1
|
Cardona-Cabrera T, Martínez-Álvarez S, González-Azcona C, Gijón-García CJ, Alexandrou O, Catsadorakis G, Azmanis P, Torres C, Höfle U. High Antimicrobial Susceptibility of Cloacal Enterococci and Escherichia coli from Free-Living Dalmatian and Great White Pelicans with Detection of Cefotaximase CTX-M-15 Producing Escherichia coli ST69. Antibiotics (Basel) 2025; 14:83. [PMID: 39858369 PMCID: PMC11761880 DOI: 10.3390/antibiotics14010083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 12/20/2024] [Accepted: 01/07/2025] [Indexed: 01/27/2025] Open
Abstract
Background/Objectives: In 2022, an outbreak of H5N1 highly pathogenic avian influenza (HPAI) killed 60% of the largest breeding colony of Dalmatian pelicans (DPs) in the world at Mikri Prespa Lake (Greece), prompting a multidisciplinary study on HPAI and other pathogens. This study determines the antimicrobial resistance rates of cloacal enterococci and Escherichia coli in DPs. Methods: Fifty-two blood and cloacal swab samples were collected from 31 nestlings (20 DP/11 great white pelicans) hatched after the H5N1 outbreak at the Prespa colony and 21 subadult/adult DPs captured at a spring migration stopover. The swabs were inoculated in non-selective and chromogenic-selective media. Identification was performed using MALDI-TOF, and antimicrobial susceptibility was tested. The genetic content was characterized using PCR and sequencing, and the clonality of extended-spectrum beta-lactamase (ESBL)-producing Escherichia coli isolates was characterized using Multilocus Sequence Typing. Results: Twenty-eight non-repetitive E. coli and 45 enterococci isolates were recovered in non-selective media; most of them were susceptible to all antibiotics tested (85.7% E. coli/91.1% enterococci). Three of the fifty-two samples (6%, all adults) contained ESBL-E. coli isolates (detected in chromogenic ESBL plates), all carrying the blaCTX-M-15 gene and belonging to the lineage ST69. Conclusions: Despite the susceptibility of most fecal E. coli and enterococci isolates to all antibiotics tested, the finding that E. coli of lineage ST69 carry blaCTX-M-15 is of concern. This high-risk clone needs further investigation to elucidate its primary sources and address the growing threat of antimicrobial resistance from an integrated "One Health" perspective. Furthermore, it is imperative to study the potential impacts of ESBL-E. coli on the endangered DP further.
Collapse
Affiliation(s)
- Teresa Cardona-Cabrera
- SaBio Health and Biotechnology Research Group, Institute for Game and Wildlife Research (IREC), Ronda de Toledo 12, 13071 Ciudad Real, Spain; (T.C.-C.); (C.J.G.-G.)
| | - Sandra Martínez-Álvarez
- Area of Biochemistry and Molecular Biology, One Health-UR Research Group, University of La Rioja, Calle Madre de Dios 53, 26006 Logroño, Spain; (S.M.-Á.); (C.G.-A.); (C.T.)
| | - Carmen González-Azcona
- Area of Biochemistry and Molecular Biology, One Health-UR Research Group, University of La Rioja, Calle Madre de Dios 53, 26006 Logroño, Spain; (S.M.-Á.); (C.G.-A.); (C.T.)
| | - Carlos Javier Gijón-García
- SaBio Health and Biotechnology Research Group, Institute for Game and Wildlife Research (IREC), Ronda de Toledo 12, 13071 Ciudad Real, Spain; (T.C.-C.); (C.J.G.-G.)
| | - Olga Alexandrou
- Society for the Protection of Prespa, Agios Germanos, Prespa, 53150 Florina, Greece; (O.A.); (G.C.)
| | - Giorgos Catsadorakis
- Society for the Protection of Prespa, Agios Germanos, Prespa, 53150 Florina, Greece; (O.A.); (G.C.)
| | - Panagiotis Azmanis
- Dubai Falcon Hospital, 22a Street, Zabeel 2, Dubai P.O. Box 23919, United Arab Emirates;
| | - Carmen Torres
- Area of Biochemistry and Molecular Biology, One Health-UR Research Group, University of La Rioja, Calle Madre de Dios 53, 26006 Logroño, Spain; (S.M.-Á.); (C.G.-A.); (C.T.)
| | - Ursula Höfle
- SaBio Health and Biotechnology Research Group, Institute for Game and Wildlife Research (IREC), Ronda de Toledo 12, 13071 Ciudad Real, Spain; (T.C.-C.); (C.J.G.-G.)
| |
Collapse
|
2
|
Fang XM, Li J, Wang NF, Zhang T, Yu LY. Metagenomics uncovers microbiome and resistome in soil and reindeer faeces from Ny-Ålesund (Svalbard, High Arctic). ENVIRONMENTAL RESEARCH 2024; 262:119788. [PMID: 39159777 DOI: 10.1016/j.envres.2024.119788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 07/29/2024] [Accepted: 08/12/2024] [Indexed: 08/21/2024]
Abstract
Research on the microbiome and resistome in polar environments, such as the Arctic, is crucial for understanding the emergence and spread of antibiotic resistance genes (ARGs) in the environment. In this study, soil and reindeer faeces samples collected from Ny-Ålesund (Svalbard, High Arctic) were examined to analyze the microbiome, ARGs, and biocide/metal resistance genes (BMRGs). The dominant phyla in both soil and faeces were Pseudomonadota, Actinomycetota, and Bacteroidota. A total of 2618 predicted Open Reading Frames (ORFs) containing antibiotic resistance genes (ARGs) were detected. These ARGs belong to 162 different genes across 17 antibiotic classes, with rifamycin and multidrug resistance genes being the most prevalent. We focused on investigating antibiotic resistance mechanisms in the Ny-Ålesund environment by analyzing the resistance genes and their biological pathways. Procrustes analysis demonstrated a significant correlation between bacterial communities and ARG/BMRG profiles in soil and faeces samples. Correlation analysis revealed that Pseudomonadota contributed most to multidrug and triclosan resistance, while Actinomycetota were predominant contributors to rifamycin and aminoglycoside resistance. The geochemical factors, SiO42- and NH4+, were found to significantly influence the microbial composition and ARG distribution in the soil samples. Analysis of ARGs, BMRGs, virulence factors (VFs), and pathogens identified potential health risks associated with certain bacteria, such as Cryobacterium and Pseudomonas, due to the presence of different genetic elements. This study provided valuable insights into the molecular mechanisms and geochemical factors contributing to antibiotic resistance and enhanced our understanding of the evolution of antibiotic resistance genes in the environment.
Collapse
Affiliation(s)
- Xiao-Mei Fang
- China Pharmaceutical Culture Collection, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, P.R. China; Division for Medicinal Microorganism-Related Strains, CAMS Collection Center of Pathogenic Microorganisms, Beijing, 100050, P.R. China
| | - Jun Li
- China Pharmaceutical Culture Collection, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, P.R. China; Division for Medicinal Microorganism-Related Strains, CAMS Collection Center of Pathogenic Microorganisms, Beijing, 100050, P.R. China
| | - Neng-Fei Wang
- School of Chemistry and Chemical Engineering, Linyi University, Linyi, 276005, P.R. China
| | - Tao Zhang
- China Pharmaceutical Culture Collection, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, P.R. China; Division for Medicinal Microorganism-Related Strains, CAMS Collection Center of Pathogenic Microorganisms, Beijing, 100050, P.R. China.
| | - Li-Yan Yu
- China Pharmaceutical Culture Collection, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, P.R. China; Division for Medicinal Microorganism-Related Strains, CAMS Collection Center of Pathogenic Microorganisms, Beijing, 100050, P.R. China.
| |
Collapse
|
3
|
Erika E, Scarpellini R, Celli G, Marliani G, Zaghini A, Mondo E, Rossi G, Piva S. Wild birds as potential bioindicators of environmental antimicrobial resistance: A preliminary investigation. Res Vet Sci 2024; 180:105424. [PMID: 39357073 DOI: 10.1016/j.rvsc.2024.105424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 09/04/2024] [Accepted: 09/23/2024] [Indexed: 10/04/2024]
Abstract
Antimicrobial resistance (AMR) is an issue of global concern that includes human, animal, and environmental health. To tackle this phenomenon, a One Health approach is required through the involvement of all these interconnected elements. The environment poses challenges for investigation, but wildlife animals, not directly exposed to antibiotic treatments and interacting with their habitats, can serve as indicators of AMR contamination. Specifically, wild birds could play a significant role in dissemination of AMR, as they can acquire AMR bacteria from wildlife reservoirs and disperse them through environments. This study aims to assess the prevalence of AMR in commensal bacteria isolated from wild birds and their role as bioindicators of environmental AMR. A total of 73 birds belonging to various species were sampled in the Emilia-Romagna region with buccal, cloacal and feather samplings. The samples were cultured on selective media, colonies were identified using MALDI-TOF technology and antimicrobial susceptibility to different drugs was assessed using the Kirby-Bauer method. The birds' data were statistically evaluated in relation to AMR percentages. In total, 117 bacterial strains were isolated, belonging to 23 genera and 46 different bacterial species. The highest non-susceptibility percentages were observed for tetracycline (12.2 %) and enrofloxacin (8.6 %) considering all bacterial isolates, as well as for oxacillin (46.8 %), clindamycin (29.3 %) and rifampicin (20.8 %), among Gram-positive isolates. In the statistical analysis, a higher AMR percentage was correlated with Gram-positive isolates from birds belonging to rural/urban habitat (p = 0.01). Among Gram-positives, a higher oxacillin non-susceptibility percentage was found to be associated with isolates from birds sampled in province of Bologna (p = 0.007), a higher enrofloxacin non-susceptibility percentage revealed an association with rural/urban habitat (p = 0.02), while a higher non-susceptibility percentage towards rifampicin resulted associated with isolates from migratory birds (p = 0.031). In conclusion, this preliminary study suggests a potential role of wild birds as bioindicators for monitoring AMR contamination in the environment.
Collapse
Affiliation(s)
- Esposito Erika
- Department of Veterinary Medical Sciences, Alma Mater Studiorum - University of Bologna, Via Tolara di Sopra 50, Ozzano dell'Emilia, 40064 Bologna, Italy.
| | - Raffaele Scarpellini
- Department of Veterinary Medical Sciences, Alma Mater Studiorum - University of Bologna, Via Tolara di Sopra 50, Ozzano dell'Emilia, 40064 Bologna, Italy
| | - Ginevra Celli
- Department of Veterinary Medical Sciences, Alma Mater Studiorum - University of Bologna, Via Tolara di Sopra 50, Ozzano dell'Emilia, 40064 Bologna, Italy
| | - Giovanna Marliani
- Department of Veterinary Medical Sciences, Alma Mater Studiorum - University of Bologna, Via Tolara di Sopra 50, Ozzano dell'Emilia, 40064 Bologna, Italy
| | - Anna Zaghini
- Department of Veterinary Medical Sciences, Alma Mater Studiorum - University of Bologna, Via Tolara di Sopra 50, Ozzano dell'Emilia, 40064 Bologna, Italy
| | - Elisabetta Mondo
- Department of Veterinary Medical Sciences, Alma Mater Studiorum - University of Bologna, Via Tolara di Sopra 50, Ozzano dell'Emilia, 40064 Bologna, Italy
| | - Giuseppe Rossi
- Italian League for Bird Protection, Bologna, Modena Section, Via Canaletto 88, 41122 Modena, Italy
| | - Silvia Piva
- Department of Veterinary Medical Sciences, Alma Mater Studiorum - University of Bologna, Via Tolara di Sopra 50, Ozzano dell'Emilia, 40064 Bologna, Italy
| |
Collapse
|
4
|
Jarma D, Sacristán-Soriano O, Borrego CM, Hortas F, Peralta-Sánchez JM, Balcázar JL, Green AJ, Alonso E, Sánchez-Melsió A, Sánchez MI. Variability of faecal microbiota and antibiotic resistance genes in flocks of migratory gulls and comparison with the surrounding environment. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 359:124563. [PMID: 39019307 DOI: 10.1016/j.envpol.2024.124563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 07/05/2024] [Accepted: 07/14/2024] [Indexed: 07/19/2024]
Abstract
Gulls commonly rely on human-generated waste as their primary food source, contributing to the spread of antibiotic-resistant bacteria and their resistance genes, both locally and globally. Our understanding of this process remains incomplete, particularly in relation to its potential interaction with surrounding soil and water. We studied the lesser black-backed gull, Larus fuscus, as a model to examine the spatial variation of faecal bacterial communities, antibiotic resistance genes (ARGs), and mobile genetic elements (MGEs) and its relationship with the surrounding water and soil. We conducted sampling campaigns within a connectivity network of different flocks of gulls moving across functional units (FUs), each of which represents a module of highly interconnected patches of habitats used for roosting and feeding. The FUs vary in habitat use, with some gulls using more polluted sites (notably landfills), while others prefer more natural environments (e.g., wetlands or beaches). Faecal bacterial communities in gulls from flocks that visit and spend more time in landfills exhibited higher richness and diversity. The faecal microbiota showed a high compositional overlap with bacterial communities in soil. The overlap was greater when compared to landfill (11%) than to wetland soils (6%), and much lower when compared to bacterial communities in surrounding water (2% and 1% for landfill and wetland water, respectively). The relative abundance of ARGs and MGEs were similar between FUs, with variations observed only for specific families of ARGs and MGEs. When exploring the faecal carriage of ARGs and MGEs in bird faeces relative to soil and water compartments, gull faeces were enriched in ARGs classified as High-Risk. Our results shed light on the complex dynamics of antibiotic resistance spread in wild bird populations, providing insights into the interactions among gull movement and feeding behavior, habitat characteristics, and the dissemination of antibiotic resistance determinants across environmental reservoirs.
Collapse
Affiliation(s)
- Dayana Jarma
- Departamento de Biología, Instituto Universitario de Investigación Marina (INMAR), Campus de Excelencia Internacional del Mar (CEI·MAR), Universidad de Cádiz, Avda. República Árabe Saharaui Democrática 6, 11519, Puerto Real, Cádiz, Spain.
| | - Oriol Sacristán-Soriano
- Institut Català de Recerca de l'Aigua (ICRA-CERCA), Emili Grahit 101, E-17003, Girona, Spain; Universitat de Girona, E-1700, Girona, Spain
| | - Carles M Borrego
- Institut Català de Recerca de l'Aigua (ICRA-CERCA), Emili Grahit 101, E-17003, Girona, Spain; Grup d'Ecologia Microbiana Molecular, Institut d'Ecologia Aquàtica, Universitat de Girona, Campus de Montilivi, E-17003, Girona, Spain
| | - Francisco Hortas
- Departamento de Biología, Instituto Universitario de Investigación Marina (INMAR), Campus de Excelencia Internacional del Mar (CEI·MAR), Universidad de Cádiz, Avda. República Árabe Saharaui Democrática 6, 11519, Puerto Real, Cádiz, Spain
| | - Juan M Peralta-Sánchez
- Departmento de Zoología, Facultad de Biología, Universidad de Sevilla, Avda. Reina Mercedes 6, 41012, Seville, Spain
| | - José L Balcázar
- Institut Català de Recerca de l'Aigua (ICRA-CERCA), Emili Grahit 101, E-17003, Girona, Spain; Universitat de Girona, E-1700, Girona, Spain
| | - Andy J Green
- Department of Conservation Biology and Global Change, Estación Biológica de Doñana, EBD-CSIC, Avda. Américo Vespucio 26, 41092, Seville, Spain
| | - Esteban Alonso
- Departamento de Química Analítica, Escuela Politécnica Superior, Universidad de Sevilla, C/Virgen de África, 7, 41011, Sevilla, Spain
| | - Alexandre Sánchez-Melsió
- Institut Català de Recerca de l'Aigua (ICRA-CERCA), Emili Grahit 101, E-17003, Girona, Spain; Universitat de Girona, E-1700, Girona, Spain
| | - Marta I Sánchez
- Department of Conservation Biology and Global Change, Estación Biológica de Doñana, EBD-CSIC, Avda. Américo Vespucio 26, 41092, Seville, Spain
| |
Collapse
|
5
|
S V, T J, E AP, A MHA. Antibiotic resistance of heterotrophic bacteria from the sediments of adjoining high Arctic fjords, Svalbard. Braz J Microbiol 2024; 55:2371-2383. [PMID: 38767750 PMCID: PMC11405572 DOI: 10.1007/s42770-024-01368-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 04/08/2024] [Indexed: 05/22/2024] Open
Abstract
Antibiotic resistance bacteria (ARB) and antibiotic resistance genes (ARGs) are now considered major global threats. The Kongsfjorden and Krossfjorden are the interlinked fjords in the Arctic that are currently experiencing the effects of climate change and receiving input of pollutants from distant and regional sources. The present study focused on understanding the prevalence of antibiotic resistance of retrievable heterotrophic bacteria from the sediments of adjacent Arctic fjords Kongsfjorden and Krossfjorden. A total of 237 bacterial isolates were tested against 16 different antibiotics. The higher resistance observed towards Extended Spectrum β-lactam antibiotic (ESBL) includes ceftazidime (45.56%) followed by trimethoprim (27%) and sulphamethizole (24.05%). The extent of resistance was meagre against tetracycline (2.53%) and gentamycin (2.95%). The 16S rRNA sequencing analysis identified that Proteobacteria (56%) were the dominant antibiotic resistant phyla, followed by Firmicutes (35%), Actinobacteria (8%) and Bacteroidetes. The dominant resistant bacterial isolates are Bacillus cereus (10%), followed by Alcaligenes faecalis (6.47%), Cytobacillus firmus (5.75%) Salinibacterium sp. (5%) and Marinobacter antarcticus (5%). Our study reveals the prevalence of antibiotic resistance showed significant differences in both the inner and outer fjords of Kongsfjorden and Krossfjorden (p < 0.05). This may be the input of antibiotic resistance bacteria released into the fjords from the preserved permafrost due to the melting of glaciers, horizontal gene transfer, and human influence in the Arctic region act as a selection pressure for the development and dissemination of more antibiotic resistant bacteria in Arctic fjords.
Collapse
Affiliation(s)
- Vishnupriya S
- Department of Marine Biology, Microbiology, Biochemistry, School of Marine Sciences, Cochin University of Science and Technology (CUSAT), Kochi, India.
| | - Jabir T
- National Centre for Polar and Ocean Research, Ministry of Earth Sciences, Headland Sada, 403 804, Vasco- da-Gama, Goa, India
| | - Akhil Prakash E
- Department of Marine Biology, Microbiology, Biochemistry, School of Marine Sciences, Cochin University of Science and Technology (CUSAT), Kochi, India
| | - Mohamed Hatha A A
- Department of Marine Biology, Microbiology, Biochemistry, School of Marine Sciences, Cochin University of Science and Technology (CUSAT), Kochi, India
- CUSAT NCPOR Centre for Polar Sciences, School of Marine Sciences, Cochin University of Science and Technology (CUSAT), Kochi, India
| |
Collapse
|
6
|
Dos Santos LA, Cayô R, Valiatti TB, Gales AC, de Araújo LFB, Rodrigues FM, de Carvalho TS, Vaz MAB, Campanharo M. Biodiversity of carbapenem-resistant bacteria in clinical samples from the Southwest Amazon region (Rondônia/Brazil). Sci Rep 2024; 14:9383. [PMID: 38654061 DOI: 10.1038/s41598-024-59733-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 04/15/2024] [Indexed: 04/25/2024] Open
Abstract
Brazil is recognized for its biodiversity and the genetic variability of its organisms. This genetic variability becomes even more valuable when it is properly documented and accessible. Understanding bacterial diversity through molecular characterization is necessary as it can improve patient treatment, reduce the length of hospital stays and the selection of resistant bacteria, and generate data for health and epidemiological surveillance. In this sense, in this study, we aimed to understand the biodiversity and molecular epidemiology of carbapenem-resistant bacteria in clinical samples recovered in the state of Rondônia, located in the Southwest Amazon region. Retrospective data from the Central Public Health Laboratories (LACEN/RO) between 2018 and 2021 were analysed using the Laboratory Environment Manager Platform (GAL). Seventy-two species with carbapenem resistance profiles were identified, of which 25 species carried at least one gene encoding carbapenemases of classes A (blaKPC-like), B (blaNDM-like, blaSPM-like or blaVIM-like) and D (blaOXA-23-like, blaOXA-24-like, blaOXA-48-like, blaOXA-58-like or blaOXA-143-like), among which we will highlight Klebsiella pneumoniae, Pseudomonas aeruginosa, Acinetobacter baumannii, Serratia marcescens, and Providencia spp. With these results, we hope to contribute to the field by providing epidemiological molecular data for state surveillance on bacterial resistance and assisting in public policy decision-making.
Collapse
Affiliation(s)
- Levy Assis Dos Santos
- Federal University of Rondônia Foundation (UNIR), Postgraduate Program in Conservation and Use of Natural Resources (PPGReN), Porto Velho, RO, Brazil.
- Central Public Health Laboratory of Rondônia (LACEN/RO), Medical Biology Center, Porto Velho, RO, Brazil.
| | - Rodrigo Cayô
- Laboratory ALERTA, Department of Medicine, Paulista School of Medicine (EPM), Federal University of São Paulo (UNIFESP), São Paulo, SP, Brazil
- Laboratory of Bacteriology and Immunology (LIB), Department of Biological Sciences (DCB), Institute of Environmental, Chemical and Pharmaceutical Sciences (ICAQF), Federal University of São Paulo (UNIFESP), Diadema, SP, Brazil
| | - Tiago Barcelos Valiatti
- Laboratory ALERTA, Department of Medicine, Paulista School of Medicine (EPM), Federal University of São Paulo (UNIFESP), São Paulo, SP, Brazil
| | - Ana Cristina Gales
- Laboratory ALERTA, Department of Medicine, Paulista School of Medicine (EPM), Federal University of São Paulo (UNIFESP), São Paulo, SP, Brazil
| | - Larissa Fatarelli Bento de Araújo
- Federal University of Rondônia Foundation (UNIR), Postgraduate Program in Conservation and Use of Natural Resources (PPGReN), Porto Velho, RO, Brazil
| | - Fernando Marques Rodrigues
- Central Public Health Laboratory of Rondônia (LACEN/RO), Medical Biology Center, Porto Velho, RO, Brazil
| | - Tatiane Silva de Carvalho
- Central Public Health Laboratory of Rondônia (LACEN/RO), Medical Biology Center, Porto Velho, RO, Brazil
| | - Marcos André Braz Vaz
- Department of Informatics and Statistics, Federal University of Santa Catarina (UFSC), Florianópolis, SC, Brazil
| | - Marcela Campanharo
- Federal University of Rondônia Foundation (UNIR), Postgraduate Program in Conservation and Use of Natural Resources (PPGReN), Porto Velho, RO, Brazil
- Department of Agricultural and Biological Sciences (DCAB), Federal University of Espirito Santo, São Mateus, ES, Brazil
| |
Collapse
|
7
|
Ren Z, Li H, Luo W. Unraveling the mystery of antibiotic resistance genes in green and red Antarctic snow. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 915:170148. [PMID: 38246373 DOI: 10.1016/j.scitotenv.2024.170148] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 01/09/2024] [Accepted: 01/11/2024] [Indexed: 01/23/2024]
Abstract
Antarctic snow is a thriving habitat for a diverse array of complex microorganisms, and can present in different colors due to algae blooms. However, the potential role of Antarctic snow as reservoirs for antibiotic resistance genes (ARGs) has not been studied. Using metagenomic sequencing, we studied ARGs in green-snow and red-snow on the Fildes Peninsula, Antarctica. Alpha and beta diversities of ARGs, as well as co-occurrence between ARGs and bacteria were assessed. The results showed that a total of 525 ARGs conferring resistance to 30 antibiotic classes were detected across the samples, with half of the ARGs presented in all samples. Green-snow exhibited a higher number of ARGs compared to red-snow. The most abundant ARGs conferring resistance to commonly used antibiotics, including disinfecting agents and antiseptics, peptide, isoniazid, MLS, fluoroquinolone, aminocoumarin, etc. Multidrug resistance genes stood out as the most diverse and abundant, with antibiotic efflux emerging as the dominant resistance mechanism. Interestingly, the composition of ARGs in green-snow markedly differed from that in red-snow, highlighting distinct ARG profiles. Beta-diversity partitioning showed a higher contribution of nestedness for ARG's variation in green-snow, while higher contribution of turnover in red-snow. Furthermore, the co-occurrence analysis between ARGs and bacteria unveiled intricate relationships, indicating that certain ARGs may have multiple potential hosts. The observed differences in co-occurrence networks between green-snow and red-snow suggested distinct host relationships between ARGs and bacteria in these colored snows. Given the increasing appearance of the colored snow around the world due to the climate change, the results shed light on the mystery and potential implication of ARGs in green and red Antarctic snow.
Collapse
Affiliation(s)
- Ze Ren
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Huirong Li
- Key Laboratory for Polar Science, Polar Research Institute of China, Ministry of Natural Resources, Shanghai 200136, China; Key Laboratory of Polar Ecosystem and Climate Change, Shanghai Jiao Tong University, Ministry of Education, Shanghai 200030, China; Shanghai Key Laboratory of Polar Life and Environment Sciences, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Wei Luo
- Key Laboratory for Polar Science, Polar Research Institute of China, Ministry of Natural Resources, Shanghai 200136, China; Key Laboratory of Polar Ecosystem and Climate Change, Shanghai Jiao Tong University, Ministry of Education, Shanghai 200030, China; Shanghai Key Laboratory of Polar Life and Environment Sciences, Shanghai Jiao Tong University, Shanghai 200030, China.
| |
Collapse
|
8
|
Abdel-Glil MY, Braune S, Bouwhuis S, Sprague LD. First Description of Mergibacter septicus Isolated from a Common Tern ( Sterna hirundo) in Germany. Pathogens 2023; 12:1096. [PMID: 37764904 PMCID: PMC10536934 DOI: 10.3390/pathogens12091096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/22/2023] [Accepted: 08/25/2023] [Indexed: 09/29/2023] Open
Abstract
Mergibacter septicus (M. septicus), previously known as Bisgaard Taxon 40, is a recently described species within the Pasteurellaceae family. In this study, we present a M. septicus strain isolated from a common tern (Sterna hirundo) chick that died just after fledging from the Banter See in Wilhelmshaven, Germany. The recovered M. septicus strain underwent microbiological phenotypic characterization, followed by whole genome sequencing on Illumina and Nanopore platforms. Phenotypically, M. septicus 19Y0039 demonstrated resistance to colistin, cephalexin, clindamycin, oxacillin, and penicillin G. The genome analysis revealed a circular 1.8 Mbp chromosome without any extrachromosomal elements, containing 1690 coding DNA sequences. The majority of these coding genes were associated with translation, ribosomal structure and biogenesis, followed by RNA processing and modification, and transcription. Genetic analyses revealed that the German M. septicus strain 19Y0039 is related to the American strain M. septicus A25201T. Through BLAST alignment, twelve putative virulence genes previously identified in the M. septicus type strain A25201T were also found in the German strain. Additionally, 84 putative virulence genes distributed across nine categories, including immune modulation, effector delivery system, nutrition/metabolic factors, regulation, stress survival, adherence, biofilm, exotoxin, and motility, were also identified.
Collapse
Affiliation(s)
- Mostafa Y. Abdel-Glil
- Institut für Bakterielle Infektionen und Zoonosen (IBIZ), Friedrich-Loeffler-Institut, 07743 Jena, Germany;
- Department of Pathology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44511, Egypt
| | - Silke Braune
- Niedersächsisches Landesamt für Verbraucherschutz und Lebensmittelsicherheit (LAVES), Lebensmittel- und Veterinärinstitut Braunschweig/Hannover, 30173 Hannover, Germany;
| | | | - Lisa D. Sprague
- Institut für Bakterielle Infektionen und Zoonosen (IBIZ), Friedrich-Loeffler-Institut, 07743 Jena, Germany;
| |
Collapse
|
9
|
Liu Z, Jiang W, Kim C, Peng X, Fan C, Wu Y, Xie Z, Peng F. A Pseudomonas Lysogenic Bacteriophage Crossing the Antarctic and Arctic, Representing a New Genus of Autographiviridae. Int J Mol Sci 2023; 24:ijms24087662. [PMID: 37108829 PMCID: PMC10142737 DOI: 10.3390/ijms24087662] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 04/17/2023] [Accepted: 04/19/2023] [Indexed: 04/29/2023] Open
Abstract
Polar regions tend to support simple food webs, which are vulnerable to phage-induced gene transfer or microbial death. To further investigate phage-host interactions in polar regions and the potential linkage of phage communities between the two poles, we induced the release of a lysogenic phage, vB_PaeM-G11, from Pseudomonas sp. D3 isolated from the Antarctic, which formed clear phage plaques on the lawn of Pseudomonas sp. G11 isolated from the Arctic. From permafrost metagenomic data of the Arctic tundra, we found the genome with high-similarity to that of vB_PaeM-G11, demonstrating that vB_PaeM-G11 may have a distribution in both the Antarctic and Arctic. Phylogenetic analysis indicated that vB_PaeM-G11 is homologous to five uncultured viruses, and that they may represent a new genus in the Autographiviridae family, named Fildesvirus here. vB_PaeM-G11 was stable in a temperature range (4-40 °C) and pH (4-11), with latent and rise periods of about 40 and 10 min, respectively. This study is the first isolation and characterization study of a Pseudomonas phage distributed in both the Antarctic and Arctic, identifying its lysogenic host and lysis host, and thus provides essential information for further understanding the interaction between polar phages and their hosts and the ecological functions of phages in polar regions.
Collapse
Affiliation(s)
- Zhenyu Liu
- College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Wenhui Jiang
- College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Cholsong Kim
- College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Xiaoya Peng
- College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Cong Fan
- College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Yingliang Wu
- College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Zhixiong Xie
- College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Fang Peng
- College of Life Sciences, Wuhan University, Wuhan 430072, China
| |
Collapse
|
10
|
Depta J, Niedźwiedzka-Rystwej P. The Phenomenon of Antibiotic Resistance in the Polar Regions: An Overview of the Global Problem. Infect Drug Resist 2023; 16:1979-1995. [PMID: 37034396 PMCID: PMC10081531 DOI: 10.2147/idr.s369023] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 07/02/2022] [Indexed: 04/11/2023] Open
Abstract
The increasing prevalence of antibiotic resistance is a global problem in human and animal health. This leads to a reduction in the therapeutic effectiveness of the measures used so far and to the limitation of treatment options, which may pose a threat to human health and life. The problem of phenomenon of antibiotic resistance affects more and more the polar regions. This is due to the increase in tourist traffic and the number of people staying at research stations, unmodernised sewage systems in inhabited areas, as well as the migration of animals or the movement of microplastics, which may contain resistant bacteria. Research shows that the presence of antibiotic resistance genes is more dominant in zones of human and wildlife influence than in remote areas. In a polluted environment, there is evidence of a direct correlation between human activity and the spread and survival of antibiotic-resistant bacteria. Attention should be paid to the presence of resistance to synthetic and semi-synthetic antibiotics in the polar regions, which is likely to be correlated with human presence and activity, and possible steps to be taken. We need to understand many more aspects of this, such as bacterial epigenetics and environmental stress, in order to develop effective strategies for minimizing the spread of antibiotic resistance genes. Studying the diversity and abundance of antibiotic resistance genes in regions with less anthropogenic activity could provide insight into the diversity of primary genes and explain the historical evolution of antibiotic resistance.
Collapse
Affiliation(s)
- Julia Depta
- Institute of Biology, University of Szczecin, Szczecin, 71-412, Poland
| | - Paulina Niedźwiedzka-Rystwej
- Institute of Biology, University of Szczecin, Szczecin, 71-412, Poland
- Correspondence: Paulina Niedźwiedzka-Rystwej, Institute of Biology, University of Szczecin, Szczecin, 71-412, Poland, Tel +48 91 444 15 15, Email
| |
Collapse
|
11
|
Sellera FP, Cardoso B, Fuentes-Castillo D, Esposito F, Sano E, Fontana H, Fuga B, Goldberg DW, Seabra LAV, Antonelli M, Sandri S, Kolesnikovas CKM, Lincopan N. Genomic Analysis of a Highly Virulent NDM-1-Producing Escherichia coli ST162 Infecting a Pygmy Sperm Whale ( Kogia breviceps) in South America. Front Microbiol 2022; 13:915375. [PMID: 35755998 PMCID: PMC9231830 DOI: 10.3389/fmicb.2022.915375] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 05/18/2022] [Indexed: 11/29/2022] Open
Abstract
Carbapenemase-producing Enterobacterales are rapidly spreading and adapting to different environments beyond hospital settings. During COVID-19 lockdown, a carbapenem-resistant NDM-1-positive Escherichia coli isolate (BA01 strain) was recovered from a pygmy sperm whale (Kogia breviceps), which was found stranded on the southern coast of Brazil. BA01 strain belonged to the global sequence type (ST) 162 and carried the blaNDM–1, besides other medically important antimicrobial resistance genes. Additionally, genes associated with resistance to heavy metals, biocides, and glyphosate were also detected. Halophilic behavior (tolerance to > 10% NaCl) of BA01 strain was confirmed by tolerance tests of NaCl minimal inhibitory concentration, whereas halotolerance associated genes katE and nhaA, which encodes for catalase and Na+/H+ antiporter cytoplasmic membrane, respectively, were in silico confirmed. Phylogenomics clustered BA01 with poultry- and human-associated ST162 lineages circulating in European and Asian countries. Important virulence genes, including the astA (a gene encoding an enterotoxin associated with human and animal infections) were detected, whereas in vivo experiments using the Galleria mellonella infection model confirmed the virulent behavior of the BA01 strain. WHO critical priority carbapenemase-producing pathogens in coastal water are an emerging threat that deserves the urgent need to assess the role of the aquatic environment in its global epidemiology.
Collapse
Affiliation(s)
- Fábio P Sellera
- Department of Internal Medicine, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil.,One Health Brazilian Resistance Project (OneBR), São Paulo, Brazil.,School of Veterinary Medicine, Metropolitan University of Santos, Santos, Brazil
| | - Brenda Cardoso
- One Health Brazilian Resistance Project (OneBR), São Paulo, Brazil.,Department of Microbiology, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | - Danny Fuentes-Castillo
- One Health Brazilian Resistance Project (OneBR), São Paulo, Brazil.,Departamento de Patología y Medicina Preventiva, Facultad de Ciencias Veterinarias, Universidad de Concepción, Chillán, Chile
| | - Fernanda Esposito
- One Health Brazilian Resistance Project (OneBR), São Paulo, Brazil.,Department of Clinical Analysis, School of Pharmacy, University of São Paulo, São Paulo, Brazil
| | - Elder Sano
- One Health Brazilian Resistance Project (OneBR), São Paulo, Brazil.,Department of Microbiology, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | - Herrison Fontana
- One Health Brazilian Resistance Project (OneBR), São Paulo, Brazil.,Department of Clinical Analysis, School of Pharmacy, University of São Paulo, São Paulo, Brazil
| | - Bruna Fuga
- One Health Brazilian Resistance Project (OneBR), São Paulo, Brazil.,Department of Microbiology, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil.,Department of Clinical Analysis, School of Pharmacy, University of São Paulo, São Paulo, Brazil
| | | | - Lourdes A V Seabra
- School of Veterinary Medicine, Metropolitan University of Santos, Santos, Brazil
| | | | | | | | - Nilton Lincopan
- One Health Brazilian Resistance Project (OneBR), São Paulo, Brazil.,Department of Microbiology, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil.,Department of Clinical Analysis, School of Pharmacy, University of São Paulo, São Paulo, Brazil
| |
Collapse
|