1
|
Liu J, Yuan W, Ouyang Q, Bao Z, Xiao J, Xiong X, Cao H, Zhong Q, Wan Y, Wei X, Zhang Y, Xiao T, Wang J. A novel application of thallium isotopes in tracing metal(loid)s migration and related sources in contaminated paddy soils. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 882:163404. [PMID: 37059145 DOI: 10.1016/j.scitotenv.2023.163404] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/05/2023] [Accepted: 04/05/2023] [Indexed: 06/01/2023]
Abstract
Thallium (Tl) is a highly toxic heavy metal, which is harmful to plants and animals even in trace amounts. Migration behaviors of Tl in paddy soils system remain largely unknown. Herein, Tl isotopic compositions have been employed for the first time to explore Tl transfer and pathway in paddy soil system. The results showed considerably large Tl isotopic variations (ε205Tl = -0.99 ± 0.45 ~ 24.57 ± 0.27), which may result from interconversion between Tl(I) and Tl(III) under alternative redox conditions in the paddy system. Overall higher ε205Tl values of paddy soils in the deeper layers were probably attributed to abundant presence of Fe/Mn (hydr)oxides and occasionally extreme redox conditions during alternative dry-wet process which oxidized Tl(I) to Tl(III). A ternary mixing model using Tl isotopic compositions further disclosed that industrial waste contributed predominantly to Tl contamination in the studied soil, with an average contribution rate of 73.23%. All these findings indicate that Tl isotopes can be used as an efficient tracer for fingerprinting Tl pathway in complicated scenarios even under varied redox conditions, providing significant prospect in diverse environmental applications.
Collapse
Affiliation(s)
- Juan Liu
- School of Environmental Science and Engineering and Key Laboratory of Waters Quality & Conservation in the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Wenhuan Yuan
- School of Environmental Science and Engineering and Key Laboratory of Waters Quality & Conservation in the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Qi'en Ouyang
- School of Environmental Science and Engineering and Key Laboratory of Waters Quality & Conservation in the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Zhi'an Bao
- State Key Laboratory of Continental Dynamics, Department of Geology, Northwest University, Xi'an 710069, China
| | - Jun Xiao
- SKLLQG, Institute of Earth Environment, Chinese Academy of Sciences (IEECAS), Xi'an 710061, China
| | - Xinni Xiong
- School of Environmental Science and Engineering and Key Laboratory of Waters Quality & Conservation in the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Huimin Cao
- School of Environmental Science and Engineering and Key Laboratory of Waters Quality & Conservation in the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Qiaohui Zhong
- School of Environmental Science and Engineering and Key Laboratory of Waters Quality & Conservation in the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Yuebing Wan
- School of Environmental Science and Engineering and Key Laboratory of Waters Quality & Conservation in the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Xudong Wei
- School of Environmental Science and Engineering and Key Laboratory of Waters Quality & Conservation in the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China; Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova, Agripolis Campus, Viale dell'Università, 16, 35020 Legnaro, PD, Italy
| | - Yongqi Zhang
- School of Environmental Science and Engineering and Key Laboratory of Waters Quality & Conservation in the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Tangfu Xiao
- School of Environmental Science and Engineering and Key Laboratory of Waters Quality & Conservation in the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Jin Wang
- School of Environmental Science and Engineering and Key Laboratory of Waters Quality & Conservation in the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China.
| |
Collapse
|
2
|
Kim DM, Lim WL, Im DG, Hwang JW, Yu S, Yun ST, Kim JH. Fractionation behaviors of Cu, Zn, and S-O isotopes in groundwater contaminated with petroleum and treated by oxidation. JOURNAL OF HAZARDOUS MATERIALS 2023; 458:131901. [PMID: 37356179 DOI: 10.1016/j.jhazmat.2023.131901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 05/20/2023] [Accepted: 06/18/2023] [Indexed: 06/27/2023]
Abstract
Fractionation behaviors of Cu and Zn isotopes have been increasingly studied at the field scale, but those in various redox conditions of groundwater contaminated with petroleum and treated by oxidation have not been assessed. In this study, δ65Cu and δ66Zn as well as δ34SSO4 and Δδ18OSO4-H2O were assessed in wells undergoing contamination by total petroleum hydrocarbons (TPH) and oxidation using H2O2 in 2021 and 2022. High δ34SSO4 and relevant parameters (e.g., dissolved sulfide and HCO3-) indicated the occurrence of sulfate reduction. The plot of δ65Cu versus δ34SSO4 effectively indicated precipitation of Cu sulfides and their reoxidation at oxidation wells. Although the plot of δ66Zn versus δ34SSO4 could also indicate reoxidation of Zn sulfides, the Zn isotopic fingerprint of sulfide precipitation may have been masked by fractionation by sorption. The advantage of using δ65Cu in the redox reactions resulted from the wider range of δ65Cu owing to the redox behavior of Cu. The plot combining isotopic fractionations of Cu and S can assist in assessing sulfide precipitation and oxidative treatment in TPH-contaminated groundwater.
Collapse
Affiliation(s)
- Duk-Min Kim
- Department of New Energy and Mining Engineering, Sangji University, Wonju, Gangwon-do 26339, Republic of Korea.
| | - Woong-Lim Lim
- Department of New Energy and Mining Engineering, Sangji University, Wonju, Gangwon-do 26339, Republic of Korea
| | - Dae-Gyu Im
- Department of New Energy and Mining Engineering, Sangji University, Wonju, Gangwon-do 26339, Republic of Korea; Department of Earth and Environmental Sciences, Korea University, Seoul 02841, Republic of Korea
| | - Jung-Woo Hwang
- Department of Earth and Environmental Sciences, Korea University, Seoul 02841, Republic of Korea
| | - Soonyoung Yu
- Korea Institute of Geoscience and Mineral Resources, Daejeon 34132, Republic of Korea
| | - Seong-Taek Yun
- Department of Earth and Environmental Sciences, Korea University, Seoul 02841, Republic of Korea
| | - Jeong-Hee Kim
- Gyeonggi Regional Headquarter, Korea Rural Community Corporation, Suwon, Gyeonggi-do 16346, Republic of Korea
| |
Collapse
|
3
|
Liao J, Tan D, Qin H, Han Q, Liu E, Chen J, Ning Z, Li S. Antimony isotope fractionation and the key controls in the soil profiles of an antimony smelting area. JOURNAL OF HAZARDOUS MATERIALS 2023; 454:131553. [PMID: 37148795 DOI: 10.1016/j.jhazmat.2023.131553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 04/10/2023] [Accepted: 04/30/2023] [Indexed: 05/08/2023]
Abstract
The controlling factors of antimony migration and transformation in soil profiles are still unclear. Antimony isotopes might be a useful tool to trace it. In this paper, antimony isotopic compositions of plant and smelter-derived samples, and two soil profiles were measured for the first time. The δ123Sb values of the surface and bottom layers of the two soil profiles varied in 0.23‰-1.19‰ and 0.58‰-0.66‰, respectively, while δ123Sb of the smelter-derived samples varied in 0.29‰-0.38‰. The results show that the antimony isotopic compositions in the soil profiles are affected by post-depositional biogeochemical processes. The enrichment and loss of light isotopes at 0-10 cm and 10-40 cm layers of the contrasted soil profile may be controlled by plant uptake process. The loss and enrichment of heavy isotopes in the 0-10 cm and 10-25 cm layers of the antimony from smelting source in the polluted soil profile may be controlled by the adsorption process, while the enrichment of light isotopes in the 25-80 cm layer may be related to the reductive dissolution process. The conclusion emphasizes that the promotion of the Sb isotope fractionation mechanism will play a crucial role in understanding the migration and transformation behaviors of Sb in soil systems.
Collapse
Affiliation(s)
- Jie Liao
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, 550081 Guiyang, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Decan Tan
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, 550081 Guiyang, China
| | - Haibo Qin
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, 550081 Guiyang, China
| | - Qiao Han
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, 550081 Guiyang, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Enguang Liu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, 550081 Guiyang, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jingan Chen
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, 550081 Guiyang, China
| | - Zengping Ning
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, 550081 Guiyang, China.
| | - Shehong Li
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, 550081 Guiyang, China.
| |
Collapse
|
4
|
Sun Y, Yang X, Zhang R, Xia T, Hu K, Hao F, Liu Y, Deng Q, Yang S, Wen X. One-step effervescence tablet-assisted switchable hydrophilic solvent microextraction combined with micro spectrophotometry for the determination of copper in Salvia yunnanensis and environmental samples. Microchem J 2022. [DOI: 10.1016/j.microc.2022.108372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
5
|
Sullivan KV, Kidder JA, Junqueira TP, Vanhaecke F, Leybourne MI. Emerging applications of high-precision Cu isotopic analysis by MC-ICP-MS. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 838:156084. [PMID: 35605848 DOI: 10.1016/j.scitotenv.2022.156084] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 05/16/2022] [Accepted: 05/16/2022] [Indexed: 06/15/2023]
Abstract
As a component of many minerals and an essential trace element in most aerobic organisms, the transition metal element Cu is important for studying reduction-oxidation (redox) interactions and metal cycling in the total environment (lithosphere, atmosphere, biosphere, hydrosphere, and anthroposphere). The "fractionation" or relative partitioning of the naturally occurring "heavy" (65Cu) and "light" (63Cu) isotope between two coexisting phases in a system occurs according to bonding environment and/or as a result of a slight difference in the rate at which these isotopes take part in physical processes and chemical reactions (in absence of equilibrium). Due to this behaviour, Cu isotopic analysis can be used to study a range of geochemical and biological processes that cannot be elucidated with Cu concentrations alone. The shift between Cu+ and Cu2+ is accompanied by a large degree of Cu isotope fractionation, enabling the Cu isotope to be applied as a vector in mineral exploration, tracer of origin, transport, and fate of metal contaminants in the environment, biomonitor, and diagnostic/prognostic marker of disease, among other applications. In this contribution, we (1) discuss the analytical protocols that are currently available to perform Cu isotopic analysis, (2) provide a compilation of published δ65Cu values for matrix reference materials, (3) review Cu isotope fractionation mechanisms, (4) highlight emerging applications of Cu isotopic analysis, and (5) discuss future research avenues.
Collapse
Affiliation(s)
- Kaj V Sullivan
- Department of Geological Sciences and Geological Engineering, Queens University, Kingston, ON, Canada; Atomic & Mass Spectrometry - A&MS Research Unit, Department of Chemistry, Ghent University, Ghent, Belgium.
| | | | - Tassiane P Junqueira
- Department of Geological Sciences and Geological Engineering, Queens University, Kingston, ON, Canada
| | - Frank Vanhaecke
- Atomic & Mass Spectrometry - A&MS Research Unit, Department of Chemistry, Ghent University, Ghent, Belgium
| | - Matthew I Leybourne
- Department of Geological Sciences and Geological Engineering, Queens University, Kingston, ON, Canada; Arthur B. McDonald Canadian Astroparticle Physics Research Institute, Department of Physics, Engineering Physics & Astronomy, Queen's University, Kingston, Ontario, Canada
| |
Collapse
|