1
|
Haubrock PJ, Soto I, Cuthbert RN, Kurtul I, Briski E. Analysing factors underlying the reporting of established non-native species. Sci Rep 2025; 15:12337. [PMID: 40210947 PMCID: PMC11985998 DOI: 10.1038/s41598-025-96133-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Accepted: 03/26/2025] [Indexed: 04/12/2025] Open
Abstract
A nexus of natural and human variables mediate the success of non-native species that threaten global biodiversity and ecological stability. However, the relative importance and interplays among relevant factors has not been holistically approached. To identify spatial differences and potential connections in relevant natural and human drivers, we analyzed the number of non-native species established in European countries using a newly collated database of established non-native species. We employ a series of broadscale national predictors classified into 'research', 'economy', 'environment & culture', and 'land-use' to predict successful establishment. Our null models, which assume the distribution of non-native species mirrors that of each predictor, accurately predicted non-native species numbers across European countries. However, a few countries were identified as outliers, having significantly over- or underrepresented non-native species numbers based on adjusted quasi-Poisson distribution quantiles. A network analysis of non-native species compositions identified these regions to be central hubs (e.g. Germany, France, and Switzerland), but also highlighted distinct spatial similarities across European countries. Combinations of the predictors 'economy', 'research', and 'environment & culture' explained the largest shares of differences in the number of established non-native species among European countries as well as their reporting rates over time. Individual drivers alone were insufficient to wholly explain national differences, whereas interacting driver categories ultimately accounted for the largest shares of variance. This analysis demonstrates the breadth of predictors that mediate successful establishment, and particularly highlights the relevance of overlooked historical-cultural facets affecting biological invasions.
Collapse
Affiliation(s)
- Phillip J Haubrock
- Department of River Ecology and Conservation, Senckenberg Research Institute and Natural History Museum Frankfurt, Gelnhausen, Germany.
- Faculty of Fisheries and Protection of Waters, University of South Bohemia in České Budějovice, South Bohemian Research Centre of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, Vodňany, 389 25, Czech Republic.
- Center for Applied Mathematics and Bioinformatics, CAMB, Gulf University for Science and Technology, Gulf, Kuwait.
| | - Ismael Soto
- Faculty of Fisheries and Protection of Waters, University of South Bohemia in České Budějovice, South Bohemian Research Centre of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, Vodňany, 389 25, Czech Republic
| | - Ross N Cuthbert
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Belfast, BT9 5DL, UK
| | - Irmak Kurtul
- Marine and Inland Waters Sciences and Technology Department, Faculty of Fisheries, Ege University, İzmir, Türkiye, Turkey
- Department of Life and Environmental Sciences, Faculty of Science and Technology, Bournemouth University, Poole, Dorset, UK
| | - Elizabeta Briski
- GEOMAR Helmholtz Centre for Ocean Research Kiel, Wischhofstraße 1-3, 24148, Kiel, Germany
| |
Collapse
|
2
|
Hulme PE, Ahmed DA, Haubrock PJ, Kaiser BA, Kourantidou M, Leroy B, McDermott SM. Widespread imprecision in estimates of the economic costs of invasive alien species worldwide. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 909:167997. [PMID: 37914135 DOI: 10.1016/j.scitotenv.2023.167997] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 10/12/2023] [Accepted: 10/19/2023] [Indexed: 11/03/2023]
Abstract
Several hundred studies have attempted to estimate the monetary cost arising from the management and/or impacts of invasive alien species. However, the diversity of methods used to estimate the monetary costs of invasive alien species, the types of costs that have been reported, and the spatial scales at which they have been assessed raise important questions as to the precision of these reported monetary costs. Benford's Law has been increasingly used as a diagnostic tool to assess the accuracy and reliability of estimates reported in financial accounts but has rarely been applied to audit data on environmental costs. Therefore, the distributions of first, second- and leading double-digits of the monetary costs arising from biological invasions, as reported in the InvaCost database, were compared with the null expectations under Benford's Law. There was strong evidence that the reported monetary costs of biological invasions departed considerably from Benford's Law and the departures were of a scale equal to that found in global macroeconomic data. The rounding upwards of costs appears to be widespread. Furthermore, numerical heaping, where values cluster around specific numbers was evident with only 901 unique cost values accounting for half of the 13,553 cost estimates within the InvaCost database. Irrespective of the currency, the value of 1,000,000 was the most common cost estimate. An investigation of anomalous data entries concluded that non-peer reviewed official government reports need to provide greater detail regarding how costs are estimated. Despite the undeniably high economic cost of biological invasions worldwide, individual records of costs were often found to be imprecise and possibly inflated and this emphasises the need for greater transparency and rigour when reporting the costs of biological invasions. Identifying whether the irregularities found for the costs of biological invasions are general for other types of environmental costs should be a research priority.
Collapse
Affiliation(s)
- Philip E Hulme
- Bioprotection Aotearoa, Lincoln University, PO Box 85084, Christchurch, Canterbury, New Zealand.
| | - Danish A Ahmed
- CAMB, Center for Applied Mathematics and Bioinformatics, Gulf University for Science and Technology, Kuwait
| | - Phillip J Haubrock
- CAMB, Center for Applied Mathematics and Bioinformatics, Gulf University for Science and Technology, Kuwait; Department of River Ecology and Conservation, Senckenberg Research Institute and Natural History Museum Frankfurt, Clamecystr. 12, 63571 Gelnhausen, Germany; Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, University of South Bohemia in České Budějovice, Zátiší 728/II, 389 25 Vodňany, Czech Republic
| | - Brooks A Kaiser
- MERE, SEBE, University of Southern Denmark, Degnevej 14a, 6705 Esbjerg Ø, Denmark
| | - Melina Kourantidou
- MERE, SEBE, University of Southern Denmark, Degnevej 14a, 6705 Esbjerg Ø, Denmark; Université de Bretagne Occidentale, UMR 6308 AMURE, IUEM, 29280, Plouzané, France
| | - Boris Leroy
- UMR 8067, Biologie Des Organismes Et Écosystèmes Aquatiques (BOREA), Sorbonne Université, Muséum National d'Histoire Naturelle, Université de Caen Normandie, Université Des Antilles, CNRS, IRD, CP26, 43 Rue Cuvier, 75005 Paris, France
| | - Shana M McDermott
- Department of Economics, Trinity University, San Antonio, TX 78216, USA
| |
Collapse
|
3
|
Ahmed DA, Haubrock PJ, Cuthbert RN, Bang A, Soto I, Balzani P, Tarkan AS, Macêdo RL, Carneiro L, Bodey TW, Oficialdegui FJ, Courtois P, Kourantidou M, Angulo E, Heringer G, Renault D, Turbelin AJ, Hudgins EJ, Liu C, Gojery SA, Arbieu U, Diagne C, Leroy B, Briski E, Bradshaw CJA, Courchamp F. Recent advances in availability and synthesis of the economic costs of biological invasions. Bioscience 2023; 73:560-574. [PMID: 37680688 PMCID: PMC10481418 DOI: 10.1093/biosci/biad060] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 05/18/2023] [Accepted: 06/14/2023] [Indexed: 09/09/2023] Open
Abstract
Biological invasions are a global challenge that has received insufficient attention. Recently available cost syntheses have provided policy- and decision makers with reliable and up-to-date information on the economic impacts of biological invasions, aiming to motivate effective management. The resultant InvaCost database is now publicly and freely accessible and enables rapid extraction of monetary cost information. This has facilitated knowledge sharing, developed a more integrated and multidisciplinary network of researchers, and forged multidisciplinary collaborations among diverse organizations and stakeholders. Over 50 scientific publications so far have used the database and have provided detailed assessments of invasion costs across geographic, taxonomic, and spatiotemporal scales. These studies have provided important information that can guide future policy and legislative decisions on the management of biological invasions while simultaneously attracting public and media attention. We provide an overview of the improved availability, reliability, standardization, and defragmentation of monetary costs; discuss how this has enhanced invasion science as a discipline; and outline directions for future development.
Collapse
Affiliation(s)
- Danish A Ahmed
- Center for Applied Mathematics and Bioinformatics, Department of Mathematics and Natural Sciences, Gulf University for Science and Technology, Hawally, Kuwait
| | - Phillip J Haubrock
- Center for Applied Mathematics and Bioinformatics, Department of Mathematics and Natural Sciences, Gulf University for Science and Technology, Hawally, Kuwait
- Department of River Ecology and Conservation, Senckenberg Research Institute and Natural History Museum Frankfurt,Gelnhausen, Germany
- South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Faculty of Fisheries and Protection of Waters, University of South Bohemia in České Budějovice, Vodňany, Czech Republic
| | - Ross N Cuthbert
- Institute for Global Food Security, School of Biological Sciences at Queen's University Belfast, Belfast, NorthernIreland
| | - Alok Bang
- School of Arts and Sciences at Azim Premji University, Bangalore, India
- School of Arts and Sciences, Azim Premji University, Bhopal, India
- Society for Ecology, Evolution, and Development, Wardha, India
| | - Ismael Soto
- South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Faculty of Fisheries and Protection of Waters, University of South Bohemia in České Budějovice, Vodňany, Czech Republic
| | - Paride Balzani
- South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Faculty of Fisheries and Protection of Waters, University of South Bohemia in České Budějovice, Vodňany, Czech Republic
| | - Ali Serhan Tarkan
- Department of Basic Sciences in the Faculty of Fisheries at Muğla Sıtkı Koçman University, in Muğla, Turkey
- Department of Life and Environmental Sciences in the Faculty of Science and Technology at Bournemouth University, Poole, Dorset, England, United Kingdom
| | - Rafael L Macêdo
- Graduate Program in Conservation and Ecotourism at the Federal University of Rio de Janeiro State, Rio de Janeiro, Rio de Janeiro State, Brazil
- Institute of Biology at Freie Universität Berlin, Berlin, Germany
- Neotropical Limnology Group, at the Federal University of Rio de Janeiro State, Rio de Janeiro, Rio de Janeiro State, Brasil
| | - Laís Carneiro
- Laboratório de Ecologia e Conservação in the Departamento de Engenharia Ambiental, Setor de Tecnologia, at the Universidade Federal do Paraná, in Curitiba, Paraná, Brazil
| | - Thomas W Bodey
- School of Biological Sciences at King's College, University of Aberdeen, Aberdeen, Scotland, United Kingdom
| | - Francisco J Oficialdegui
- South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Faculty of Fisheries and Protection of Waters, University of South Bohemia in České Budějovice, Vodňany, Czech Republic
| | - Pierre Courtois
- Centre for Environmental Economics—Montpellier, National Institute for Research in Agriculture and the Environment, Montpellier, France
| | - Melina Kourantidou
- Department of Sociology, Environmental and Business Economics, University of Southern Denmark, Esbjerg Ø, Denmark
- Université de Bretagne Occidentale, Plouzané, France
| | | | - Gustavo Heringer
- Departamento de Ecologia e Conservação in the Instituto de Ciências Naturais at the Universidade Federal de Lavras, Lavras, Minas Gerais, Brazil
- Nürtingen-Geislingen University, Nürtingen, Germany
| | - David Renault
- Centre National de Recherche Scientifique's Ecosystèmes, Biodiversité, Evolution, University of Rennes, Rennes, France
| | - Anna J Turbelin
- Université Paris–Saclay, CNRS, AgroParisTech, Ecologie Systématique Evolution, Gif-sur-Yvette, France
- Great Lakes Forestry Centre at Canadian Forestry Services, part of Natural Resources Canada, Sault Ste Marie, Ontario, Canada
| | - Emma J Hudgins
- Department of Biology at Carleton University, Ottawa, Ontario, Canada
| | - Chunlong Liu
- College of Fisheries at the Ocean University of China, Qingdao, China
- Institute of Hydrobiology at the Chinese Academy of Sciences, Wuhan, China
| | - Showkat A Gojery
- Department of Botany at the University of Kashmir, Kashmir, India
| | - Ugo Arbieu
- Université Paris–Saclay, CNRS, AgroParisTech, Ecologie Systématique Evolution, Gif-sur-Yvette, France
- Senckenberg Biodiversity and Climate Research Centre, Frankfurt am Main, Germany
- Smithsonian Conservation Biology Institute, at the National Zoological Park, Front Royal, Virginia, United States
| | - Christophe Diagne
- Centre de Biologie pour la Gestion des Populations, at Institut de Recherche pour le Développement, Montferrier-sur-Lez Cedex, France
| | - Boris Leroy
- Unité Biologie des Organismes et des Ecosystèmes Aquatiques, Muséum National d’Histoire Naturelle, Sorbonne Universités, Université de Caen Normandie, Université des Antilles, in Paris, France
| | | | - Corey J A Bradshaw
- Global Ecology Laboratory, Partuyarta Ngadluku Wardli Kuu, College of Science and Engineering, Flinders University, Adelaide, South Australia
- ARC Centre of Excellence for Australian Biodiversity and Heritage, Wollongong, New South Wales, Australia
| | - Franck Courchamp
- Université Paris–Saclay, CNRS, AgroParisTech, Ecologie Systématique Evolution, Gif-sur-Yvette, France
| |
Collapse
|
4
|
Courtois P, Martinez C, Thomas A. Spatial priorities for invasive alien species control in protected areas. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 878:162675. [PMID: 36933722 DOI: 10.1016/j.scitotenv.2023.162675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 01/31/2023] [Accepted: 03/02/2023] [Indexed: 05/13/2023]
Abstract
Given the limited funds available for the management of invasive alien species (IASs), there is a need to design cost-effective strategies to prioritize their control. In this paper, we propose a cost-benefit optimization framework that incorporates the spatially explicit costs and benefits of invasion control, as well as the spatial invasion dynamics. Our framework offers a simple yet operational priority-setting criterion for the spatially explicit management of IASs under budget constraints. We applied this criterion to the control of the invasion of primrose willow (genus Ludwigia) in a protected area in France. Using a unique geographic information system panel dataset on control costs and invasion levels through space for a 20-year period, we estimated the costs of invasion control and a spatial econometric model of primrose willow invasion dynamics. Next, we used a field choice experiment to estimate the spatially explicit benefits of invasion control. Applying our priority criterion, we show that, unlike the current management strategy that controls the invasion in a spatially homogeneous manner, the criterion recommends targeted control on heavily invaded areas that are highly valued by users. We also show that the returns on investment are high, justifying the need to increase the allocated budgets and to treat the invasion more drastically. We conclude with policy recommendations and possible extensions, including the development of operational cost-benefit decision-support tools to assist local decision-makers in setting management priorities.
Collapse
Affiliation(s)
- Pierre Courtois
- CEE-M, Université de Montpellier, CNRS, INRAE, Instit Agro, 34000 Montpellier, France.
| | - César Martinez
- CEE-M, Université de Montpellier, CNRS, INRAE, Instit Agro, 34000 Montpellier, France; INRAE, BioSP, 84914 Avignon, France.
| | - Alban Thomas
- Paris-Saclay Applied Economics, Université Paris-Saclay, INRAE, AgroParisTech, 91120 Palaiseau, France.
| |
Collapse
|
5
|
Rocha BS, García-Berthou E, Cianciaruso MV. Non-native fishes in Brazilian freshwaters: identifying biases and gaps in ecological research. Biol Invasions 2023. [DOI: 10.1007/s10530-023-03002-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
6
|
Diagne C, Ballesteros-Mejia L, Cuthbert RN, Bodey TW, Fantle-Lepczyk J, Angulo E, Bang A, Dobigny G, Courchamp F. Economic costs of invasive rodents worldwide: the tip of the iceberg. PeerJ 2023; 11:e14935. [PMID: 36992943 PMCID: PMC10042159 DOI: 10.7717/peerj.14935] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 01/31/2023] [Indexed: 03/31/2023] Open
Abstract
Background Rodents are among the most notorious invasive alien species worldwide. These invaders have substantially impacted native ecosystems, food production and storage, local infrastructures, human health and well-being. However, the lack of standardized and understandable estimation of their impacts is a serious barrier to raising societal awareness, and hampers effective management interventions at relevant scales. Methods Here, we assessed the economic costs of invasive alien rodents globally in order to help overcome these obstacles. For this purpose, we combined and analysed economic cost data from the InvaCost database-the most up-to-date and comprehensive synthesis of reported invasion costs-and specific complementary searches within and beyond the published literature. Results Our conservative analysis showed that reported costs of rodent invasions reached a conservative total of US$ 3.6 billion between 1930 and 2022 (annually US$ 87.5 million between 1980 and 2022), and were significantly increasing through time. The highest cost reported was for muskrat Ondatra zibethicus (US$ 377.5 million), then unspecified Rattus spp. (US$ 327.8 million), followed by Rattus norvegicus specifically (US$ 156.6 million) and Castor canadensis (US$ 150.4 million). Of the total costs, 87% were damage-related, principally impacting agriculture and predominantly reported in Asia (60%), Europe (19%) and North America (9%). Our study evidenced obvious cost underreporting with only 99 documents gathered globally, clear taxonomic gaps, reliability issues for cost assessment, and skewed breakdowns of costs among regions, sectors and contexts. As a consequence, these reported costs represent only a very small fraction of the expected true cost of rodent invasions (e.g., using a less conservative analytic approach would have led to a global amount more than 80-times higher than estimated here). Conclusions These findings strongly suggest that available information represents a substantial underestimation of the global costs incurred. We offer recommendations for improving estimates of costs to fill these knowledge gaps including: systematic distinction between native and invasive rodents' impacts; monetizing indirect impacts on human health; and greater integrative and concerted research effort between scientists and stakeholders. Finally, we discuss why and how this approach will stimulate and provide support for proactive and sustainable management strategies in the context of alien rodent invasions, for which biosecurity measures should be amplified globally.
Collapse
Affiliation(s)
- Christophe Diagne
- CBGP, Univ Montpellier, CIRAD, INRAE, Institut Agro, IRD, Montferrier-sur-Lez, France
- Université Paris-Saclay, CNRS, AgroParisTech, Ecologie Systématique Evolution, Orsay, France
| | | | - Ross N. Cuthbert
- Institute for Global Food Security, School of Biological Sciences, Queen’s University Belfast, Belfast, United Kingdom
| | - Thomas W. Bodey
- School of Biological Sciences, King’s College, University of Aberdeen, Aberdeen, United Kingdom
| | | | - Elena Angulo
- Université Paris-Saclay, CNRS, AgroParisTech, Ecologie Systématique Evolution, Orsay, France
- Estación Biológica de Doñana (CSIC), Sevilla, Spain
| | - Alok Bang
- Society for Ecology Evolution and Development, Wardha, India
| | - Gauthier Dobigny
- CBGP, Univ Montpellier, CIRAD, INRAE, Institut Agro, IRD, Montferrier-sur-Lez, France
- Unité Peste, Institut Pasteur de Madagascar, BP 1274 Ambatofotsikely Avaradoha, 101 Antananarivo, Madagascar
| | - Franck Courchamp
- Université Paris-Saclay, CNRS, AgroParisTech, Ecologie Systématique Evolution, Orsay, France
| |
Collapse
|
7
|
Balzani P, Cuthbert RN, Briski E, Galil B, Castellanos-Galindo GA, Kouba A, Kourantidou M, Leung B, Soto I, Haubrock PJ. Knowledge needs in economic costs of invasive species facilitated by canalisation. NEOBIOTA 2022. [DOI: 10.3897/neobiota.78.95050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Canals provide wide-ranging economic benefits, while also serving as corridors for the introduction and spread of aquatic alien species, potentially leading to negative ecological and economic impacts. However, to date, no comprehensive quantifications of the reported economic costs of these species have been done. Here, we used the InvaCost database on the monetary impact of invasive alien species to identify the costs of those facilitated by three major canal systems: the European Inland Canals, Suez Canal, and Panama Canal. While we identified a staggering number of species having spread via these systems, monetary costs have been reported only for a few. A total of $33.6 million in costs have been reported from species linked to European Inland Canals (the fishhook waterflea Cercopagis pengoi and the zebra mussel Dreissena polymorpha) and $8.6 million linked to the Suez Canal (the silver-cheeked toadfish Lagocephalus sceleratus, the lionfish Pterois miles, and the nomad jellyfish Rhopilema nomadica), but no recorded costs were found for species facilitated by the Panama Canal. We thus identified a pervasive lack of information on the monetary costs of invasions facilitated by canals and highlighted the uneven distribution of costs.
Collapse
|
8
|
Macêdo RL, Franco ACS, Kozlowsky-Suzuki B, Mammola S, Dalu T, Rocha O. The global social-economic dimension of biological invasions by plankton: Grossly underestimated costs but a rising concern for water quality benefits? WATER RESEARCH 2022; 222:118918. [PMID: 35932706 DOI: 10.1016/j.watres.2022.118918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 07/13/2022] [Accepted: 07/27/2022] [Indexed: 06/15/2023]
Abstract
Planktonic invasive species cause adverse effects on aquatic biodiversity and ecosystem services. However, these impacts are often underestimated because of unresolved taxonomic issues and limited biogeographic knowledge. Thus, it is pivotal to start a rigorous quantification of impacts undertaken by planktonic invasive species on global economies. We used the InvaCost database, the most up-to-date database of economic cost estimates of biological invasions worldwide, to produce the first critical assessment of the economic dimension of biological invasions caused by planktonic taxa. We found that in period spanning from 1960 to 2021, the cumulative global cost of plankton invasions was US$ 5.8 billion for permanent plankton (holoplankton) of which viruses encompassed nearly 93%. Apart from viruses, we found more costs related to zooplankton (US$ 297 million) than to the other groups summed, including myco- (US$ 73 million), phyto- (43 million), and bacterioplankton (US$ 0.7 million). Strikingly, harmful and potentially toxic cyanobacteria and dinoflagellates are completely absent from the database. Furthermore, the data base showed a decrease in costs over time, which is probably an artifact as a sharp rise of novel planktonic alien species has gained international attention. Also, assessments of the costs of larval meroplanktonic stages of littoral and benthic invasive invertebrates are lacking whereas cumulative global cost of their adults stages is high up to US$ 98 billion billion and increasing. Considering the challenges and perspectives of increasing but unnoticed or neglected impacts by plankton invasions, the assessment of their ecological and economic impacts should be of high priority.
Collapse
Affiliation(s)
- Rafael L Macêdo
- Graduate Program in Ecology and Natural Resources, and Department of Ecology and Evolutionary Biology, Federal University of São Carlos - UFSCar, São Carlos, Brazil; Graduate Program in Conservation and Ecotourism, Federal University of Rio de Janeiro State (UNIRIO), Rio de Janeiro, Rio de Janeiro, Brazil; Neotropical Limnology Group (NEL), Federal University of Rio de Janeiro State, Av. Pasteur, 458, 22290-240, Rio de Janeiro, RJ, Brasil.
| | - Ana Clara S Franco
- Graduate Course in Neotropical Biodiversity, Federal University of Rio de Janeiro State, 458, 22290-240, Rio de Janeiro, Brazil
| | - Betina Kozlowsky-Suzuki
- Graduate Program in Conservation and Ecotourism, Federal University of Rio de Janeiro State (UNIRIO), Rio de Janeiro, Rio de Janeiro, Brazil; Neotropical Limnology Group (NEL), Federal University of Rio de Janeiro State, Av. Pasteur, 458, 22290-240, Rio de Janeiro, RJ, Brasil; Graduate Course in Neotropical Biodiversity, Federal University of Rio de Janeiro State, 458, 22290-240, Rio de Janeiro, Brazil
| | - Stefano Mammola
- Laboratory for Integrative Biodiversity Research (LIBRe), Finnish Museum of Natural History (LUOMUS), University of Helsinki, Helsinki, Finland; Molecular Ecology Group (MEG), Water Research Institute, National Research Council of Italy (CNR-IRSA), 28922, Verbania Pallanza, Italy
| | - Tatenda Dalu
- School of Biology and Environmental Sciences, University of Mpumalanga, Nelspruit, 1200, South Africa; Wissenshaftskolleg zu Berlin Institute for Advanced Study, Berlin, 14193, Germany
| | - Odete Rocha
- Graduate Program in Ecology and Natural Resources, and Department of Ecology and Evolutionary Biology, Federal University of São Carlos - UFSCar, São Carlos, Brazil
| |
Collapse
|
9
|
Soto I, Cuthbert RN, Kouba A, Capinha C, Turbelin A, Hudgins EJ, Diagne C, Courchamp F, Haubrock PJ. Global economic costs of herpetofauna invasions. Sci Rep 2022; 12:10829. [PMID: 35902706 PMCID: PMC9334389 DOI: 10.1038/s41598-022-15079-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 06/17/2022] [Indexed: 11/24/2022] Open
Abstract
Biological invasions by amphibian and reptile species (i.e. herpetofauna) are numerous and widespread, having caused severe impacts on ecosystems, the economy and human health. However, there remains no synthesised assessment of the economic costs of these invasions. Therefore, using the most comprehensive database on the economic costs of invasive alien species worldwide (InvaCost), we analyse the costs caused by invasive alien herpetofauna according to taxonomic, geographic, sectoral and temporal dimensions, as well as the types of these costs. The cost of invasive herpetofauna totaled at 17.0 billion US$ between 1986 and 2020, divided split into 6.3 billion US$ for amphibians, 10.4 billion US$ for reptiles and 334 million US$ for mixed classes. However, these costs were associated predominantly with only two species (brown tree snake Boiga irregularis and American bullfrog Lithobates catesbeianus), with 10.3 and 6.0 billion US$ in costs, respectively. Costs for the remaining 19 reported species were relatively minor (< 0.6 billion US$), and they were entirely unavailable for over 94% of known invasive herpetofauna worldwide. Also, costs were positively correlated with research effort, suggesting research biases towards well-known taxa. So far, costs have been dominated by predictions and extrapolations (79%), and thus empirical observations for impact were relatively scarce. The activity sector most affected by amphibians was authorities-stakeholders through management (> 99%), while for reptiles, impacts were reported mostly through damages to mixed sectors (65%). Geographically, Oceania and Pacific Islands recorded 63% of total costs, followed by Europe (35%) and North America (2%). Cost reports have generally increased over time but peaked between 2011 and 2015 for amphibians and 2006 to 2010 for reptiles. A greater effort in studying the costs of invasive herpetofauna is necessary for a more complete understanding of invasion impacts of these species. We emphasise the need for greater control and prevention policies concerning the spread of current and future invasive herpetofauna.
Collapse
Affiliation(s)
- Ismael Soto
- Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, University of South Bohemia in České Budějovice, Zátiší 728/II, 389 25, Vodňany, Czech Republic
| | - Ross N Cuthbert
- School of Biological Sciences, Queen's University Belfast, Belfast, BT9 5DL, UK
| | - Antonín Kouba
- Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, University of South Bohemia in České Budějovice, Zátiší 728/II, 389 25, Vodňany, Czech Republic
| | - César Capinha
- Centro de Estudos Geográficos, Instituto de Geografia e Ordenamento do Território-IGOT, Universidade de Lisboa, Rua Branca Edmée Marques, 1600-276, Lisbon, Portugal
- Laboratório Associado Terra, Lisbon, Portugal
| | - Anna Turbelin
- Université Paris-Saclay, CNRS, AgroParisTech, Ecologie Systématique Evolution, 91405, Orsay, France
| | - Emma J Hudgins
- Department of Biology, Carleton University, Ottawa, Canada
| | - Christophe Diagne
- Université Paris-Saclay, CNRS, AgroParisTech, Ecologie Systématique Evolution, 91405, Orsay, France
| | - Franck Courchamp
- Université Paris-Saclay, CNRS, AgroParisTech, Ecologie Systématique Evolution, 91405, Orsay, France
| | - Phillip J Haubrock
- Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, University of South Bohemia in České Budějovice, Zátiší 728/II, 389 25, Vodňany, Czech Republic.
- Department of River Ecology and Conservation, Senckenberg Research Institute and Natural History Museum Frankfurt, Gelnhausen, Germany.
| |
Collapse
|
10
|
Cuthbert RN, Diagne C, Hudgins EJ, Turbelin A, Ahmed DA, Albert C, Bodey TW, Briski E, Essl F, Haubrock PJ, Gozlan RE, Kirichenko N, Kourantidou M, Kramer AM, Courchamp F. Biological invasion costs reveal insufficient proactive management worldwide. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 819:153404. [PMID: 35148893 DOI: 10.1016/j.scitotenv.2022.153404] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/21/2022] [Accepted: 01/21/2022] [Indexed: 06/14/2023]
Abstract
The global increase in biological invasions is placing growing pressure on the management of ecological and economic systems. However, the effectiveness of current management expenditure is difficult to assess due to a lack of standardised measurement across spatial, taxonomic and temporal scales. Furthermore, there is no quantification of the spending difference between pre-invasion (e.g. prevention) and post-invasion (e.g. control) stages, although preventative measures are considered to be the most cost-effective. Here, we use a comprehensive database of invasive alien species economic costs (InvaCost) to synthesise and model the global management costs of biological invasions, in order to provide a better understanding of the stage at which these expenditures occur. Since 1960, reported management expenditures have totalled at least US$95.3 billion (in 2017 values), considering only highly reliable and actually observed costs - 12-times less than damage costs from invasions ($1130.6 billion). Pre-invasion management spending ($2.8 billion) was over 25-times lower than post-invasion expenditure ($72.7 billion). Management costs were heavily geographically skewed towards North America (54%) and Oceania (30%). The largest shares of expenditures were directed towards invasive alien invertebrates in terrestrial environments. Spending on invasive alien species management has grown by two orders of magnitude since 1960, reaching an estimated $4.2 billion per year globally (in 2017 values) in the 2010s, but remains 1-2 orders of magnitude lower than damages. National management spending increased with incurred damage costs, with management actions delayed on average by 11 years globally following damage reporting. These management delays on the global level have caused an additional invasion cost of approximately $1.2 trillion, compared to scenarios with immediate management. Our results indicate insufficient management - particularly pre-invasion - and urge better investment to prevent future invasions and to control established alien species. Recommendations to improve reported management cost comprehensiveness, resolution and terminology are also made.
Collapse
Affiliation(s)
- Ross N Cuthbert
- GEOMAR Helmholtz-Zentrum für Ozeanforschung Kiel, 24105 Kiel, Germany; School of Biological Sciences, Queen's University Belfast, BT9 5DL Belfast, United Kingdom.
| | - Christophe Diagne
- Université Paris-Saclay, CNRS, AgroParisTech, Ecologie Systématique Evolution, 91405 Orsay, France
| | - Emma J Hudgins
- Department of Biology, Carleton University, Ottawa, Ontario K1S 5B6, Canada
| | - Anna Turbelin
- Université Paris-Saclay, CNRS, AgroParisTech, Ecologie Systématique Evolution, 91405 Orsay, France
| | - Danish A Ahmed
- Center for Applied Mathematics and Bioinformatics, Department of Mathematics and Natural Sciences, Gulf University for Science and Technology, P.O. Box 7207, Hawally 32093, Kuwait
| | - Céline Albert
- Université Paris-Saclay, CNRS, AgroParisTech, Ecologie Systématique Evolution, 91405 Orsay, France
| | - Thomas W Bodey
- School of Biological Sciences, King's College, University of Aberdeen, Aberdeen AB24 3FX, United Kingdom
| | - Elizabeta Briski
- GEOMAR Helmholtz-Zentrum für Ozeanforschung Kiel, 24105 Kiel, Germany
| | - Franz Essl
- BioInvasions, Global Change, Macroecology-Group, Department of Botany and Biodiversity Research, University of Vienna, Rennweg 14, 1030 Vienna, Austria
| | - Phillip J Haubrock
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, 389 25 Vodňany, Czech Republic; Senckenberg Research Institute and Natural History Museum Frankfurt, Department of River Ecology and Conservation, Gelnhausen, Germany
| | - Rodolphe E Gozlan
- ISEM UMR226, Université de Montpellier, CNRS, IRD, EPHE, 34090 Montpellier, France
| | - Natalia Kirichenko
- Sukachev Institute of Forest, Siberian Branch of Russian Academy of Sciences, Federal Research Center "Krasnoyarsk Science Center SB RAS", Krasnoyarsk 660036, Russia; Siberian Federal University, Krasnoyarsk 660041, Russia; Saint Petersburg State Forest Technical University, Saint Petersburg 194021, Russia
| | - Melina Kourantidou
- University of Southern Denmark, Department of Sociology, Environmental and Business Economics, Degnevej 14, 6705 Esbjerg Ø, Denmark; Woods Hole Oceanographic Institution, Marine Policy Center, Woods Hole, MA 02543, United States; Institute of Marine Biological Resources and Inland Waters, Hellenic Center for Marine Research, Athens 164 52, Greece
| | - Andrew M Kramer
- Department of Integrative Biology, University of South Florida, Tampa, FL 33620, United States
| | - Franck Courchamp
- Université Paris-Saclay, CNRS, AgroParisTech, Ecologie Systématique Evolution, 91405 Orsay, France.
| |
Collapse
|
11
|
Haubrock PJ, Cuthbert RN, Ricciardi A, Diagne C, Courchamp F. Economic costs of invasive bivalves in freshwater ecosystems. DIVERS DISTRIB 2022. [DOI: 10.1111/ddi.13501] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Affiliation(s)
- Phillip J. Haubrock
- Department of River Ecology and Conservation Senckenberg Research Institute and Natural History Museum Frankfurt Gelnhausen Germany
- Faculty of Fisheries and Protection of Waters South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses University of South Bohemia in České Budějovice Vodňany Czech Republic
| | - Ross N. Cuthbert
- GEOMAR Helmholtz‐Zentrum für Ozeanforschung Kiel Kiel Germany
- School of Biological Sciences Queen’s University Belfast Belfast UK
| | - Anthony Ricciardi
- Redpath Museum and McGill School of Environment McGill University Montreal Canada
| | - Christophe Diagne
- Université Paris‐Saclay CNRS AgroParisTech, Ecologie Systématique Evolution Orsay France
| | - Franck Courchamp
- Université Paris‐Saclay CNRS AgroParisTech, Ecologie Systématique Evolution Orsay France
| |
Collapse
|