1
|
Cao F, Chen Y, Han Y, Chen T, Feng X, Jiang H, Zhang Q, Ma H, Li J, Zhang G. Key toxicity enhancement effect of aqueous-phase secondary formation: Insights from hourly measurements during haze events. JOURNAL OF HAZARDOUS MATERIALS 2025; 492:138139. [PMID: 40187261 DOI: 10.1016/j.jhazmat.2025.138139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 03/31/2025] [Accepted: 03/31/2025] [Indexed: 04/07/2025]
Abstract
Haze events pose substantial health risks, yet the link between the chemical composition of particulate matter (PM) and the exacerbated health impacts during such episodes remains unclear. This study conducted hourly off-line measurements of the chemical composition and oxidative potential (OP) of water-soluble fractions (WSF) of PM2.5 during three haze episodes in the North China Plain (NCP). Results revealed that water-soluble inorganic ions were the primary contributors to the increase in WSF mass (60.8 %), while water-soluble organic carbon (WSOC) was the key driver of OP enhancement, accounting for 78.7 % of OP per unit WSF mass (OPm). Molecular characterization via excitation-emission matrix spectroscopy (EEM) and high-resolution mass spectrometry (Orbitrap) identified highly oxygenated humic-like substances (HO-HULIS) as the major contributors to OPm (43 %). Notably, secondary organic aerosol (SOA)-related HO-HULIS, including highly oxygenated and unsaturated compounds, oxygenated/nitro polycyclic aromatic hydrocarbons (o/n-ConA), and oxygenated/nitro polyphenols (o/n-Poly), were identified as key toxic components. Source apportionment (PMF) analysis indicated that secondary organic aerosols (SOA), particularly those formed through aqueous-phase reaction, contributed 64.8 % of OPm, underscoring the critical role of aqueous-phase SOA in health risk enhancement during haze events.
Collapse
Affiliation(s)
- Feiyan Cao
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200082, China
| | - Yingjun Chen
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200082, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| | - Yong Han
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong.
| | - Tian Chen
- Department of Environmental Health, Shanghai Municipal Center for Disease Control and Prevention, Shanghai 200336, China; State Environmental Protection Key Laboratory of the Assessment of Effects of Emerging Pollutants on Environmental and Human Health, Shanghai Municipal Center for Disease Control and Prevention, Shanghai 200336, China
| | - Xinxin Feng
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200082, China
| | - Hongxing Jiang
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong
| | - Qianyu Zhang
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Huimin Ma
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Jun Li
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Gan Zhang
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| |
Collapse
|
2
|
Xu X, Liu Y, Du Z, He J, Liu R, Xu D, Wang Y, Ji D. Abundance, solubilities and sources of PM 2.5-associated hazardous elements in the megacity of Beijing, China. JOURNAL OF HAZARDOUS MATERIALS 2025; 494:138547. [PMID: 40378746 DOI: 10.1016/j.jhazmat.2025.138547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Revised: 05/07/2025] [Accepted: 05/07/2025] [Indexed: 05/19/2025]
Abstract
While the solubility of atmospheric elements critically influences their toxicity and environmental mobility, global understanding of water-soluble hazardous elements (WSHEs) in PM2.5 remains limited. To address this, PM2.5 samples were collected from July 2021 to March 2022 across six major cities in the Beijing-Tianjin-Hebei region and its surroundings (BTHs). Total elemental concentrations (all cities) and water-soluble fractions (Beijing) were quantified via inductively coupled plasma mass spectrometry (ICP-MS), focusing on Cd, V, Cr, Ni, Se, As, Mn, and Pb. Regional analyses revealed synchronized pollution patterns across BTHs, driven by shared industrial/energy activities. In Beijing, WSHEs constituted 25.0-39 .3 % of total concentrations, with Cd (35.7 %) and Mn (39.3 %) showing peak solubility. WSHE levels rose during air quality deterioration but declined during dust storms due to crustal sources with low solubility. Key drivers of solubility included particle acidity, liquid water content, and organic carbon, emphasizing atmospheric processing (e.g., acid dissolution) as a bioaccessibility amplifier. Positive Matrix Factorization identified vehicular emissions (38 %) and coal combustion (20 %) as dominant WSHE sources, followed by waste incineration (20 %), metal smelting (14 %), electronics manufacturing (6 %), and dust (2 %). Coal and vehicular sources contributed disproportionately to bioaccessible elements, whereas dust-derived elements exhibited minimal solubility. These results highlight the elevated health risks from anthropogenic WSHEs and the urgency of prioritizing sector-specific controls (e.g., accelerating vehicle electrification, phasing out residential coal) over broad PM2.5 reduction strategies. The study establishes a mechanistic link between emission sources, atmospheric aging, and elemental bioaccessibility, offering actionable insights for mitigating toxic elements exposure in megacities.
Collapse
Affiliation(s)
- Xiaojuan Xu
- Atmosphere Sub-Center of Chinese Ecosystem Research Network, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100191, China
| | - Yu Liu
- Atmosphere Sub-Center of Chinese Ecosystem Research Network, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100191, China; University of Chinese Academy of Sciences, Beijing 100049, China; State Key Laboratory of Atmospheric Environment and Extreme Meteorology, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100191, China
| | - Zelin Du
- Atmosphere Sub-Center of Chinese Ecosystem Research Network, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100191, China; College of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China
| | - Jun He
- Department of Chemical and Environmental Engineering, University of Nottingham Ningbo China, Ningbo 315100, China; Nottingham Ningbo China Beacons of Excellence Research and Innovation Institute, Ningbo 315100, China
| | - Ruihuan Liu
- Atmosphere Sub-Center of Chinese Ecosystem Research Network, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100191, China; University of Chinese Academy of Sciences, Beijing 100049, China; State Key Laboratory of Atmospheric Environment and Extreme Meteorology, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100191, China
| | - Dandan Xu
- Zhejiang Ningbo Ecological and Environmental Monitoring Center, Ningbo 315048, China
| | - Yuesi Wang
- Atmosphere Sub-Center of Chinese Ecosystem Research Network, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100191, China; University of Chinese Academy of Sciences, Beijing 100049, China; State Key Laboratory of Atmospheric Environment and Extreme Meteorology, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100191, China
| | - Dongsheng Ji
- Atmosphere Sub-Center of Chinese Ecosystem Research Network, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100191, China; University of Chinese Academy of Sciences, Beijing 100049, China; State Key Laboratory of Atmospheric Environment and Extreme Meteorology, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100191, China.
| |
Collapse
|
3
|
Chen H, Ding X, Zhang W, Dong X. Coal mining environment causes adverse effects on workers. Front Public Health 2024; 12:1368557. [PMID: 38741904 PMCID: PMC11090038 DOI: 10.3389/fpubh.2024.1368557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 04/11/2024] [Indexed: 05/16/2024] Open
Abstract
Background The objective of this study is to study the adverse effects of coal mining environment on workers to discover early effective biomarkers. Methods The molecular epidemiological study was conducted with 502 in-service workers, who were divided into miner and auxiliary. We measured the individual levels of dust exposure for participants. Clinical examinations were conducted by qualified doctors. Peripheral blood was collected to measure biochemistry, hemogram, and karyocyte apoptosis. Results All workers were healthy who have not found with any diseases that can be diagnosed medically in the physical examination and showed no difference in dust exposure level, age, height, weight, and body mass index between groups. The working years of miners were lower than that of auxiliaries (p < 0.001). Compared with auxiliaries, the concentration and percentage of lymphocytes (p = 0.040, p = 0.012), basophils (p = 0.027, p = 0.034), and red blood cells (p < 0.001) and the concentration of hemoglobin of miners were lower (p < 0.001). The percentage of neutrophils (p = 0.003), the concentration of mean corpuscular hemoglobin concentration (p = 0.002), and the proportion of karyocyte apoptosis in miners were higher (p < 0.001). Miners presented higher blood urea nitrogen (p < 0.001), ratio of blood urea nitrogen to creatinine (p < 0.001), the high density lipoprotein cholesterol (p < 0.001), lower creatinine (p < 0.05), and cholesterol (p < 0.001). Conclusion The coal mining environment impacted mining workers' immune function, renal function, and the hematopoietic system, including BUN/CRE, HGB, RBC, and LYMPH, which could be used as early biomarkers to screen the health of coal miners.
Collapse
Affiliation(s)
- Huihui Chen
- Wannan Medical College, Wuhu, Anhui, China
- Guang’anmen Hospital China Academy of Chinese Medical Sciences, Beijing, China
| | - Xinping Ding
- Huaibei Occupational Disease Prevention and Control Institute, Huaibei, Anhui, China
| | | | - Xichen Dong
- Guang’anmen Hospital China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
4
|
Bai J, Zhang M, Shao L, Jones TP, Feng X, Huang M, BéruBé KA. Hemolytic Properties of Fine Particulate Matter (PM 2.5) in In Vitro Systems. TOXICS 2024; 12:246. [PMID: 38668469 PMCID: PMC11054038 DOI: 10.3390/toxics12040246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 03/22/2024] [Accepted: 03/25/2024] [Indexed: 04/29/2024]
Abstract
Epidemiological studies have suggested that inhalation exposure to particulate matter (PM) air pollution, especially fine particles (i.e., PM2.5 (PM with an aerodynamic diameter of 2.5 microns or less)), is causally associated with cardiovascular health risks. To explore the toxicological mechanisms behind the observed adverse health effects, the hemolytic activity of PM2.5 samples collected during different pollution levels in Beijing was evaluated. The results demonstrated that the hemolysis of PM2.5 ranged from 1.98% to 7.75% and demonstrated a clear dose-response relationship. The exposure toxicity index (TI) is proposed to represent the toxicity potential of PM2.5, which is calculated by the hemolysis percentage of erythrocytes (red blood cells, RBC) multiplied by the mass concentration of PM2.5. In a pollution episode, as the mass concentration increases, TI first increases and then decreases, that is, TI (low pollution levels) < TI (heavy pollution levels) < TI (medium pollution levels). In order to verify the feasibility of the hemolysis method for PM toxicity detection, the hemolytic properties of PM2.5 were compared with the plasmid scission assay (PSA). The hemolysis results had a significant positive correlation with the DNA damage percentages, indicating that the hemolysis assay is feasible for the detection of PM2.5 toxicity, thus providing more corroborating information regarding the risk to human cardiovascular health.
Collapse
Affiliation(s)
- Jiahui Bai
- State Key Laboratory of Coal Resources and Safe Mining, College of Geoscience and Surveying Engineering, China University of Mining & Technology, Beijing 100083, China; (J.B.); (X.F.); (M.H.)
| | - Mengyuan Zhang
- Postdoctoral Research Base, School of Resource and Environment, Henan Institute of Science and Technology, Xinxiang 453000, China
| | - Longyi Shao
- State Key Laboratory of Coal Resources and Safe Mining, College of Geoscience and Surveying Engineering, China University of Mining & Technology, Beijing 100083, China; (J.B.); (X.F.); (M.H.)
| | - Timothy P. Jones
- School of Earth and Environmental Sciences, Cardiff University, Museum Avenue, Cardiff CF10 3YE, UK;
| | - Xiaolei Feng
- State Key Laboratory of Coal Resources and Safe Mining, College of Geoscience and Surveying Engineering, China University of Mining & Technology, Beijing 100083, China; (J.B.); (X.F.); (M.H.)
| | - Man Huang
- State Key Laboratory of Coal Resources and Safe Mining, College of Geoscience and Surveying Engineering, China University of Mining & Technology, Beijing 100083, China; (J.B.); (X.F.); (M.H.)
| | - Kelly A. BéruBé
- School of Biosciences, Cardiff University, Museum Avenue, Cardiff CF10 3AX, UK;
| |
Collapse
|
5
|
Li JM, Zhao SM, Wu SP, Jiang BQ, Liu YJ, Zhang J, Schwab JJ. Size-segregated characteristics of water-soluble oxidative potential in urban Xiamen: Potential driving factors and implications for human health. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:168902. [PMID: 38029991 DOI: 10.1016/j.scitotenv.2023.168902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 11/08/2023] [Accepted: 11/24/2023] [Indexed: 12/01/2023]
Abstract
Oxidative potential (OP), defined as the ability of particulate matter (PM) to generate reactive oxygen species (ROS), has been considered as a potential health-related metric for PM. Particles with different sizes have different OP and deposition efficiencies in the respiratory tract and pose different health risks. In this study, size-segregated PM samples were collected at a coastal urban site in Xiamen, a port city in southeastern China, between August 2020 and September 2021. The water-soluble constituents, including inorganic ions, elements and organic carbon, were determined. Total volume-normalized OP based on the dithiothreitol assay was highest in spring (0.241 ± 0.033 nmol min-1 m-3) and lowest in summer (0.073 ± 0.006 nmol min-1 m-3). OP had a biomodal distribution with peaks at 0.25-0.44 μm and 1.0-1.4 μm in spring, summer, and winter and a unimodal pattern with peak at 0.25-0.44 μm in fall, which were different from the patterns of redox-active species. Variations in the seasonality of fine and coarse mode OP and their correlations with water-soluble constituents showed that the size distribution patterns of OP could be attributed to the combined effects of the size distributions of transition metals and redox-active organics and the interactions between them which varied with emissions, meteorological conditions and atmospheric processes. Respiratory tract deposition model indicated that the deposited OP and the toxic elements accounted for 47.9 % and 36.8 % of their measured concentrations, respectively. The highest OP doses and the excess lifetime carcinogenic risk (ELCR) were found in the head airway (>70 %). However, the size distributions of OP deposition and ELCR in the respiratory tract were different, with 63.9 % and 49.4 % of deposited ELCR and OP, respectively, coming from PM2.5. Therefore, attention must be paid to coarse particles from non-exhaust emissions and road dust resuspension.
Collapse
Affiliation(s)
- Jia-Min Li
- Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies, Xiamen University, Xiamen 361102, China; Center for Marine Environmental Chemistry and Toxicology, College of Environment and Ecology, Xiamen University, Xiamen 361102, China
| | - Si-Min Zhao
- Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies, Xiamen University, Xiamen 361102, China; Center for Marine Environmental Chemistry and Toxicology, College of Environment and Ecology, Xiamen University, Xiamen 361102, China
| | - Shui-Ping Wu
- Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies, Xiamen University, Xiamen 361102, China; Center for Marine Environmental Chemistry and Toxicology, College of Environment and Ecology, Xiamen University, Xiamen 361102, China.
| | - Bing-Qi Jiang
- Fujian Provincial Academy of Environmental Science, Fuzhou 350013, China
| | - Yi-Jing Liu
- Fujian Provincial Academy of Environmental Science, Fuzhou 350013, China
| | - Jie Zhang
- Atmospheric Sciences Research Center, University at Albany, SUNY, Albany 12203, USA
| | - James J Schwab
- Atmospheric Sciences Research Center, University at Albany, SUNY, Albany 12203, USA
| |
Collapse
|
6
|
Raparthi N, Yadav S, Khare A, Dubey S, Phuleria HC. Chemical and oxidative properties of fine particulate matter from near-road traffic sources. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 337:122514. [PMID: 37678733 DOI: 10.1016/j.envpol.2023.122514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/31/2023] [Accepted: 09/04/2023] [Indexed: 09/09/2023]
Abstract
The toxicity associated with the fine particulate matter (PM2.5) has not been well studied, particularly in relation to the emissions from on-road vehicles and other sources in low- and middle-income countries such as India. Thus, a study was conducted to examine the oxidative potential (OP) of PM2.5 at a roadside (RS) site with heavy vehicular traffic and an urban background (BG) site in Mumbai using the dithiothreitol (DTT) assay. Simultaneous gravimetric PM2.5 was measured at both sites and characterized for carbonaceous constituents and water-soluble trace elements and metals. Results depicted higher PM2.5, elemental carbon (EC), and organic carbon (OC) concentrations on the RS than BG (by a factor of 1.7, 4.6, and 1.2, respectively), while BG had higher water-soluble organic carbon (WSOC) levels (by a factor of 1.4) and a higher WSOC to OC ratio (86%), likely due to the dominance of secondary aerosol formation. In contrast, the measured OPDTTv at RS (8.9 ± 5.5 nmol/min/m3) and BG (8.1 ± 6.4 nmol/min/m3) sites were similar. However, OPDTTv at BG was higher during the afternoon, suggesting the influence of photochemical transformation on measured OPDTTv at BG. At RS, OC and redox-active metals (Cu, Zn, Mn, and Fe) were significantly associated with measured OP (p < 0.05), while at BG, WSOC was most strongly associated (p < 0.05). The coefficient of divergence (COD) for PM2.5, its chemical species, and OPDTTv was >0.2, indicating spatial heterogeneity between the sites, and differences in emission sources and toxicity. The estimated hazard index (HI) was not associated with OPDTTv, indicating that current PM2.5 mass regulations may not adequately capture the health effects of PM2.5. The study highlights the need for further studies examining PM2.5 toxicity and developing toxicity-based air quality regulations.
Collapse
Affiliation(s)
- Nagendra Raparthi
- Environmental Science and Engineering Department, Indian Institute of Technology Bombay, Mumbai, India; Air Quality Research Center, University of California Davis, Davis, CA, USA
| | - Suman Yadav
- Environmental Science and Engineering Department, Indian Institute of Technology Bombay, Mumbai, India
| | - Ashi Khare
- Centre for Technology Alternatives for Rural Areas, Indian Institute of Technology Bombay, Mumbai, India
| | - Shreya Dubey
- Environmental Science and Engineering Department, Indian Institute of Technology Bombay, Mumbai, India
| | - Harish C Phuleria
- Environmental Science and Engineering Department, Indian Institute of Technology Bombay, Mumbai, India; IDP in Climate Studies, Indian Institute of Technology Bombay, Mumbai, India; Koita Centre for Digital Health, Indian Institute of Technology Bombay, Mumbai, India.
| |
Collapse
|
7
|
Wang W, Shao L, Li X, Li Y, Lyu R, Zhou X. Changes of water-soluble inorganic sulfate and nitrate during severe dust storm episodes in a coastal city of North China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 335:122288. [PMID: 37544180 DOI: 10.1016/j.envpol.2023.122288] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 07/16/2023] [Accepted: 07/28/2023] [Indexed: 08/08/2023]
Abstract
Dust storms are one of the largest sources of non-exhaust emissions in China, which can adversely affect air quality and human health during long-distance transportation. To study the influence of dust storms on aerosol particle composition, samples of fine aerosol (PM2.5) were collected before, during, and after the severe dust storm episodes in a coastal city of North China. Then the water-soluble inorganic ions in the filters were analyzed. The results showed that the chemical composition varied significantly in different sampling periods. Before the dust storm periods (Phase 1), the weather was characterized by high relative humidity. NO3- was the main water-soluble inorganic ion, accounting for about 1/3 of the total mass of PM2.5, which is very different from the situation a few years ago when sulfate was the dominant. The results indicated that the chemical composition of the atmosphere in China has changed significantly after the implementation of strict air pollution control measures. During the severe dust storm periods (within a few hours after the dust invasion, Phase 2), the proportion of Ca2+ in PM2.5 was high; the sulfate formation was limited due to adiabatic air mass affected by the cold front, and the sulfate content might be mainly from desert soil. However, a small amount of nitrate can be formed during their long-distance transportation. After the dust storm periods (Phase 3), dust plums and local polluted air mass mixed well. The proportion of secondary inorganic ions increased, and nitrate formation was still the main. The changes in the chemical composition from a few years ago during Phase 1 and the sharp changes in different water-soluble inorganic ions during different Phases should be carefully considered to evaluate their implications for air quality and human health.
Collapse
Affiliation(s)
- Wenhua Wang
- School of Resources and Civil Engineering, Northeastern University, Shenyang, 110819, China; School of Resources and Materials, Northeastern University at Qinhuangdao, Qinhuangdao, 066004, China
| | - Longyi Shao
- State Key Laboratory of Coal Resources and Safe Mining & College of Geosciences and Surveying Engineering, China University of Mining and Technology, Beijing, 100083, China.
| | - Xian Li
- School of Resources and Civil Engineering, Northeastern University, Shenyang, 110819, China; School of Resources and Materials, Northeastern University at Qinhuangdao, Qinhuangdao, 066004, China
| | - Yaowei Li
- Hebei Center for Ecological and Environmental Geology Research, Hebei GEO University, Shijiazhuang, 050031, China
| | - Ruihe Lyu
- College of Marine Resources and Environment, Hebei Normal University of Science & Technology, Qinhuangdao, 066004, China
| | - Xiuyan Zhou
- School of Resources and Civil Engineering, Northeastern University, Shenyang, 110819, China; School of Resources and Materials, Northeastern University at Qinhuangdao, Qinhuangdao, 066004, China.
| |
Collapse
|
8
|
Liu Q, Wang D, Li W, Li X, Yang Z, Zhang A, He J, Chen X, Chang Y, Chen X, Tang NJ. Association of chromosomal abnormalities with prenatal exposure to heavy metals: A nested case-control study in high-risk pregnant women in China. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 265:115518. [PMID: 37776819 DOI: 10.1016/j.ecoenv.2023.115518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 09/20/2023] [Accepted: 09/22/2023] [Indexed: 10/02/2023]
Abstract
Prenatal exposure to heavy metals causes multiple hazards to fetal growth and development. Epidemiological studies on the association between heavy metals and fetal chromosomal abnormalities (CAs) are lacking. We conducted a nested case-control study in a cohort of high-risk pregnant women in China from September 2018 to June 2021. A total of 387 participants were diagnosed with fetal CAs in the case group and 699 were diagnosed with a normal karyotype in the control group. Amniotic fluid concentrations of 10 metals (barium, cobalt, antimony, manganese, ferrum, copper, selenium, strontium, vanadium, and chromium) were measured using inductively coupled plasma-mass spectrometry. We applied quantile g-computation and weighted quantile sum regression to assess the overall effect of metal mixtures and identify metals with significant weight. Logistic and Poisson regression analyses were used to estimate the effects of metals on CAs and CAs subtypes. Our results showed that the metal mixture concentrations were positively associated with the risk of fetal CAs. In adjusted logistic models, Sb was associated with fetal CAs (OR=1.15, 95% CI: 1.02-1.30), and revealed a linear dose-response relationship between Sb level and the risk of fetal CAs. Additionally, the exploratory analysis revealed that Sb levels were associated with Klinefelter syndrome (OR=1.452, 95% CI: 1.063-1.984) and Turner syndrome (OR=1.698; 95% CI,1.048-2.751). Our study revealed that metal mixtures are associated with a higher risk of fetal CAs and that this association may be driven primarily by Sb. Moreover, we provide a genetic perspective on the effects of heavy metals on sexual development in humans.
Collapse
Affiliation(s)
- Qianfeng Liu
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin 300070, China
| | - Dan Wang
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin 300070, China
| | - Wen Li
- Tianjin Central Hospital of Obstetrics and Gynecology, No. 156, Sanma Road, Nankai District, Tianjin 300100, China; Nankai University, Tianjin 30071, China; Tianjin Key Laboratory of Human Development and Reproductive Regulation, Tianjin 300100, China
| | - Xiaoyu Li
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin 300070, China
| | - Ze Yang
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin 300070, China
| | - Ai Zhang
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin 300070, China
| | - Jiayu He
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin 300070, China
| | - Xu Chen
- Tianjin Central Hospital of Obstetrics and Gynecology, No. 156, Sanma Road, Nankai District, Tianjin 300100, China; Nankai University, Tianjin 30071, China; Tianjin Key Laboratory of Human Development and Reproductive Regulation, Tianjin 300100, China
| | - Ying Chang
- Tianjin Central Hospital of Obstetrics and Gynecology, No. 156, Sanma Road, Nankai District, Tianjin 300100, China; Nankai University, Tianjin 30071, China; Tianjin Key Laboratory of Human Development and Reproductive Regulation, Tianjin 300100, China
| | - Xi Chen
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin 300070, China.
| | - Nai-Jun Tang
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin 300070, China
| |
Collapse
|
9
|
Proshad R, Dey HC, Khan MSU, Baroi A, Kumar S, Idris AM. Source-oriented risks apportionment of toxic metals in river sediments of Bangladesh: a national wide application of PMF model and pollution indices. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 45:6769-6792. [PMID: 36633753 DOI: 10.1007/s10653-022-01455-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 12/14/2022] [Indexed: 06/17/2023]
Abstract
Intense human activities, particularly industrial and agricultural output, has enriched metal(loid)s in riverine sediment and endangered aquatic ecosystems and human health. Promoting proper river management requires an assessment of the possible ecological hazards and pollution posed by metal(loid)s in sediments. However, there are limited large-scale risk assessments of metal(loid)s contamination in riverine sediment in heavily populated nations like Bangladesh. This study compiled data on sediment metal(loid)s, for example, Cd, As, Cu, Ni, Cr, Pb, Mn, and Zn, from 24 major rivers located across Bangladesh between 2011 and 2022 and applied positive matrix factorization (PMF) to identify the critical metal(loid)s sources and PMF model-based ecological risks. Based on studied metal(loid)s, 12-78% of rivers posed higher contents than the upper continental crust and 8% of the river sediments for Cr and Ni, whereas 4% for Cd and As exceeded probable effect concentration. Cr and Ni in the sum of toxic units (STU), whereas Mn, As and Cd in potential ecological risk (PER) posed the highest contribution to contaminate sediments. In the studied rivers, sediment contaminant Mn derived from natural sources; Zn and Ni originated from mixed sources; Cr and Cu were released from the tannery and industrial emissions and Cd originated from agricultural practices. Source-based PER and NIRI indicated that mixed source (4% rivers) and tannery and industrial emission (4% rivers) posed very high risks in sediments. For the creation of macroscale policies and the restoration of contaminated rivers, our national-scale comprehensive study offers helpful references.
Collapse
Affiliation(s)
- Ram Proshad
- Key Laboratory of Mountain Surface Processes and Ecological Regulation, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu, 610041, Sichuan, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Hridoy Chandra Dey
- Faculty of Agriculture, Patuakhali Science and Technology University, Dumki Patuakhali, 8602, Bangladesh
| | - Md Shihab Uddine Khan
- Department of Crop Botany, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh
| | - Artho Baroi
- Department of Crop Botany, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh
| | - Sazal Kumar
- University of Newcastle, NSW, 2308, Australia
| | - Abubakr M Idris
- Department of Chemistry, College of Science, King Khalid University, Abha, 62529, Saudi Arabia
- Research Center for Advanced Materials Science (RCAMS), King Khalid University, Abha, 62529, Saudi Arabia
| |
Collapse
|
10
|
Goyal I, Agarwal M, Bamola S, Goswami G, Lakhani A. The role of chemical fractionation in risk assessment of toxic metals: a review. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 195:1098. [PMID: 37626242 DOI: 10.1007/s10661-023-11728-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 08/15/2023] [Indexed: 08/27/2023]
Abstract
The identification of highly toxic metals like Cd, Ni, Pb, Cr, Co or Cu in ambient particulate matter (PM) has garnered a lot of interest recently. Exposure to toxic metals, including carcinogenic ones, at levels above recommended limits, can significantly affect human health. Prolonged exposure to even trace amounts of toxic or essential metals can also have negative health impacts. In order to assess significant risks, it is crucial to govern the concentrations of bioavailable/bio-accessible metals that are available in PM. Estimating the total metal concentrations in PM is only an approximation of metal toxicity. This review provides an overview of various procedures for extracting soluble toxic metals from PM and the importance of chemical fractionation in risk assessment. It is observed that the environmental risk indices such as bioavailability index (BI), contamination factor (CF) and risk assessment code (RAC) are specifically influenced by the concentration of these metals in a particular fraction. Additionally, there is compelling evidence that health risks assessed using total metal concentrations may be overestimated, therefore, the metal toxicity assessment is more accurate and more sensitive to the concentration of the bioavailable/bio-accessible fraction than the total metal concentrations. Hence, chemical fractionation of toxic metals can serve as an effective tool for developing environmental protection laws and improving air quality monitoring programs for public health.
Collapse
Affiliation(s)
- Isha Goyal
- Department of Chemistry, Faculty of Science, Dayalbagh Educational Institute, Dayalbagh, Agra, 282005, UP, India
| | - Muskan Agarwal
- Department of Chemistry, Faculty of Science, Dayalbagh Educational Institute, Dayalbagh, Agra, 282005, UP, India
| | - Simran Bamola
- Department of Chemistry, Faculty of Science, Dayalbagh Educational Institute, Dayalbagh, Agra, 282005, UP, India
| | - Gunjan Goswami
- Department of Chemistry, Faculty of Science, Dayalbagh Educational Institute, Dayalbagh, Agra, 282005, UP, India
| | - Anita Lakhani
- Department of Chemistry, Faculty of Science, Dayalbagh Educational Institute, Dayalbagh, Agra, 282005, UP, India.
| |
Collapse
|
11
|
Wu Y, Li G, An T. Toxic Metals in Particulate Matter and Health Risks in an E-Waste Dismantling Park and Its Surrounding Areas: Analysis of Three PM Size Groups. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph192215383. [PMID: 36430101 PMCID: PMC9691227 DOI: 10.3390/ijerph192215383] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/18/2022] [Accepted: 11/19/2022] [Indexed: 05/28/2023]
Abstract
Heavy metals generated from e-waste have created serious health risks for residents in e-waste disposal areas. This study assessed how airborne toxic metals from an e-waste dismantling park (EP) influenced surrounding residential areas after e-waste control. PM2.5, PM10, and total suspended particles (TSP) were sampled from 20 sites, including an EP, residential areas, and an urban site; ten kinds of metals were analyzed using ICP-MS and classified as PM2.5, PM2.5-10, and PM10-100. Results showed that metals at the EP tended to be in coarser particles, while metals from residential areas tended to be in finer particles. A source analysis showed that metals from the EP and residential areas may have different sources. Workers' cancer and non-cancer risks were higher when exposed to PM2.5-10 metals, while residents' risks were higher when exposed to PM2.5 metals. As and Cr were the most strongly associated with cancer risks, while Mn was the most strongly associated with the non-cancer risk. Both workers and residents had cancer risks (>1.0 × 10-6), but risks were lower for residents. Therefore, e-waste control can positively affect public health in this area. This study provides a basis for further controlling heavy metal emissions into the atmosphere by e-waste dismantling and encouraging worldwide standardization of e-waste dismantling.
Collapse
Affiliation(s)
- Yingjun Wu
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory of City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Guiying Li
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory of City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Taicheng An
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory of City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| |
Collapse
|
12
|
Modification Effect of PARP4 and ERCC1 Gene Polymorphisms on the Relationship between Particulate Matter Exposure and Fasting Glucose Level. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19106241. [PMID: 35627777 PMCID: PMC9140444 DOI: 10.3390/ijerph19106241] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 05/16/2022] [Accepted: 05/18/2022] [Indexed: 01/27/2023]
Abstract
Particulate matter (PM) has been linked to adverse health outcomes, including insulin resistance (IR). To evaluate the relationships between exposures to PM10, PM2.5–10, and PM2.5; the serum level of fasting glucose, a key IR indicator; and effects of polymorphisms of two repair genes (PARP4 and ERCC1) on these relations, PMs exposure data and blood samples for glucose measurement and genotyping were collected from 527 Korean elders. Daily average levels of PMs during 8 days, from 7 days before examination to the health examination day (from lag day 7 to lag day 0), were used for association analyses, and mean concentrations of PM10, PM2.5–10, and PM2.5 during the study period were 43.4 µg/m3, 19.9 µg/m3, and 23.6 µg/m3, respectively. All three PMs on lag day 4 (mean, 44.5 µg/m3 for PM10, 19.9 µg/m3 for PM2.5–10, and 24.3 µg/m3 for PM2.5) were most strongly associated with an increase in glucose level (percent change by inter-quartile range-change of PM: (β) = 1.4 and p = 0.0023 for PM10; β = 3.0 and p = 0.0010 for PM2.5–10; and β = 2.0 and p = 0.0134 for PM2.5). In particular, elders with PARP4 G-C-G or ERCC1 T-C haplotype were susceptible to PMs exposure in relation to glucose levels (PARP4 G-C-G: β = 2.6 and p = 0.0006 for PM10, β = 3.5 and p = 0.0009 for PM2.5–10, and β = 1.6 and p = 0.0020 for PM2.5; ERCC1 T-C: β = 2.2 and p = 0.0016 for PM10, β = 3.5 and p = 0.0003 for PM2.5–10, and β = 1.2 and p = 0.0158 for PM2.5). Our results indicated that genetic polymorphisms of PARP4 and ERCC1 could modify the relationship between PMs exposure and fasting glucose level in the elderly.
Collapse
|