1
|
Yang Y, Wei L, Wang R, Zhao G, Yang S, Cheng H, Wu H, Huang Q. Uncovering the partitioning, transport flux and socioeconomic factors of organophosphate esters in an urban estuary of eastern China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 373:126132. [PMID: 40157482 DOI: 10.1016/j.envpol.2025.126132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 03/12/2025] [Accepted: 03/25/2025] [Indexed: 04/01/2025]
Abstract
The Yangtze River Estuary is considered as a critical transition zone for terrestrial organophosphate esters (OPEs) transported to the open sea, yet their environmental behavior and influencing drivers remain inadequately investigated. Here, we examine the occurrence of eleven OPEs across water, suspended particulate matter (SPM), and sediment, which reveals moderate pollution levels compared to other Chinese estuaries. The OPE partitioning processes are dependent on compound-specific partition coefficients (log Kd), hydraulic factors, and terrestrial input. Compounds with lower log Kow remain mostly dissolved or particulate-bound, whereas higher log Kow OPEs tend to be deposited in sediment. Riverine input and output emerge as the dominant transport pathways for OPEs within the YRE, with an annual input flux of 677 tons. Modeling reveals that tris(1-chloro-2-propyl) phosphate (TCIPP), tris(2-chloroethyl) phosphate (TCEP), and triethyl phosphate (TEP) face significant resuspension risks, indicating their increased transport into the open sea, while tris(2-ethylhexyl) phosphate (TEHP) presents a remarkable sedimentary risk due to its high hydrophobicity. The results suggest that the YRE functions as a source for resuspension-prone compounds and a sink for sediment-bound OPEs, demonstrating their distinct environmental fates. Additionally, aggravating pollution of OPEs has been observed in the Pearl River, Yellow River, and Yangtze River Estuaries with sustained wastewater discharge and rapid urbanization. This study provides an overview of the partitioning processes, transport mechanisms, and anthropogenic threats, thus underlining the need for effective pollution mitigation to protect estuarine ecosystems and promote sustainable water management.
Collapse
Affiliation(s)
- Ya Yang
- Key Laboratory of Yangtze River Water Environment of the Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Lai Wei
- Key Laboratory of Yangtze River Water Environment of the Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Rui Wang
- Key Laboratory of Yangtze River Water Environment of the Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Guohua Zhao
- School of Chemical Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Shouye Yang
- School of Ocean and Earth Science, Tongji University, Shanghai, 200092, China
| | - Haifeng Cheng
- Key Laboratory of Estuarine and Coastal Project, Ministry of Transport, Shanghai Estuarine and Coastal Science Research Center, Shanghai, 201201, China
| | - Hualin Wu
- Key Laboratory of Estuarine and Coastal Project, Ministry of Transport, Shanghai Estuarine and Coastal Science Research Center, Shanghai, 201201, China
| | - Qinghui Huang
- Key Laboratory of Yangtze River Water Environment of the Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China; International Joint Research Center for Sustainable Urban Water System, Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China.
| |
Collapse
|
2
|
Chen P, Song Y, Tang L, Qiu Z, Chen J, Xia S, Iyaswamy A, Cai J, Sun Y, Yang C, Wang J. Integrated RNA sequencing and biochemical studies reveal endoplasmic reticulum stress and autophagy dysregulation contribute to Tri (2-Ethylhexyl) phosphate (TEHP)-induced cell injury in Sertoli cells. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 360:124536. [PMID: 39029862 DOI: 10.1016/j.envpol.2024.124536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 07/05/2024] [Accepted: 07/10/2024] [Indexed: 07/21/2024]
Abstract
Tri (2-Ethylhexyl) phosphate (TEHP), widely used as a fire retardant and plasticizer, has been commonly found in the environment. Its potential health-related risks, especially reproductive toxicity, have aroused concern. However, the potential cellular mechanisms remain unexplored. In this study, we aimed to investigate the molecular mechanisms underlying TEHP-caused cell damage in Sertoli cells, which play a crucial role in supporting spermatogenesis. Our findings indicate that TEHP induces apoptosis in 15P-1 mouse Sertoli cells. Subsequently, we conducted RNA sequencing analyses, which suggested that ER stress, autophagy, and MAPK-related pathways may participate in TEHP-induced cytotoxicity. Furthermore, we demonstrated that TEHP triggers ER stress, activates p38 MAPK, and inhibits autophagy flux. Then, we showed that the inhibition of ER stress or p38 MAPK activation attenuates TEHP-induced apoptosis, while the inhibition of autophagy flux is responsible for TEHP-induced apoptosis. These results collectively reveal that TEHP induces ER stress, activates p38, and inhibits autophagy flux, ultimately leading to apoptosis in Sertoli cells. These shed light on the molecular mechanisms underlying TEHP-associated testicular toxicity.
Collapse
Affiliation(s)
- Pengchen Chen
- Dongguan Maternal and Child Health Care Hospital, Postdoctoral Innovation Practice Base of Southern Medical University, Dongguan, 523125, Guangdong, China; Department of Pulmonary and Critical Care Medicine, Shenzhen Institute of Respiratory Diseases, and Shenzhen Clinical Research Centre for Geriatrics, Shenzhen People's Hospital, First Affiliated Hospital of Southern University of Science and Technology, Second Clinical Medical College of Jinan University, Shenzhen, 518020, Guangdong, China
| | - Yali Song
- Dongguan Maternal and Child Health Care Hospital, Postdoctoral Innovation Practice Base of Southern Medical University, Dongguan, 523125, Guangdong, China
| | - Li Tang
- Dongguan Maternal and Child Health Care Hospital, Postdoctoral Innovation Practice Base of Southern Medical University, Dongguan, 523125, Guangdong, China
| | - Zhuolin Qiu
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Junhui Chen
- Department of Pulmonary and Critical Care Medicine, Shenzhen Institute of Respiratory Diseases, and Shenzhen Clinical Research Centre for Geriatrics, Shenzhen People's Hospital, First Affiliated Hospital of Southern University of Science and Technology, Second Clinical Medical College of Jinan University, Shenzhen, 518020, Guangdong, China
| | - Siyu Xia
- Dongguan Maternal and Child Health Care Hospital, Postdoctoral Innovation Practice Base of Southern Medical University, Dongguan, 523125, Guangdong, China
| | - Ashok Iyaswamy
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China; Department of Biochemistry, Karpagam Academy of Higher Education, Coimbatore, 641021, India
| | - Jing Cai
- Dongguan Maternal and Child Health Care Hospital, Postdoctoral Innovation Practice Base of Southern Medical University, Dongguan, 523125, Guangdong, China
| | - Yan Sun
- Dongguan Maternal and Child Health Care Hospital, Postdoctoral Innovation Practice Base of Southern Medical University, Dongguan, 523125, Guangdong, China
| | - Chuanbin Yang
- Department of Pulmonary and Critical Care Medicine, Shenzhen Institute of Respiratory Diseases, and Shenzhen Clinical Research Centre for Geriatrics, Shenzhen People's Hospital, First Affiliated Hospital of Southern University of Science and Technology, Second Clinical Medical College of Jinan University, Shenzhen, 518020, Guangdong, China.
| | - Jigang Wang
- Dongguan Maternal and Child Health Care Hospital, Postdoctoral Innovation Practice Base of Southern Medical University, Dongguan, 523125, Guangdong, China; Department of Pulmonary and Critical Care Medicine, Shenzhen Institute of Respiratory Diseases, and Shenzhen Clinical Research Centre for Geriatrics, Shenzhen People's Hospital, First Affiliated Hospital of Southern University of Science and Technology, Second Clinical Medical College of Jinan University, Shenzhen, 518020, Guangdong, China; State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| |
Collapse
|
3
|
Sun H, Mi W, Li X, Wang S, Yan J, Zhang G. Organophosphate ester in surface water of the Pearl River and South China Sea, China: Spatial variations and ecological risks. CHEMOSPHERE 2024; 361:142559. [PMID: 38852634 DOI: 10.1016/j.chemosphere.2024.142559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 05/10/2024] [Accepted: 06/05/2024] [Indexed: 06/11/2024]
Abstract
This study focused on investigating the concentrations, compositional profiles, partitioning behaviors and spatial variations of organophosphate esters (OPEs) in the Pearl River (PR), South China Sea (SCS) region, to evaluate their environmental risks. ∑OPEs concentrations in the surface water of the PR ranged from 117.5 to 854.8 ng/L in the dissolved phase and from 0.5 to 13.3 ng/L in the suspended particulate matter. In the surface seawaters of the northern and western parts of the SCS, ∑OPEs concentrations were 1.3-17.6 ng/L (mean: 6.7 ± 5.2) and 2.3-24.4 ng/L (mean: 7.6 ± 5.5), respectively. The percentage of chlorinated OPEs in surface water samples from the PR to the SCS was 79 ± 15%. Tripentyl phosphate (TPeP) (average: 28.3%) and triphenylphosphate (TPhP) (average: 9.6%) exhibited significant particulate fraction. A significant negative correlation (p < 0.05) between salt concentration and OPE congeners in seawater suggested that river runoff predominantly introduced OPEs into the coastal waters of the SCS. The findings also showed higher levels of OPEs in the PR and estuary than in offshore waters. The OPE loading from the PR into the SCS was estimated to be ∼119 t y-1. The presence of TCEP (RQmax = 2.1), TnBP (RQmax = 0.48) and TPhP (RQmax = 0.3) in PR water samples pose a high risk to aquatic organisms, whereas OPEs (RQ < 0.1) in SCS water samples do not pose a threat to aquatic organisms. This research emphasizes the environmental fate and impact of OPEs on surface waters of the PR and SCS.
Collapse
Affiliation(s)
- Haofeng Sun
- National Engineering Research Center for Marine Aquaculture, Zhejiang Ocean University, Zhoushan 316022, China
| | - Wenying Mi
- MINJIE Institute of Environmental Science and Health Research, Geesthacht 21502, Germany
| | - Xunmeng Li
- National Engineering Research Center for Marine Aquaculture, Zhejiang Ocean University, Zhoushan 316022, China
| | - Shuaiqing Wang
- National Engineering Research Center for Marine Aquaculture, Zhejiang Ocean University, Zhoushan 316022, China
| | - Jiehui Yan
- National Engineering Research Center for Marine Aquaculture, Zhejiang Ocean University, Zhoushan 316022, China
| | - Guangyang Zhang
- National Engineering Research Center for Marine Aquaculture, Zhejiang Ocean University, Zhoushan 316022, China.
| |
Collapse
|
4
|
Vidal A, Papillon L, Seignemartin G, Morereau A, Euzen C, Grenz C, Copard Y, Eyrolle F, Sempéré R. Temporal evolution of plastic additive contents over the last decades in two major European rivers (Rhone and Rhine) from sediment cores analyses. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 348:123655. [PMID: 38467366 DOI: 10.1016/j.envpol.2024.123655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 02/22/2024] [Accepted: 02/23/2024] [Indexed: 03/13/2024]
Abstract
Although global plastic distribution is at the heart of 21st century environmental concerns, little information is available concerning how organic plastic additives contaminate freshwater sediments, which are often subject to strong anthropogenic pressure. Here, sediment core samples were collected in the Rhone and the Rhine watersheds (France), dated using 137Cs and 210Pbxs methods and analysed for nine phthalates (PAEs) and seven organophosphate esters (OPEs). The distribution of these organic contaminants was used to establish a chronological archive of plastic additive pollution from 1860 (Rhine) and 1930 (Rhone) until today. Sediment grain size and parameters related to organic matter (OM) were also measured as potential factors that may affect the temporal distribution of OPEs and PAEs in sediments. Our results show that OPE and PAE levels increased continuously in Rhone and Rhine sediments since the first records. In both rivers, ∑PAEs levels (from 9.1 ± 1.7 to 487.3 ± 27.0 ng g-1 dry weight (dw) ± standard deviation and from 4.6 ± 1.3 to 65.2 ± 11.2 ng g-1 dw, for the Rhine and the Rhone rivers, respectively) were higher than ∑OPEs levels (from 0.1 ± 0.1 to 79.1 ± 13.7 ng g-1 dw and from 0.6 ± 0.1 to 17.8 ± 2.3 ng g-1 dw, for Rhine and Rhone rivers, respectively). In both rivers, di(2-ethylhexyl) phthalate (DEHP) was the most abundant PAE, followed by diisobutyl phthalate (DiBP), while tris (2-chloroisopropyl) phosphate (TCPP) was the most abundant OPE. No relationship was found between granulometry and additives concentrations, while organic matter helps explain the vertical distribution of PAEs and OPEs in the sediment cores. This study thus establishes a temporal trajectory of PAEs and OPEs contents over the last decades, leading to a better understanding of historical pollution in these two Western European rivers.
Collapse
Affiliation(s)
- Alice Vidal
- Aix Marseille Univ., University of Toulon, CNRS, IRD, MIO UM 110, Marseille, France.
| | - Laure Papillon
- Aix Marseille Univ., University of Toulon, CNRS, IRD, MIO UM 110, Marseille, France
| | - Gabrielle Seignemartin
- Univ. Lyon, Université Claude Bernard Lyon 1, CNRS, ENTPE, UMR5023 LEHNA, F-69518, Vaulx-en-Velin, France
| | - Amandine Morereau
- Institut de Radioprotection et de Sureté Nucléaire (IRSN), PSE-ENV, STAAR/LRTA, BP 3, 13115, Saint-Paul-lez-Durance, France; Sorbonne-Université, UMR CNRS, 7619 METIS, 75252, Paris, France
| | - Cassandra Euzen
- Univ, Strasbourg, CNRS, ENGEES, UMR7362 LIVE, Strasbourg, France
| | - Christian Grenz
- Aix Marseille Univ., University of Toulon, CNRS, IRD, MIO UM 110, Marseille, France
| | - Yoann Copard
- Univ. Rouen Normandie, Université Caen Normandie, CNRS, Normandie Univ, M2C UMR 6143, F-76000, Rouen, France
| | - Frédérique Eyrolle
- Institut de Radioprotection et de Sureté Nucléaire (IRSN), PSE-ENV, STAAR/LRTA, BP 3, 13115, Saint-Paul-lez-Durance, France
| | - Richard Sempéré
- Aix Marseille Univ., University of Toulon, CNRS, IRD, MIO UM 110, Marseille, France
| |
Collapse
|
5
|
Ke Z, Tang J, Sun J, Bu Q, Yang L, Xu Y. Influence of watershed characteristics and human activities on the occurrence of organophosphate esters related to dissolved organic matter in estuarine surface water. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 914:169956. [PMID: 38211871 DOI: 10.1016/j.scitotenv.2024.169956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 01/04/2024] [Accepted: 01/04/2024] [Indexed: 01/13/2024]
Abstract
Organophosphate esters (OPEs) are widespread in aquatic environments and pose potential threats to ecosystem and human health. Here, we profiled OPEs in surface water samples of heavily urbanized estuaries in eastern China and investigated the influence of watershed characteristics and human activities on the spatial distribution of OPEs related to dissolved organic matter (DOM). The total OPE concentration ranged from 22.3 to 1201 ng/L, with a mean of 162.6 ± 179.8 ng/L. Chlorinated OPEs were the predominant contaminant group, accounting for 27.4-99.6 % of the total OPE concentration. Tris(2-chloroisopropyl) phosphate, tris(1,3-dichloro-2-propyl) phosphate, and tributyl phosphate were the dominant compounds, with mean concentrations of 111.2 ± 176.0 ng/L, 22.6 ± 21.5 ng/L, and 14.8 ± 14.9 ng/L, respectively. Variable OPE levels were observed in various functional areas, with significantly higher concentrations in industrial areas than in other areas. Potential source analysis revealed that sewage treatment plant effluents and industrial activities were the primary OPE sources. The total OPE concentrations were negatively correlated to the mean slope, plan curvature, and elevation, indicating that watershed characteristics play a role in the occurrence of OPEs. Individual OPEs (triisobutyl phosphate, tris(2-butoxyethyl) phosphate, tris(2-chloroethyl) phosphate, and tricresyl phosphate) and Σalkyl-OPEs were positively correlated to the night light index or population density, suggesting a significant contribution of human activity to OPE pollution. The co-occurrence of OPEs and DOM was also observed, and the fluorescence indices of DOM were found to be possible indicators for tracing OPEs. These findings can elucidate the potential OPE dynamics in response to DOM in urbanized estuarine water environments with intensive human activities.
Collapse
Affiliation(s)
- Ziyan Ke
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315800, China
| | - Jianfeng Tang
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315800, China.
| | - Jing Sun
- College of Resources and Environment, Chengdu University of Information Technology, Chengdu 610225, China
| | - Qingwei Bu
- School of Chemical & Environmental Engineering, China University of Mining & Technology-Beijing, Beijing 100083, China
| | - Lei Yang
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yaoyang Xu
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315800, China
| |
Collapse
|
6
|
Yang M, Ye L, Li J, Xing L, Zhao Y, Yang C, Su G. Uncovering the distribution patterns and origins of organophosphate esters (OPEs) in the Yellow River Estuary via high-resolution mass spectrometry. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167288. [PMID: 37742975 DOI: 10.1016/j.scitotenv.2023.167288] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 09/19/2023] [Accepted: 09/20/2023] [Indexed: 09/26/2023]
Abstract
Limited information is available regarding the pollution status of organophosphate esters (OPEs) in the environment of the Yellow River estuary. Here, n = 51 sediment samples were collected from the Yellow River estuary in 2021, and further analyzed by using the integrated target, suspect, and feature fragment-dependent nontarget OPE screening strategy developed in our laboratory. Among the 30 target OPEs, 19 were detectable in at least one of the analyzed samples, with total concentrations (Σ19OPEs) ranging from of 41.4 to 1930 ng/g dry weight (dw). On the basis of an in-house suspect compound database, we further tentatively identified 11 suspect OPEs, and they were semi-quantified. Furthermore, four other interesting findings were observed and described as follows: 1) a statistically significant difference existed in the concentrations of OPEs in sediment samples between the lower reaches of the Yellow River (n = 5 samples), and the Yellow River estuary (n = 46 samples) (unpaired t-test, p < 0.001); 2) tris(2,4-di-tert-butylphenyl)phosphate (TDTBPP) exhibited the greatest concentrations (ranging from 30.7 to 1920 ng/g dw) among all OPEs detected in the sediment samples; 3) samples from the north of the Yellow River estuary had higher OPE concentrations than those from the south; and 4) a suspect screening strategy allowed us to identify a novel OPE structure (tert-butyl)phenyl (ethyne-oxidane) bis(2,4-di-tert-butylphenyl) phosphate (TPBDTP) that exhibited a highly positive correlation relationship with TDTBPP (r = 0.749; p < 0.001). Overall, this study provided evidence that OPEs (especially TDTBPP) were ubiquitous in the sediment environment of the Yellow River estuary; thus, we emphasize that continuous monitoring of OPE pollution should be conducted in this region.
Collapse
Affiliation(s)
- Mengkai Yang
- Key Laboratory of Environmental Remediation and Ecological Health, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Langjie Ye
- Key Laboratory of Environmental Remediation and Ecological Health, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Jianhua Li
- Key Laboratory of Environmental Remediation and Ecological Health, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Liqun Xing
- Nanjing University & Yancheng Academy of Environmental Protection Technology and Engineering, Yancheng 224000, China
| | - Yanmin Zhao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Chenchen Yang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Guanyong Su
- Key Laboratory of Environmental Remediation and Ecological Health, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
| |
Collapse
|
7
|
Jin R, Li Y, Saito Y, Wang Z, Oanh Ta TK, Nguyen VL, Yang J, Liu M, Wu Y. Amino accelerators and antioxidants in sediments from the Dong Nai River System, Vietnam: Distribution and influential factors. ENVIRONMENTAL RESEARCH 2023; 227:115712. [PMID: 36933640 DOI: 10.1016/j.envres.2023.115712] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 03/02/2023] [Accepted: 03/15/2023] [Indexed: 05/08/2023]
Abstract
Amino accelerators and antioxidants (AAL/Os) have become a suite of contaminants of emerging concern recently due to the accumulating evidence for their environmental occurrence and associated toxic potential. Nevertheless, data on sedimentary deposition of AAL/Os has remained scarce, particularly for regions beyond the North America. In the present study, we elucidated spatial distribution of fifteen AAL/Os and five AAO transformation products (AAOTPs) in seventy-seven sediments from the Dong Nai River System (DNRS), Vietnam. Total concentrations of AAL/Os (∑AAL/Os) ranged from 0.377 to 51.4 ng/g (median: 5.01 ng/g). 1,3-Diphenylguanidine and 4,4'-bis(1,1-dimethylbenzyl) diphenylamine were the two most prevalent congeners, both with detection frequencies >80%. Additionally, AAOTPs were quantifiable in 79% of the DNRS sediments with a median ∑AAOTPs at 2.19 ng/g, dominated by N, N'-diphenylbenzidine and 2-nitrodiphenylamine. Higher sediment-associated levels of AAL/Os and AAOTPs were spotted in downstream and the primary tributary of the DNRS compared to the upstream, implying their cumulative sedimentation towards the estuarine region. The distribution patterns of AAL/Os and AAOTPs across individual transects also demonstrated the influence of human activities (e.g., urbanization and agriculture), hydrodynamics, and decontamination by mangrove reserves. Meanwhile, characteristics of sediments, i.e., total organic carbon (TOC) content and grain sizes, exhibited significant correlations with the burdens of these compounds, indicating their preferential partitioning into the fine and TOC-rich matter. This research sheds light on environmental behavior of AAL/Os and AAOTPs beneath Asian aquatic system, and highlights the need for further evaluation of their impacts on the wildlife and public health.
Collapse
Affiliation(s)
- Ruihe Jin
- Key Laboratory of Geographic Information Science (Ministry of Education), School of Geographic Sciences, East China Normal University, Shanghai 200241, China
| | - Yue Li
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200241, China.
| | - Yoshiki Saito
- Estuary Research Center, Shimane University, Nishikawatsu-cho 1060, Matsue, 690-8504, Japan; Geological Survey of Japan, AIST. Central 7, Higashi 1-1-1, Tsukuba, 305-8567, Japan
| | - Zhanghua Wang
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200241, China
| | - Thi Kim Oanh Ta
- HCMC Institute of Resources Geography, Tay Nguyen Institute of Scientific Research, VAST, Ho Chi Minh City, Viet Nam
| | - Van Lap Nguyen
- HCMC Institute of Resources Geography, Tay Nguyen Institute of Scientific Research, VAST, Ho Chi Minh City, Viet Nam
| | - Jing Yang
- Key Laboratory of Geographic Information Science (Ministry of Education), School of Geographic Sciences, East China Normal University, Shanghai 200241, China; Key Laboratory of Spatial-temporal Big Data Analysis and Application of Natural Resources in Megacities, Ministry of Natural Resources, Shanghai, 200241, China
| | - Min Liu
- Key Laboratory of Geographic Information Science (Ministry of Education), School of Geographic Sciences, East China Normal University, Shanghai 200241, China; Key Laboratory of Spatial-temporal Big Data Analysis and Application of Natural Resources in Megacities, Ministry of Natural Resources, Shanghai, 200241, China
| | - Yan Wu
- Key Laboratory of Geographic Information Science (Ministry of Education), School of Geographic Sciences, East China Normal University, Shanghai 200241, China; Key Laboratory of Spatial-temporal Big Data Analysis and Application of Natural Resources in Megacities, Ministry of Natural Resources, Shanghai, 200241, China.
| |
Collapse
|