1
|
Nisa DT, Sanjaya WTA, Simarmata R, Christita M, Sipriyadi, Utami D, Vidilaseris K, Khairina Y. Harnessing native bacterial consortium to boost duckweed biomass and chromium removal from batik industry effluents. CHEMOSPHERE 2025; 381:144480. [PMID: 40373647 DOI: 10.1016/j.chemosphere.2025.144480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2025] [Revised: 04/20/2025] [Accepted: 05/06/2025] [Indexed: 05/17/2025]
Abstract
Batik industry is one of the largest contributors to chromium hexavalent (Cr(VI)) pollution due to the dying and pigmenting process. Remediation agents such as duckweed and bacteria have been commonly used to treat wastewater (WW)-containing Cr(VI). This study utilized native bacterial consortium from the batik WW environment to enhance duckweed growth and Cr(VI) removal. Among the formulated consortia, consortium G4 showed the highest growth promotion on duckweed in WW by 1.3 to 2-fold, while other consortia showed a contrasting result. Additionally, duckweed chromium uptake in WW reached 74 % after 12 days when applied with G4. Consortium G4 features two plant growth-promoting bacteria, Enterobacter mori TALD 1.2 and Enterobacter cloacae TALA 5, along with two chromium-reducing bacteria, Lysinibacillus fusiformis TALA 1.1 and Bacillus thuringiensis TA1. Several combinations of the G4 members were also tested for chromium reduction activity in an NB medium containing 100 mg L-1 Cr(VI). The original G4 combination showed the fastest Cr(VI) removal, achieving an 81.93 % Cr(VI) reduction within 48 h and a 99 % reduction within 105 h. Interestingly, combining only the chromium-reducing bacteria TALA 1.1 and TA 1 significantly reduced chromium reduction activity and bacterial growth, possibly due to carbon source competition. Thus, the complete members of consortium G4 enhance cross-feeding, with each species playing a vital role in improving interspecies interactions and aiding in chromium reduction. This study underscores the importance of designing a specific and compatible consortium to collaborate with duckweed, offering insights into environmental management practices for other contaminated sites.
Collapse
Affiliation(s)
- Dhiatama Tauhida Nisa
- Research Center for Applied Microbiology, National Research and Innovation Agency, Cibinong, Bogor, 16915, Indonesia; Department of Biology, University of Bengkulu, WR. Supratman, Kandang Limun, Bengkulu City, Bengkulu, 38371, Indonesia
| | - Wilhelmus Terang Arga Sanjaya
- Research Center for Applied Microbiology, National Research and Innovation Agency, Cibinong, Bogor, 16915, Indonesia
| | - Rumella Simarmata
- Research Center for Applied Microbiology, National Research and Innovation Agency, Cibinong, Bogor, 16915, Indonesia
| | - Margaretta Christita
- Research Center for Applied Microbiology, National Research and Innovation Agency, Cibinong, Bogor, 16915, Indonesia
| | - Sipriyadi
- Department of Biology, University of Bengkulu, WR. Supratman, Kandang Limun, Bengkulu City, Bengkulu, 38371, Indonesia
| | - Desi Utami
- Department of Agricultural Microbiology, Faculty of Agriculture, Universitas Gadjah Mada, Bulaksumur, Yogyakarta, 55281, Indonesia
| | - Keni Vidilaseris
- Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, FI-00014, Finland.
| | - Yeni Khairina
- Research Center for Applied Microbiology, National Research and Innovation Agency, Cibinong, Bogor, 16915, Indonesia.
| |
Collapse
|
2
|
Ayu Kusumawardani SD, Kurnani TBA, Astari AJ, Sunardi S. Readiness in implementing green industry standard for SMEs: Case of Indonesia's batik industry. Heliyon 2024; 10:e36045. [PMID: 39224345 PMCID: PMC11367539 DOI: 10.1016/j.heliyon.2024.e36045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 08/07/2024] [Accepted: 08/08/2024] [Indexed: 09/04/2024] Open
Abstract
Green Industry Standard (GIS) acts as a guideline for industries, including the Small and Medium Enterprises (SMEs) to preserve the environment and economy in their production process. This study aims to assess the industry's readiness in the case of Indonesia's batik industry, to adopt the GIS and optimize its implementation. The method used in this study is survey and interviews. The survey and interviews involved 25 respondents, comprising owners or managers of the batik industry engaged in handcrafted, stamped, or combined batik production, from pattern-making to finishing stages. The analysis has been done using the Stages of Change Readiness and Treatment Eagerness Scale (SOCRATES) instrument to evaluate the industry's readiness and employing TOWS (Threats, Opportunities, Weaknesses, Strengths) analytical tool to formulate optimization strategies. The results of this study show that an assessment of the batik industries' compliance with Green Industry Standards revealed that they have not yet adopted sustainable practices in their production processes concerning materials, energy, water, products, and waste. The SOCRATES analysis also indicates that the batik industry's readiness to meet the technical requirements of the GIS is currently low. In conclusion, the primary approach in applying green industry principles should focus on rectifying existing weaknesses concerning craftsmen's awareness and understanding of green industry practices. After the industry's awareness emerges, utilizing GIS can boost production, improve raw material efficiency, and provide customers with greater "green" value.
Collapse
Affiliation(s)
| | | | - Annisa Joviani Astari
- Graduate Program of Geography Education, Faculty of Social Science Education, Universitas Pendidikan Indonesia, Bandung, Indonesia
| | - Sunardi Sunardi
- Graduate Program on Environmental Science, Graduate School, Universitas Padjadjaran, Bandung, 40132, Indonesia
- Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Sumedang, 45363, Indonesia
- Center for the Environment and Sustainability Science (CESS), Universitas Padjadjaran, Bandung, 40132, Indonesia
| |
Collapse
|
3
|
Islam MS, Roy H, Ahmed T, Firoz SH, Chang SX. Surface-modified graphene oxide-based composites for advanced sequestration of basic blue 41 from aqueous solution. CHEMOSPHERE 2023; 340:139827. [PMID: 37586493 DOI: 10.1016/j.chemosphere.2023.139827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 08/11/2023] [Accepted: 08/13/2023] [Indexed: 08/18/2023]
Abstract
Advanced materials for the efficient treatment of textile wastewater need to be developed for the sustainable growth of the textile industry. In this study, graphene oxide (GO) was modified by the incorporation of natural clay (bentonite) and mixed metal oxide (copper-cobalt oxide) to produce GO-based binary and ternary composites. Two binary composites, GO/bentonite and GO/Cu-Co Ox (oxide), and one ternary composite, GO/bentonite/Cu-Co Ox, were characterized by Fourier transform-infrared spectroscopy (FTIR), scanning electron microscope (SEM), energy dispersive spectrometer (EDS) and Brunauer-Emmett-Teller (BET) analysis. The adsorption efficiency of these composites was evaluated against a cationic dye, Basic Blue 41 (BB41). The composites had several surface functional groups, and the ternary composite had tubular porous structures formed by the cross-linking of the bentonite and GO planes. The BET surface area of the ternary composite was 50% higher than that of the GO. The BB41 removals were 92, 89, 80, and 69% for GO/bentonite/Cu-Co oxide, GO/bentonite, GO and GO/Cu-Co oxide, respectively. The pseudo-2nd-order and intraparticle diffusion models best describe the kinetics results, indicating chemisorption and slow pore diffusion-controlled adsorption processes. The Langmuir isotherm-derived adsorption capacity of GO/bentonite/Cu-Co oxide was 351.1 mg/g, which was very close to the measured value. After five consecutive cycles, the ternary composite retained 90% BB41 removal efficiency compared to its 1st cycle. Electrostatic interaction and pore diffusion were predicted to be the controlling mechanisms for the adsorption of the BB41. The GO-based ternary composite can be a feasible and scalable adsorbent for BB41 in wastewater treatment.
Collapse
Affiliation(s)
- Md Shahinoor Islam
- Department of Chemical Engineering, Bangladesh University of Engineering and Technology, Dhaka 1000, Bangladesh.
| | - Hridoy Roy
- Department of Chemical Engineering, Bangladesh University of Engineering and Technology, Dhaka 1000, Bangladesh
| | - Tasnim Ahmed
- Department of Chemical Engineering, Bangladesh University of Engineering and Technology, Dhaka 1000, Bangladesh
| | - Shakhawat H Firoz
- Department of Chemistry, Bangladesh University of Engineering and Technology, Dhaka 1000, Bangladesh
| | - Scott X Chang
- Department of Renewable Resources, University of Alberta, Edmonton, Alberta, T6G 2E3, Canada.
| |
Collapse
|
4
|
Daud NM, Abdullah SRS, Hasan HA, Othman AR, Ismail N‘I. Coagulation-flocculation treatment for batik effluent as a baseline study for the upcoming application of green coagulants/flocculants towards sustainable batik industry. Heliyon 2023; 9:e17284. [PMID: 37389087 PMCID: PMC10300373 DOI: 10.1016/j.heliyon.2023.e17284] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 06/06/2023] [Accepted: 06/13/2023] [Indexed: 07/01/2023] Open
Abstract
The batik industry has been one of the main family businesses in most of the east-coast region of the Malaysian peninsula for many years. However, appropriate water treatment is still a major challenge for this industry. Stringent laws introduced by the Malaysian authorities and the intention to protect the environment are factors that drive researchers to search for suitable, appropriate, affordable and efficient treatment of batik wastewater. Treatment research on batik wastewater is still lacking and coagulation-flocculation treatment using alum was introduced and chosen as a stepping stone toward the selection of green coagulants. This study aimed to determine the best conditions for alum flocculation-coagulation using a standard jar test method. Four main factors were investigated: alum dosage (0.1-3.5 g/L), pH (4-11), settling time (0.5-24 h) and rapid mixing rate (100-300 rpm). Results obtained were further analysed statistically using SPSS software prior to determining the significant effect of variable changes. From this study, the best conditions for batik wastewater treatment using the flocculation-coagulation process were found to be at alum dosage of 1.5 g/L, pH 8, 4 h settling time and a rapid mixing rate of 100 rpm. Chemical oxygen demand (COD), turbidity, colour and total suspended solids (TSS) were removed by 70.7, 92.2, 88.4 and 100%, respectively, under these conditions. This study showed that batik wastewater can be treated by the coagulation-flocculation process using chemical means of alum. This indicates the need for forthcoming developments in natural-based-coagulant-flocculants toward the sustainability of the batik industry.
Collapse
Affiliation(s)
- Nurull Muna Daud
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia
| | - Siti Rozaimah Sheikh Abdullah
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia
| | - Hassimi Abu Hasan
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia
- Research Centre for Sustainable Process Technology (CESPRO), Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia
| | - Ahmad Razi Othman
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia
| | - Nur ‘Izzati Ismail
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia
- Research Centre for Sustainable Process Technology (CESPRO), Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia
| |
Collapse
|
5
|
Alazaiza MYD, He S, Su D, Abu Amr SS, Toh PY, Bashir MJK. Sewage Water Treatment Using Chlorella Vulgaris Microalgae for Simultaneous Nutrient Separation and Biomass Production. SEPARATIONS 2023. [DOI: 10.3390/separations10040229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023] Open
Abstract
Recovery of wastewater is essential for better management of water resources and can aid in reducing regional or seasonal water shortages. When algae were used to clean wastewater, amazing benefits were guaranteed, such as a decrease in the formation of dangerous solid sludge and the creation of valuable algal biomass through recycling of the nutrients in the wastewater. The trace elements nitrogen, phosphorus, and others that microalgae need for cell development are frequently present in contaminated wastewater. Hence, microalgal bioremediation is used in this study as an effective technique for the simultaneous treatment of COD, NH3-N, and orthophosphate from domestic wastewater and biomass production. Different concentrations of wastewaters were used. The maximum removals attained were: 84% of COD on the fifth day using the lowest mixing ratio of 50%, 95% of ammoniacal nitrogen, and 97% of phosphorus. The highest biomass production was achieved at day 12, except for the mixing ratio of 80% where the growth rate increased until day 14 at 400 mg/L.
Collapse
|
6
|
Abdelfattah A, Ali SS, Ramadan H, El-Aswar EI, Eltawab R, Ho SH, Elsamahy T, Li S, El-Sheekh MM, Schagerl M, Kornaros M, Sun J. Microalgae-based wastewater treatment: Mechanisms, challenges, recent advances, and future prospects. ENVIRONMENTAL SCIENCE AND ECOTECHNOLOGY 2023; 13:100205. [PMID: 36247722 PMCID: PMC9557874 DOI: 10.1016/j.ese.2022.100205] [Citation(s) in RCA: 101] [Impact Index Per Article: 50.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 09/01/2022] [Accepted: 09/01/2022] [Indexed: 05/05/2023]
Abstract
The rapid expansion of both the global economy and the human population has led to a shortage of water resources suitable for direct human consumption. As a result, water remediation will inexorably become the primary focus on a global scale. Microalgae can be grown in various types of wastewaters (WW). They have a high potential to remove contaminants from the effluents of industries and urban areas. This review focuses on recent advances on WW remediation through microalgae cultivation. Attention has already been paid to microalgae-based wastewater treatment (WWT) due to its low energy requirements, the strong ability of microalgae to thrive under diverse environmental conditions, and the potential to transform WW nutrients into high-value compounds. It turned out that microalgae-based WWT is an economical and sustainable solution. Moreover, different types of toxins are removed by microalgae through biosorption, bioaccumulation, and biodegradation processes. Examples are toxins from agricultural runoffs and textile and pharmaceutical industrial effluents. Microalgae have the potential to mitigate carbon dioxide and make use of the micronutrients that are present in the effluents. This review paper highlights the application of microalgae in WW remediation and the remediation of diverse types of pollutants commonly present in WW through different mechanisms, simultaneous resource recovery, and efficient microalgae-based co-culturing systems along with bottlenecks and prospects.
Collapse
Affiliation(s)
- Abdallah Abdelfattah
- School of Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, PR China
- Department of Public Works Engineering, Faculty of Engineering, Tanta University, Tanta, 31511, Egypt
| | - Sameh Samir Ali
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, PR China
- Botany Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt
- Corresponding author. Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, PR China.
| | - Hassan Ramadan
- Department of Public Works Engineering, Faculty of Engineering, Tanta University, Tanta, 31511, Egypt
| | - Eslam Ibrahim El-Aswar
- Central Laboratories for Environmental Quality Monitoring (CLEQM), National Water Research Center (NWRC), El-Kanater, 13621, Qalyubiyah, Egypt
| | - Reham Eltawab
- School of Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, PR China
- Department of Public Works Engineering, Faculty of Engineering, Tanta University, Tanta, 31511, Egypt
| | - Shih-Hsin Ho
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China
- Corresponding author.
| | - Tamer Elsamahy
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, PR China
| | - Shengnan Li
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China
| | | | - Michael Schagerl
- Department of Functional and Evolutionary Ecology, University of Vienna, Djerassiplatz 1, A-1030 Vienna, Austria
| | - Michael Kornaros
- Laboratory of Biochemical Engineering & Environmental Technology (LBEET), Department of Chemical Engineering, University of Patras, 1 Karatheodori Str., University Campus, 26504, Patras, Greece
| | - Jianzhong Sun
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, PR China
- Corresponding author.
| |
Collapse
|
7
|
Utami M, Zahra’ HA, Khoirunisa, Dewi TA. Green synthesis of magnetic activated carbon from peanut shells functionalized with TiO 2 photocatalyst for Batik liquid waste treatment. OPEN CHEM 2022. [DOI: 10.1515/chem-2022-0231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Abstract
The composite of magnetic activated carbon derived from peanut shells functionalized titanium dioxide (Fe3O4/TiO2/AC) has been successfully synthesized. The composite was employed to remove indigosol green and Cr(vi) under ultraviolet (UV) and visible light. In this work, the activated carbon was synthesized from a sustainable source of peanut shell by carbonization and activation method employing NaOH as the activating agent. Magnetite was prepared by chemical co-precipitation technique using FeCl3·6H2O and FeSO4·7H2O, and then, the deposition of TiO2 was performed under ultrasonic irradiation. A variety of material characterization, consisting of Fourier transform infrared, X-ray diffraction, and scanning electron microscopy-energy dispersive X-ray, was used to analyze the physicochemical properties of the composite. The effects of pH, irradiation time, and composite mass during optimization performance were investigated. The characterizations represent the dispersed TiO2 in the anatase phase with the existence of magnetic particles. The activity tests revealed the superiority of the composite for applications involving adsorption and photocatalysis under visible light source compared to UV light. It was found that Fe3O4/TiO2/AC yields the efficiency for the removal of indigosol green and Cr(vi) from Batik liquid waste of 92.91 and 76.92%, respectively.
Collapse
Affiliation(s)
- Maisari Utami
- Chemistry Department, Faculty of Mathematics and Natural Sciences, Universitas Islam Indonesia , Yogyakarta , 55584 , Indonesia
| | - Hasna’ Azizah Zahra’
- Chemistry Department, Faculty of Mathematics and Natural Sciences, Universitas Islam Indonesia , Yogyakarta , 55584 , Indonesia
| | - Khoirunisa
- Chemistry Department, Faculty of Mathematics and Natural Sciences, Universitas Islam Indonesia , Yogyakarta , 55584 , Indonesia
| | - Tania Amara Dewi
- Chemistry Department, Faculty of Mathematics and Natural Sciences, Universitas Islam Indonesia , Yogyakarta , 55584 , Indonesia
| |
Collapse
|
8
|
Chen D, Du X, Chen K, Liu G, Jin X, Song C, He F, Huang Q. Efficient removal of aqueous Cr(VI) with ferrous sulfide/N-doped biochar composites: Facile, in-situ preparation and Cr(VI) uptake performance and mechanism. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 837:155791. [PMID: 35561923 DOI: 10.1016/j.scitotenv.2022.155791] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 04/19/2022] [Accepted: 05/04/2022] [Indexed: 06/15/2023]
Abstract
FeS nanoparticles loaded on nitrogen-doped biochar (FeS/BNC) were fabricated by pyrolyzing coffee husks pretreated with Mohr's salt. The nitrogen doping and FeS loading of biochar are simultaneously achieved in one-pot pyrolysis. The elemental analysis, SEM, TEM, XRD, XPS, Raman, FTIR and N2 adsorption-desorption technologies were used to characterize the composition and structure of FeS/NBC. The appraisement for removing aqueous Cr(VI) testified that FeS/NBC offered a synergistic scavenging effect of Cr(VI) by FeS and NBC. The effect of crucial experimental conditions (FeS/NBC dosage, foreign ions, initial pH and concentration of Cr(VI) solution) were investigated. The Cr(VI) removal capacity was as high as 211.3 ± 26 mg g-1 under the optimized condition. The practicability of FeS/NBC was examined by using simulated actual samples from tap water and lake water. The mechanism examination showed that surface adsorption/reduction and solution reduction were implicated in the removal of Cr(VI). The current work introduces a novel FeS/NBC composite prepared by an in situ pyrolysis method with excellent potential for chromium pollution remediation.
Collapse
Affiliation(s)
- Dong Chen
- Yunnan Key Laboratory of Carbon Neutrality and Green Low-carbon Technologies, Yunnan University, Kunming 650091, PR China
| | - Xiaohu Du
- Yunnan Key Laboratory of Carbon Neutrality and Green Low-carbon Technologies, Yunnan University, Kunming 650091, PR China
| | - Kunyuan Chen
- Yunnan Key Laboratory of Carbon Neutrality and Green Low-carbon Technologies, Yunnan University, Kunming 650091, PR China
| | - Guangrong Liu
- Yunnan Key Laboratory of Carbon Neutrality and Green Low-carbon Technologies, Yunnan University, Kunming 650091, PR China
| | - Xin Jin
- Yunnan Key Laboratory of Carbon Neutrality and Green Low-carbon Technologies, Yunnan University, Kunming 650091, PR China
| | - Chuanfu Song
- Yunnan Key Laboratory of Carbon Neutrality and Green Low-carbon Technologies, Yunnan University, Kunming 650091, PR China
| | - Feidei He
- School of Agriculture, Yunnan University, Kunming 650091, PR China.
| | - Qiang Huang
- Yunnan Key Laboratory of Carbon Neutrality and Green Low-carbon Technologies, Yunnan University, Kunming 650091, PR China.
| |
Collapse
|
9
|
Bench-Scale Fixed-Bed Column Study for the Removal of Dye-Contaminated Effluent Using Sewage-Sludge-Based Biochar. SUSTAINABILITY 2022. [DOI: 10.3390/su14116484] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Batik industrial effluent wastewater (BIE) contains toxic dyes that, if directly channeled into receiving water bodies without proper treatment, could pollute the aquatic ecosystem and, detrimentally, affect the health of people. This study is aimed at assessing the adsorptive efficacy of a novel low-cost sewage-sludge-based biochar (SSB), in removing color from batik industrial effluent (BIE). Sewage-sludge-based biochar (SSB) was synthesized through two stages, the first is raw-material gathering and preparation. The second stage is carbonization, in a muffle furnace, at 700 °C for 60 min. To investigate the changes introduced by the preparation process, the raw sewage sludge (RS) and SSB were characterized by the Brunauer–Emmett–Teller (BET) method, Fourier-transform infrared spectroscopy (FTIR), and scanning electron microscopy. The surface area of biochar was found to be 117.7 m2/g. The results of FTIR showed that some functional groups, such as CO and OH, were hosted on the surface of the biochar. Continuous fixed-bed column studies were conducted, by using SSB as an adsorbent. A glass column with a diameter of 20 mm was packed with SSB, to depths of 5 cm, 8 cm, and 12 cm. The volumes of BIE passing through the column were 384 mL/d, 864 mL/d, and 1680 mL/d, at a flow rate of 16 mL/h, 36 mL/h, and 70 mL/h, respectively. The initial color concentration in the batik sample was 234 Pt-Co, and the pH was kept in the range of 3–5. The effect of varying bed depth and flow rate over time on the removal efficiency of color was analyzed. It was observed that the breakthrough time differed according to the depth of the bed and changes in the flow rates. The longest time, where breakthrough and exhausting points occurred, was recorded at the highest bed and slowest flowrate. However, the increase in flow rate and decrease in bed depth made the breakthrough curves steeper. The maximum bed capacity of 42.30 mg/g was achieved at a 16 mL/h flowrate and 12 cm bed height. Thomas and Bohart–Adams mathematical models were applied, to analyze the adsorption data and the interaction between the adsorption variables. For both models, the correlation coefficient (R2) was more than 0.9, which signifies that the experimental data are well fitted. Furthermore, the adsorption behavior is best explained by the Thomas model, as it covers the whole range of breakthrough curves.
Collapse
|
10
|
Kumar V, Bilal M, Ferreira LFR. Editorial: Recent Trends in Integrated Wastewater Treatment for Sustainable Development. Front Microbiol 2022; 13:846503. [PMID: 35432288 PMCID: PMC9008750 DOI: 10.3389/fmicb.2022.846503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 03/11/2022] [Indexed: 11/16/2022] Open
Affiliation(s)
- Vineet Kumar
- Waste Re-processing Division, CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nagpur, India
- *Correspondence: Vineet Kumar
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, China
| | - Luiz Fernando Romanholo Ferreira
- Waste and Effluent Treatment Laboratory, Institute of Technology and Research (ITP), Tiradentes University, Aracaju, Brazil
- Graduate Program in Process Engineering, Tiradentes University, Aracaju, Brazil
| |
Collapse
|
11
|
Lun YE, Abdullah SRS, Hasan HA, Othman AR, Kurniawan SB, Imron MF, Al Falahi OA, Said NSM, Sharuddin SSN, Ismail N'I. Integrated emergent-floating planted reactor for textile effluent: Removal potential, optimization of operational conditions and potential forthcoming waste management strategy. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 311:114832. [PMID: 35303596 DOI: 10.1016/j.jenvman.2022.114832] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 02/06/2022] [Accepted: 03/01/2022] [Indexed: 06/14/2023]
Abstract
Native emergent and floating plants; local reed grass (Phragmites karka) and water hyacinth (Eichhornia crassipes), respectively, were used to treat textile wastewater using an integrated emergent-floating planted reactor (IEFPR) system at hydraulic retention times (HRTs) of 8, 14, and 19 days. Real textile effluent having characteristics of 1686.3 ADMI for colour, 535 mg/L for total suspended solid (TSS), 647.7 mg/L for chemical oxygen demand (COD) and 124 mg/L for biochemical oxygen demand (BOD) was used throughout this study. The IEFPR system experienced maximum removal of colour (94.8%, HRT 14 days, day 3), TSS (92.7%, HRT 19 days, day 7), and COD (96.6%, HRT 8 days, day 5) at different HRT and exposure time. The process conditions (HRT and exposure time) were optimized for maximum colour, TSS and COD removal from textile effluent by employing response surface methodology (RSM). The optimization has resulted 100% removal of colour, 87% removal of TSS and 100% removal of COD at HRT of 8 days and exposure time of 5 days, with 0.984 desirability. The integrated plant-assisted treatment system showed reliable performance in treating textile wastewater at optimum operational conditions to improve effluent quality before disposal into water bodies or being recycled into the process. The potential of phytoremediator (produced plant biomass) to be utilized as resources for bioenergy or to be converted into value added products (adsorbent or biochar) provides an alternative to management strategy for better environmental sustainability.
Collapse
Affiliation(s)
- Yeow Eu Lun
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600, UKM Bangi, Selangor, Malaysia.
| | - Siti Rozaimah Sheikh Abdullah
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600, UKM Bangi, Selangor, Malaysia.
| | - Hassimi Abu Hasan
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600, UKM Bangi, Selangor, Malaysia; Research Centre for Sustainable Process Technology (CESPRO), Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600, UKM Bangi, Selangor, Malaysia.
| | - Ahmad Razi Othman
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600, UKM Bangi, Selangor, Malaysia.
| | - Setyo Budi Kurniawan
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600, UKM Bangi, Selangor, Malaysia.
| | - Muhammad Fauzul Imron
- Department of Biology, Faculty of Science and Technology, Universitas Airlangga, Kampus C UNAIR, Jalan Mulyorejo, Surabaya, 60115, Indonesia.
| | - Osama Abrahiem Al Falahi
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600, UKM Bangi, Selangor, Malaysia; Fallujah Hospital, Anbar Health Directorate, Iraqi Ministry of Health, Iraq.
| | - Nor Sakinah Mohd Said
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600, UKM Bangi, Selangor, Malaysia.
| | - Siti Shilatul Najwa Sharuddin
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600, UKM Bangi, Selangor, Malaysia.
| | - Nur 'Izzati Ismail
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600, UKM Bangi, Selangor, Malaysia.
| |
Collapse
|