1
|
Schenone L, Capitani L, Lora U, Setälä O, Kaartokallio H, Seppälä J, Lehtiniemi M. Microbial plankton uptake enhances the degradation of a biodegradable microplastic. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 374:126252. [PMID: 40233855 DOI: 10.1016/j.envpol.2025.126252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 03/23/2025] [Accepted: 04/12/2025] [Indexed: 04/17/2025]
Abstract
The use of biodegradable plastics as an alternative to conventional non-degradable synthetic polymers is gaining market to reduce plastic pollution, however, their biodegradability is not unconditional. In this study, we hypothesized that planktonic protists (nanoflagellates and ciliates) increase the degradation of the biodegradable PLGA (poly(lactic-co-glycolic) acid) due to particle uptake. We conducted uptake and degradation experiments using PLGA microspheres of 4.9 ± 2.8 μm diameter and the microbial planktonic community from the Baltic Sea. We found that planktonic protists ingested PLGA of different sizes, with ciliates displaying higher clearance rates and ingesting larger particles compared to nanoflagellates. In addition, we observed a more pronounced decrease in PLGA concentration and particle size over time in the presence of seawater containing microbial plankton compared to a control with only ultrapure water, suggesting that the presence of these organisms increases the rate of degradation of PLGA in marine ecosystems. Altogether, these results indicate that microbial plankton enhances the degradation of biodegradable microplastics like PLGA, specifically through rapid uptake by planktonic protists. These findings highlight the role of particle ingestion by planktonic protists in the fate of the so-called biodegradable plastics when they enter aquatic ecosystems.
Collapse
Affiliation(s)
- Luca Schenone
- Laboratorio de Limnología, INIBIOMA, CONICET-Universidad Nacional del Comahue, Quintral 1250, 8400, Bariloche, Argentina.
| | - Leonardo Capitani
- Plant Animal Interaction Lab, Swiss Federal Institute for Forest, Snow and Landscape Research (WSL), 8903, Birmensdorf, Switzerland; Department of Aquatic Ecology, Swiss Federal Institute of Aquatic Sciences and Technology (Eawag), Dübendorf, Switzerland
| | - Ulises Lora
- Institut de Ciències del Mar (CSIC), Passeig Marítim de la Barceloneta 37-49, 08003, Barcelona, Catalonia, Spain
| | - Outi Setälä
- Finnish Environment Institute (Syke), Latokartanonkaari 11, 00790, Helsinki, Finland
| | - Hermanni Kaartokallio
- Finnish Environment Institute (Syke), Latokartanonkaari 11, 00790, Helsinki, Finland
| | - Jukka Seppälä
- Finnish Environment Institute (Syke), Latokartanonkaari 11, 00790, Helsinki, Finland
| | - Maiju Lehtiniemi
- Finnish Environment Institute (Syke), Latokartanonkaari 11, 00790, Helsinki, Finland
| |
Collapse
|
2
|
Perkins DM, Müller HL, Grünewald S, Reiss J, Restrepo-Sulez K, Robertson A, Perna A. Microplastic ingestion by an aquatic ciliate: Functional response, modulation, and reduced population growth. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 963:178272. [PMID: 39818146 DOI: 10.1016/j.scitotenv.2024.178272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 12/04/2024] [Accepted: 12/22/2024] [Indexed: 01/18/2025]
Abstract
Microplastic particles are ubiquitous in aquatic environments and are considered a major threat to the large range of heterotrophic organisms that involuntarily consume them. However, there is current uncertainty around the mechanisms underpinning microplastic uptake by aquatic consumers and the consequences for both the fate of the microplastics and the growth potential of consumer populations. We performed a feeding experiment, exposing a model freshwater ciliate, Tetrahymena pyriformis, to six different microplastic concentrations and measured microplastic uptake and population growth over the course of several generations. Microplastic uptake increased in a saturating fashion with concentration, consistent with a Type II functional response, with a maximum feeding rate of 22 microplastic particles individual-1 h-1. Interestingly, microplastic uptake decreased through time and we observed that, after egestion, microplastic particles aggregated, rendering them too large for re-consumption. We built and tested a simulation model which matched rates of microplastic uptake when incorporating functional response parameters and assuming 50 % immobilisation of microplastics after egestion. Nevertheless, ciliate population growth was compromised by the presence of microplastics, decreasing by 43 % over the full microplastic concentration range. Taken together, our results demonstrate the potential for aquatic ciliates to play an important role in the uptake, transfer, and modification of microplastics in freshwater environments with associated negative impacts on population fitness.
Collapse
Affiliation(s)
- Daniel M Perkins
- Department of Life Sciences, Whitelands College, Roehampton University, London SW15 4JD, United Kingdom; Centre for Pollution Research and Policy, Brunel University of London, Uxbridge, UB8 3PH, United Kingdom.
| | - Hedda L Müller
- Department of Life Sciences, Whitelands College, Roehampton University, London SW15 4JD, United Kingdom
| | - Susanne Grünewald
- Department of Life Sciences, Whitelands College, Roehampton University, London SW15 4JD, United Kingdom
| | - Julia Reiss
- Department of Life Sciences, Whitelands College, Roehampton University, London SW15 4JD, United Kingdom; Centre for Pollution Research and Policy, Brunel University of London, Uxbridge, UB8 3PH, United Kingdom
| | - Katherin Restrepo-Sulez
- Department of Life Sciences, Whitelands College, Roehampton University, London SW15 4JD, United Kingdom
| | - Anne Robertson
- Department of Life Sciences, Whitelands College, Roehampton University, London SW15 4JD, United Kingdom
| | - Andrea Perna
- Department of Life Sciences, Whitelands College, Roehampton University, London SW15 4JD, United Kingdom; Networks Unit, IMT School for Advanced Studies Lucca, Italy
| |
Collapse
|
3
|
Lawrence J, Santolini C, Binda G, Carnati S, Boldrocchi G, Pozzi A, Bettinetti R. Freshwater Lacustrine Zooplankton and Microplastic: An Issue to Be Still Explored. TOXICS 2023; 11:1017. [PMID: 38133418 PMCID: PMC10748375 DOI: 10.3390/toxics11121017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/05/2023] [Accepted: 12/08/2023] [Indexed: 12/23/2023]
Abstract
Lakes are essentially interlinked to humans as they provide water for drinking, agriculture, industrial and domestic purposes. The upsurge of plastic usage, its persistence, and potential detrimental effects on organisms cause impacts on the trophic food web of freshwater ecosystems; this issue, however, still needs to be explored. Zooplankton worldwide is commonly studied as an indicator of environmental risk in aquatic ecosystems for several pollutants. The aim of the review is to link the existing knowledge of microplastic pollution in zooplankton to assess the potential risks linked to these organisms which are at the first level of the lacustrine trophic web. A database search was conducted through the main databases to gather the relevant literature over the course of time. The sensitivity of zooplankton organisms is evident from laboratory studies, whereas several knowledge gaps exist in the understanding of mechanisms causing toxicity. This review also highlights insufficient data on field studies hampering the understanding of the pollution extent in lakes, as well as unclear trends on ecosystem-level cascading effects of microplastics (MPs) and mechanisms of toxicity (especially in combination with other pollutants). Therefore, this review provides insight into understanding the overlooked issues of microplastic in lake ecosystems to gain an accurate ecological risk assessment.
Collapse
Affiliation(s)
- Jassica Lawrence
- DISAT Department of Science and High Technology, University of Insubria, Via Valleggio 11, 22100 Como, Italy; (J.L.); (C.S.); (S.C.); (A.P.)
| | - Carlotta Santolini
- DISAT Department of Science and High Technology, University of Insubria, Via Valleggio 11, 22100 Como, Italy; (J.L.); (C.S.); (S.C.); (A.P.)
- University School for Advanced Studies IUSS, 27100 Pavia, Italy
| | - Gilberto Binda
- DISAT Department of Science and High Technology, University of Insubria, Via Valleggio 11, 22100 Como, Italy; (J.L.); (C.S.); (S.C.); (A.P.)
- Norwegian Institute for Water Research, Økernveien 94, 0579 Oslo, Norway
| | - Stefano Carnati
- DISAT Department of Science and High Technology, University of Insubria, Via Valleggio 11, 22100 Como, Italy; (J.L.); (C.S.); (S.C.); (A.P.)
| | - Ginevra Boldrocchi
- DiSUIT Department of Human Science and Innovation for the Territory, University of Insubria, Via Valleggio 11, 22100 Como, Italy;
| | - Andrea Pozzi
- DISAT Department of Science and High Technology, University of Insubria, Via Valleggio 11, 22100 Como, Italy; (J.L.); (C.S.); (S.C.); (A.P.)
| | - Roberta Bettinetti
- DiSUIT Department of Human Science and Innovation for the Territory, University of Insubria, Via Valleggio 11, 22100 Como, Italy;
| |
Collapse
|
4
|
do Amparo SZS, Carvalho LDO, Silva GG, Viana MM. Microplastics as contaminants in the Brazilian environment: an updated review. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 195:1414. [PMID: 37925384 DOI: 10.1007/s10661-023-12011-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Accepted: 10/23/2023] [Indexed: 11/06/2023]
Abstract
Microplastics have long been present in marine and terrestrial environments and have emerged in recent decades as a global environmental concern. This pollutant has been detected with increasing frequency in Brazilian territory and herein primarily highlights current information and developments about the quantity, distribution, techniques of identification, origins, and sources of microplastics and related pollutants in the Brazilian environment. We evaluated 79 publications from 2018 to December 2022, and some aspects can be highlighted: 27% of studies were published in the Journal Marine Pollution Bulletin; 22% of all studies were conducted in São Paulo city; and 52% of all microplastics found were collected from biota followed by sediment samples. According to the findings given here, microplastics in Brazilian habitats, which can reach concentrations of 4367 to 25,794 items m-2 in sediments, are becoming a serious problem in the Anthropocene age, and some topics regarding the open questions in this area were pointed out in this review.
Collapse
Affiliation(s)
- Sthéfany Z S do Amparo
- Departamento de Química-ICEx, Universidade Federal de Minas Gerais, Belo Horizonte, MG, ZIP 30.270-901, Brazil.
- Centro de Tecnologia em Nanomateriais e Grafeno - CTNano, Universidade Federal de Minas Gerais, Belo Horizonte, MG, ZIP 31.310-260, Brazil.
| | - Luciana de O Carvalho
- Departamento de Química-ICEx, Universidade Federal de Minas Gerais, Belo Horizonte, MG, ZIP 30.270-901, Brazil
- Centro de Tecnologia em Nanomateriais e Grafeno - CTNano, Universidade Federal de Minas Gerais, Belo Horizonte, MG, ZIP 31.310-260, Brazil
| | - Glaura G Silva
- Departamento de Química-ICEx, Universidade Federal de Minas Gerais, Belo Horizonte, MG, ZIP 30.270-901, Brazil
- Centro de Tecnologia em Nanomateriais e Grafeno - CTNano, Universidade Federal de Minas Gerais, Belo Horizonte, MG, ZIP 31.310-260, Brazil
| | - Marcelo M Viana
- Departamento de Química-ICEx, Universidade Federal de Minas Gerais, Belo Horizonte, MG, ZIP 30.270-901, Brazil.
- Centro de Tecnologia em Nanomateriais e Grafeno - CTNano, Universidade Federal de Minas Gerais, Belo Horizonte, MG, ZIP 31.310-260, Brazil.
| |
Collapse
|
5
|
Zhang S, Wang W, Yan P, Wang J, Yan S, Liu X, Aurangzeib M. Microplastic migration and distribution in the terrestrial and aquatic environments: A threat to biotic safety. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 333:117412. [PMID: 36758402 DOI: 10.1016/j.jenvman.2023.117412] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 01/02/2023] [Accepted: 01/27/2023] [Indexed: 06/18/2023]
Abstract
Plastics production has been increasing over years, while their recycling rate is lower, resulting in huge amounts of microplastics (MP) accumulating in the environment. Although the environmental behaviors of MPs have been focused on in recent years, the migration, distribution and adverse effects of MPs in terrestrial and aquatic environments are still not systematically understood. In this review, based on the newest publications from the core database of the Web of Science, both the migration and distribution of MPs were summarized, as well as MPs transfer in biota and their biological effects were also focused on. Generally, the complicated and numerous pathways of MPs migration lead to their distribution throughout or nearly all environments on a global scale. However, the migration mechanisms of MPs with various sizes, shapes, and colors by physicochemical and biological processes, and the prediction models of MP migration and distribution, are deficient, despite these properties being highly related to MPs migration and bio-safety. Although MPs have already invaded microorganisms, plants, animals, and even human beings, the biological effects still need more study, so far as their sizes and shapes and also their composition and adsorption are concerned. Moreover, based on the highlights and deficiencies of current studies, further studies have also been proposed. This review aims to help people re-evaluate the uncertain behaviors of MPs in various environments, and could be helpful to fully understand their biological effects in different environmental conditions.
Collapse
Affiliation(s)
- Shaoliang Zhang
- Northeast Agricultural University, Harbin, 150030, PR China.
| | - Wan Wang
- Northeast Agricultural University, Harbin, 150030, PR China
| | - Pengke Yan
- Northeast Agricultural University, Harbin, 150030, PR China
| | - Jiuqi Wang
- Northeast Agricultural University, Harbin, 150030, PR China
| | - Sihua Yan
- Northeast Agricultural University, Harbin, 150030, PR China
| | - Xiaobing Liu
- Northeast Institute of Geography and Agroecology, CAS, Harbin, 150081, PR China
| | | |
Collapse
|