control Chemistry and Environmental Functional Materials for Qinghai-Tibet Plateau of the National Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, First Ring Road, 4th Section No.16, Chengdu, Sichuan 610041, China; Key Laboratory of General Chemistry of the National Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, China.
| |
Collapse
|
8
|
Anaerobic Membrane Bioreactor (AnMBR) for the Removal of Dyes from Water and Wastewater: Progress, Challenges, and Future Perspectives. Processes (Basel) 2023. [DOI: 10.3390/pr11030855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023] Open
Abstract
The presence of dyes in aquatic environments can have harmful effects on aquatic life, including inhibiting photosynthesis, decreasing dissolved oxygen levels, and altering the behavior and reproductive patterns of aquatic organisms. In the initial phase of this review study, our aim was to examine the categories and properties of dyes as well as the impact of their toxicity on aquatic environments. Azo, phthalocyanine, and xanthene are among the most frequently utilized dyes, almost 70–80% of used dyes, in industrial processes and have been identified as some of the most commonly occurring dyes in water bodies. Apart from that, the toxicity effects of dyes on aquatic ecosystems were discussed. Toxicity testing relies heavily on two key measures: the LC50 (half-lethal concentration) and EC50 (half-maximal effective concentration). In a recent study, microalgae exposed to Congo Red displayed a minimum EC50 of 4.8 mg/L, while fish exposed to Disperse Yellow 7 exhibited a minimum LC50 of 0.01 mg/L. Anaerobic membrane bioreactors (AnMBRs) are a promising method for removing dyes from water bodies. In the second stage of the study, the effectiveness of different AnMBRs in removing dyes was evaluated. Hybrid AnMBRs and AnMBRs with innovative designs have shown the capacity to eliminate dyes completely, reaching up to 100%. Proteobacteria, Firmicutes, and Bacteroidetes were found to be the dominant bacterial phyla in AnMBRs applied for dye treatment. However, fouling has been identified as a significant drawback of AnMBRs, and innovative designs and techniques are required to address this issue in the future.
Collapse
|
9
|
Razali MC, Wahab NA, Sunar N, Shamsudin NH. Existing Filtration Treatment on Drinking Water Process and Concerns Issues. MEMBRANES 2023; 13:285. [PMID: 36984672 PMCID: PMC10051433 DOI: 10.3390/membranes13030285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/27/2023] [Accepted: 02/22/2023] [Indexed: 06/18/2023]
Abstract
Water is one of the main sources of life's survival. It is mandatory to have good-quality water, especially for drinking. Many types of available filtration treatment can produce high-quality drinking water. As a result, it is intriguing to determine which treatment is the best. This paper provides a review of available filtration technology specifically for drinking water treatment, including both conventional and advanced treatments, while focusing on membrane filtration treatment. This review covers the concerns that usually exist in membrane filtration treatment, namely membrane fouling. Here, the parameters that influence fouling are identified. This paper also discusses the different ways to handle fouling, either based on prevention, prediction, or control automation. According to the findings, the most common treatment for fouling was prevention. However, this treatment required the use of chemical agents, which will eventually affect human health. The prediction process was usually used to circumvent the process of fouling development. Based on our reviews up to now, there are a limited number of researchers who study membrane fouling control based on automation. Frequently, the treatment method and control strategy are determined individually.
Collapse
Affiliation(s)
- Mashitah Che Razali
- Faculty of Electrical Engineering, Universiti Teknikal Malaysia Melaka, Hang Tuah Jaya, Durian Tunggal, Melaka 76100, Malaysia
- Faculty of Electrical Engineering, Universiti Teknologi Malaysia, Johor Bahru 81310, Malaysia
| | - Norhaliza Abdul Wahab
- Faculty of Electrical Engineering, Universiti Teknologi Malaysia, Johor Bahru 81310, Malaysia
| | - Noorhazirah Sunar
- Faculty of Electrical Engineering, Universiti Teknologi Malaysia, Johor Bahru 81310, Malaysia
| | - Nur Hazahsha Shamsudin
- Faculty of Electrical Engineering, Universiti Teknikal Malaysia Melaka, Hang Tuah Jaya, Durian Tunggal, Melaka 76100, Malaysia
| |
Collapse
|
10
|
Wang K, Ye Q, Shen Y, Wang Y, Hong Q, Zhang C, Liu M, Wang H. Biochar Addition in Membrane Bioreactor Enables Membrane Fouling Alleviation and Nitrogen Removal Improvement for Low C/N Municipal Wastewater Treatment. MEMBRANES 2023; 13:194. [PMID: 36837697 PMCID: PMC9960794 DOI: 10.3390/membranes13020194] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 01/31/2023] [Accepted: 02/01/2023] [Indexed: 06/18/2023]
Abstract
Membrane bioreactors (MBRs) are frequently used to treat municipal wastewater, but membrane fouling is still the main weakness of this technology. Additionally, the low carbon-nitrogen (C/N) ratio influent has been shown to not only increase the membrane fouling, but also introduce challenges to meet the effluent discharge standard for nitrogen removal. Herein, the authors addressed the challenges by adding cost-effective biochar. The results suggested that the biochar addition can enable membrane fouling alleviation and nitrogen removal improvement. The reduced membrane fouling can be ascribed to the biochar adsorption capacity, which facilitates to form bigger flocs with carbon skeleton in biochar as a core. As a result, the biochar addition significantly altered the mixed liquor suspension with soluble microbial product (SMP) concentration reduction of approximately 14%, lower SMP protein/polysaccharide ratio from 0.28 ± 0.02 to 0.22 ± 0.03, smaller SMP molecular weight and bigger sludge particle size from 67.68 ± 6.9 μm to 113.47 ± 4.8 μm. The nitrogen removal is also dramatically improved after biochar addition, which can be due to the initial carbon source release from biochar, and formation of aerobic-anaerobic microstructures. Microbial diversity analysis results suggested more accumulation of denitrification microbes including norank_f__JG30-KF-CM45 and Plasticicumulans. Less relative abundance of Aeromonas after biochar addition suggested less extracellular polymer substance (EPS) secretion and lower membrane fouling rate.
Collapse
Affiliation(s)
- Kanming Wang
- College of Architecture and Environment, Sichuan University, Chengdu 610000, China
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Qiaoqiao Ye
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Yuxiang Shen
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Yajing Wang
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Qiankun Hong
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Chenlong Zhang
- Ningbo Communications Planning Institute Co., Ltd., Ningbo 315100, China
| | - Min Liu
- College of Architecture and Environment, Sichuan University, Chengdu 610000, China
| | - Hongyu Wang
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| |
Collapse
|
11
|
Mills R, Baldridge KC, Bernard M, Bhattacharyya D. Recent Advances in Responsive Membrane Functionalization Approaches and Applications. SEP SCI TECHNOL 2022; 58:1202-1236. [PMID: 37063489 PMCID: PMC10103845 DOI: 10.1080/01496395.2022.2145222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 10/28/2022] [Indexed: 11/25/2022]
Abstract
In recent years, significant advances have been made in the field of functionalized membranes. With the functionalization using various materials, such as polymers and enzymes, membranes can exhibit property changes in response to an environmental stimulation, such as heat, light, ionic strength, or pH. The resulting responsive nature allows for an increased breadth of membrane uses, due to the developed functionalization properties, such as smart-gating filtration for size-selective water contaminant removal, self-cleaning antifouling surfaces, increased scalability options, and highly sensitive molecular detection. In this review, new advances in both fabrication and applications of functionalized membranes are reported and summarized, including temperature-responsive, pH-responsive, light-responsive, enzyme-functionalized, and two-dimensional material-functionalized membranes. Specific emphasis was given to the most recent technological improvements, current limitations, advances in characterization techniques, and future directions for the field of functionalized membranes.
Collapse
Affiliation(s)
- Rollie Mills
- Department of Chemical and Materials Engineering, University of Kentucky; Lexington, KY 40506, USA
| | - Kevin C. Baldridge
- Department of Chemical and Materials Engineering, University of Kentucky; Lexington, KY 40506, USA
| | - Matthew Bernard
- Department of Chemical and Materials Engineering, University of Kentucky; Lexington, KY 40506, USA
| | - Dibakar Bhattacharyya
- Department of Chemical and Materials Engineering, University of Kentucky; Lexington, KY 40506, USA
| |
Collapse
|
12
|
Cao L, Li Y, Li P, Zhang X, Ni L, Qi L, Wen H, Zhang X, Zhang Y. Application of moving bed biofilm reactor - nanofiltration - membrane bioreactor with loose nanofiltration hollow fiber membranes for synthetic roxithromycin-containing wastewater treatment: Long-term performance, membrane fouling and microbial community. BIORESOURCE TECHNOLOGY 2022; 360:127527. [PMID: 35764280 DOI: 10.1016/j.biortech.2022.127527] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/21/2022] [Accepted: 06/23/2022] [Indexed: 06/15/2023]
Abstract
The present study operated the novel moving bed biofilm reactor-nanofiltration-membrane bioreactor (MBBR-NF-MBR) with loose polyamide NF membranes for the first time to treat roxithromycin (ROX) wastewater. Results showed that both MBBR-NF-MBRs achieved superior COD removal of 98.4% and 97.2% and excellent removal of ROX at 74.1% and 65.5%, respectively. The main membrane fouling mechanism was reversible fouling caused by the combination of abundant polysaccharides, proteins and Ca-P precipitates, which could be effectively removed by acidic cleaning. Sorption and biodegradation were the main removal routes of ROX in MBBR. Partial retention of loose NF membrane contributed to microbial metabolism and increased microbial diversity, especially the genera Hyphomicrobium in attached biofilm, which was reasonable for ROX removal. The cleavage of cladinose, demethylation, phosphorylation and β-oxidation in macrolactone ring were the main biotransformation reactions of ROX. This study provides novel insights for micropollutants wastewater treatment by using loose NF membrane in MBR.
Collapse
Affiliation(s)
- Lei Cao
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Materials Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Yuanling Li
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Peining Li
- Tianjin Key Laboratory of Aquatic Science and Technology, School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, China
| | - Xueting Zhang
- Tianjin Key Laboratory of Aquatic Science and Technology, School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, China
| | - Lei Ni
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Materials Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Li Qi
- Tianjin Key Laboratory of Aquatic Science and Technology, School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, China; Joint Research Centre for Protective Infrastructure Technology and Environmental Green Bioprocess, Tianjin Chengjian University, Tianjin 300384, China
| | - Haitao Wen
- Tianjin Key Laboratory of Aquatic Science and Technology, School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, China; Joint Research Centre for Protective Infrastructure Technology and Environmental Green Bioprocess, Tianjin Chengjian University, Tianjin 300384, China
| | - Xinbo Zhang
- Tianjin Key Laboratory of Aquatic Science and Technology, School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, China; Joint Research Centre for Protective Infrastructure Technology and Environmental Green Bioprocess, Tianjin Chengjian University, Tianjin 300384, China
| | - Yufeng Zhang
- Tianjin Key Laboratory of Aquatic Science and Technology, School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, China; Joint Research Centre for Protective Infrastructure Technology and Environmental Green Bioprocess, Tianjin Chengjian University, Tianjin 300384, China.
| |
Collapse
|
13
|
Sahreen S, Mukhtar H, Imre K, Morar A, Herman V, Sharif S. Exploring the Function of Quorum Sensing Regulated Biofilms in Biological Wastewater Treatment: A Review. Int J Mol Sci 2022; 23:ijms23179751. [PMID: 36077148 PMCID: PMC9456111 DOI: 10.3390/ijms23179751] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 08/21/2022] [Accepted: 08/26/2022] [Indexed: 11/26/2022] Open
Abstract
Quorum sensing (QS), a type of bacterial cell–cell communication, produces autoinducers which help in biofilm formation in response to cell population density. In this review, biofilm formation, the role of QS in biofilm formation and development with reference to biological wastewater treatment are discussed. Autoinducers, for example, acyl-homoserine lactones (AHLs), auto-inducing oligo-peptides (AIPs) and autoinducer 2, present in both Gram-negative and Gram-positive bacteria, with their mechanism, are also explained. Over the years, wastewater treatment (WWT) by QS-regulated biofilms and their optimization for WWT have gained much attention. This article gives a comprehensive review of QS regulation methods, QS enrichment methods and QS inhibition methods in biological waste treatment systems. Typical QS enrichment methods comprise adding QS molecules, adding QS accelerants and cultivating QS bacteria, while typical QS inhibition methods consist of additions of quorum quenching (QQ) bacteria, QS-degrading enzymes, QS-degrading oxidants, and QS inhibitors. Potential applications of QS regulated biofilms for WWT have also been summarized. At last, the knowledge gaps present in current researches are analyzed, and future study requirements are proposed.
Collapse
Affiliation(s)
- Sania Sahreen
- Institute of Industrial Biotechnology, Government College University, Lahore 54000, Pakistan
| | - Hamid Mukhtar
- Institute of Industrial Biotechnology, Government College University, Lahore 54000, Pakistan
- Correspondence: (H.M.); (K.I.); Tel.: +92-3334245581 (H.M.); +40-256277186 (K.I.)
| | - Kálmán Imre
- Department of Animal Production and Veterinary Public Health, Faculty of Veterinary Medicine, Banat’s University of Agricultural Sciences and Veterinary Medicine “King Michael I of Romania”, 300645 Timisoara, Romania
- Correspondence: (H.M.); (K.I.); Tel.: +92-3334245581 (H.M.); +40-256277186 (K.I.)
| | - Adriana Morar
- Department of Animal Production and Veterinary Public Health, Faculty of Veterinary Medicine, Banat’s University of Agricultural Sciences and Veterinary Medicine “King Michael I of Romania”, 300645 Timisoara, Romania
| | - Viorel Herman
- Department of Infectious Diseases and Preventive Medicine, Faculty of Veterinary Medicine, Banat’s University of Agricultural Sciences and Veterinary Medicine “King Michael I of Romania”, 300645 Timisoara, Romania
| | - Sundas Sharif
- Institute of Industrial Biotechnology, Government College University, Lahore 54000, Pakistan
| |
Collapse
|