1
|
Yang X, Liu Z, Chen C, Zhang T, Wang Q, Zhang R, Duan F, Tian X, Yao M, Demeestere K, Van Hulle SWH. Hybrid packed bed bioreactor using combined biodegradation and ozonation to enhance nitrogen and micropollutants removal from landfill leachate. BIORESOURCE TECHNOLOGY 2024; 412:131413. [PMID: 39226943 DOI: 10.1016/j.biortech.2024.131413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 08/21/2024] [Accepted: 08/31/2024] [Indexed: 09/05/2024]
Abstract
Landfill leachate contains ammonium and micropollutants. Ammonium can be biologically removed but bio-recalcitrant micropollutants removal requires post-treatment like ozonation. This study developed an expanded clay aggregates packed biofilm column (EBC) and demonstrated its feasibility of coupling biodegradation and ozonation (CBAO) to simultaneously remove nitrogen and bio-recalcitrant micropollutants. The first 60 days only had biodegradation process to start the bioreactor. 51 % nitrogen was biologically removed but the removal of micropollutant carbamazepine (CBZ) was only 30 %. From 61 d to 150 d, both biodegradation and ozonation were performed in the EBC. After 48 h-biodegradation, ozone gas was introduced and bubbling through EBC for 30 min to further remove residual micropollutants. At 0.4 gO3/gCOD, CBZ were completely removed. The average nitrogen removal efficiency (85 %) was increased by 34 % because the increased abundance of nitrifying and denitrifying bacteria in EBC. This study confirmed the promising potential of the CBAO process for treating landfill leachte.
Collapse
Affiliation(s)
- Xuetong Yang
- State Key Laboratory of Mesoscience and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China; Qinghai Provincial Key Laboratory of Geology and Environment of Salt Lakes, Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Qinghai 810008, China; University of Chinese Academy of Sciences, Beijing 100083, China; LIWET, Laboratory for Industrial Water and EcoTechnology, Faculty of Bioscience Engineering, Ghent University, Campus Kortrijk, Sint-Martens- Latemlaan 2B, B-8500 Kortrijk, Belgium
| | - Ze Liu
- Qinghai Provincial Key Laboratory of Geology and Environment of Salt Lakes, Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Qinghai 810008, China
| | - Changtao Chen
- LIWET, Laboratory for Industrial Water and EcoTechnology, Faculty of Bioscience Engineering, Ghent University, Campus Kortrijk, Sint-Martens- Latemlaan 2B, B-8500 Kortrijk, Belgium.
| | - Tao Zhang
- LIWET, Laboratory for Industrial Water and EcoTechnology, Faculty of Bioscience Engineering, Ghent University, Campus Kortrijk, Sint-Martens- Latemlaan 2B, B-8500 Kortrijk, Belgium
| | - Qintong Wang
- LIWET, Laboratory for Industrial Water and EcoTechnology, Faculty of Bioscience Engineering, Ghent University, Campus Kortrijk, Sint-Martens- Latemlaan 2B, B-8500 Kortrijk, Belgium
| | - Rui Zhang
- LIWET, Laboratory for Industrial Water and EcoTechnology, Faculty of Bioscience Engineering, Ghent University, Campus Kortrijk, Sint-Martens- Latemlaan 2B, B-8500 Kortrijk, Belgium
| | - Feng Duan
- University of Chinese Academy of Sciences, Beijing 100083, China; Chemistry & Chemical Engineering Data Center, Chinese Academy of Sciences, Beijing 100190, China
| | - Xiang Tian
- School of Civil Engineering, Changsha University of Science and Technology, Changsha 410114, China
| | - Mingshui Yao
- State Key Laboratory of Mesoscience and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100083, China
| | - Kristof Demeestere
- Research Group EnVOC, Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B-9000 Ghent, Belgium
| | - Stijn W H Van Hulle
- LIWET, Laboratory for Industrial Water and EcoTechnology, Faculty of Bioscience Engineering, Ghent University, Campus Kortrijk, Sint-Martens- Latemlaan 2B, B-8500 Kortrijk, Belgium
| |
Collapse
|
2
|
Zhu M, Tang P, Yu X, Li F, Shi S, Zhang D, Shi J, Tao W, Ruan X, Liu L, Liu B. Effective and mechanistic insights into shale gas wastewater reverse osmosis concentrate treatment using ozonation-biological activated carbon process. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 945:174080. [PMID: 38906281 DOI: 10.1016/j.scitotenv.2024.174080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/13/2024] [Accepted: 06/15/2024] [Indexed: 06/23/2024]
Abstract
Reverse osmosis (RO) plays a pivotal role in shale gas wastewater resource utilization. However, managing the reverse osmosis concentrate (ROC) characterized by high salinity and increased concentrations of organic matter is challenging. In this study, we aimed to elucidate the enhancement effects and mechanisms of pre-ozonation on organic matter removal efficacy in ROC using a biological activated carbon (BAC) system. Our findings revealed that during the stable operation phase, the ozonation (O3 and O3/granular activated carbon)-BAC system removes 43.6-72.2 % of dissolved organic carbon, achieving a 4-7 fold increase in efficiency compared with that in the BAC system alone. Through dynamic analysis of influent and effluent water quality, biofilm performance, and microbial community structure, succession, and function prediction, we elucidated the following primary enhancement mechanisms: 1) pre-ozonation significantly enhances the biodegradability of ROC by 4.5-6 times and diminishes the organic load on the BAC system; 2) pre-ozonation facilitates the selective enrichment of microbes capable of degrading organic compounds in the BAC system, thereby enhancing the biodegradation capacity and stability of the microbial community; and 3) pre-ozonation accelerates the regeneration rate of the granular activated carbon adsorption sites. Collectively, our findings provide valuable insights into treating ROC through pre-oxidation combined with biotreatment.
Collapse
Affiliation(s)
- Mengting Zhu
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University-The Hong Kong Polytechnic University Institute for Disaster Management and Reconstruction, Sichuan University, Chengdu, Sichuan 610207, PR China; Yibin Institute of Industrial Technology, Sichuan University, Yibin Park, Section 2, Lingang Ave., Cuiping District, Yibin, Sichuan 644000, PR China
| | - Peng Tang
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University-The Hong Kong Polytechnic University Institute for Disaster Management and Reconstruction, Sichuan University, Chengdu, Sichuan 610207, PR China; Yibin Institute of Industrial Technology, Sichuan University, Yibin Park, Section 2, Lingang Ave., Cuiping District, Yibin, Sichuan 644000, PR China
| | - Xulin Yu
- Sinopec Petroleum Engineering Jianghan Co., Ltd., Wuhan, Hubei 430073, PR China
| | - Fengming Li
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University-The Hong Kong Polytechnic University Institute for Disaster Management and Reconstruction, Sichuan University, Chengdu, Sichuan 610207, PR China; Yibin Institute of Industrial Technology, Sichuan University, Yibin Park, Section 2, Lingang Ave., Cuiping District, Yibin, Sichuan 644000, PR China
| | - Shuling Shi
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University-The Hong Kong Polytechnic University Institute for Disaster Management and Reconstruction, Sichuan University, Chengdu, Sichuan 610207, PR China; Yibin Institute of Industrial Technology, Sichuan University, Yibin Park, Section 2, Lingang Ave., Cuiping District, Yibin, Sichuan 644000, PR China
| | - Di Zhang
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University-The Hong Kong Polytechnic University Institute for Disaster Management and Reconstruction, Sichuan University, Chengdu, Sichuan 610207, PR China; Yibin Institute of Industrial Technology, Sichuan University, Yibin Park, Section 2, Lingang Ave., Cuiping District, Yibin, Sichuan 644000, PR China
| | - Jialin Shi
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University-The Hong Kong Polytechnic University Institute for Disaster Management and Reconstruction, Sichuan University, Chengdu, Sichuan 610207, PR China; Yibin Institute of Industrial Technology, Sichuan University, Yibin Park, Section 2, Lingang Ave., Cuiping District, Yibin, Sichuan 644000, PR China
| | - Wei Tao
- Junji Environment Technology Co., Ltd., Wuhan, Hubei 430223, PR China
| | - Xia Ruan
- Junji Environment Technology Co., Ltd., Wuhan, Hubei 430223, PR China
| | - Lujian Liu
- Junji Environment Technology Co., Ltd., Wuhan, Hubei 430223, PR China
| | - Baicang Liu
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University-The Hong Kong Polytechnic University Institute for Disaster Management and Reconstruction, Sichuan University, Chengdu, Sichuan 610207, PR China; Yibin Institute of Industrial Technology, Sichuan University, Yibin Park, Section 2, Lingang Ave., Cuiping District, Yibin, Sichuan 644000, PR China.
| |
Collapse
|
3
|
Gunarathne V, Phillips AJ, Zanoletti A, Rajapaksha AU, Vithanage M, Di Maria F, Pivato A, Korzeniewska E, Bontempi E. Environmental pitfalls and associated human health risks and ecological impacts from landfill leachate contaminants: Current evidence, recommended interventions and future directions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169026. [PMID: 38056656 DOI: 10.1016/j.scitotenv.2023.169026] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 10/17/2023] [Accepted: 11/29/2023] [Indexed: 12/08/2023]
Abstract
The improper management of solid waste, particularly the dumping of untreated municipal solid waste, poses a growing global challenge in both developed and developing nations. The generation of leachate is one of the significant issues that arise from this practice, and it can have harmful impacts on both the environment and public health. This paper presents an overview of the primary waste types that generate landfill leachate and their characteristics. This includes examining the distribution of waste types in landfills globally and how they have changed over time, which can provide valuable insights into potential pollutants in a given area and their trends. With a lack of specific regulations and growing concerns regarding environmental and health impacts, the paper also focuses on emerging contaminants. Furthermore, the environmental and ecological impacts of leachate, along with associated health risks, are analyzed. The potential applications of landfill leachate, suggested interventions and future directions are also discussed in the manuscript. Finally, this work addresses future research directions in landfill leachate studies, with attention, for the first time to the potentialities that artificial intelligence can offer for landfill leachate management, studies, and applications.
Collapse
Affiliation(s)
- Viraj Gunarathne
- Ecosphere Resilience Research Centre, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda, CO 10250, Sri Lanka; University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water- and Waste-Management, Laboratory of Soil- and Groundwater-Management, Pauluskirchstraße 7, 42285 Wuppertal, Germany
| | - Ankur J Phillips
- Department of Microbiology, College of Basic Sciences and Humanities, Govind Ballabh Pant University of Agriculture and Technology, Pantnagar, 263145, Uttarakhand, India
| | - Alessandra Zanoletti
- INSTM and Chemistry for Technologies Laboratory, Department of Mechanical and Industrial Engineering, University of Brescia, Via Branze, 38, 25123 Brescia, Italy
| | - Anushka Upamali Rajapaksha
- Ecosphere Resilience Research Centre, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda, CO 10250, Sri Lanka; Instrument Center, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda 10250, Sri Lanka
| | - Meththika Vithanage
- Ecosphere Resilience Research Centre, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda, CO 10250, Sri Lanka
| | - Francesco Di Maria
- LAR5 Laboratory, Dipartimento di Ingegneria, University of Perugia, via G. Duranti 93, 06125 Perugia, Italy
| | - Alberto Pivato
- DICEA - Department of Civil, Environmental and Architectural Engineering, University of Padova, Via Marzolo 9, 35131 Padova, Italy
| | - Ewa Korzeniewska
- Department of Water Protection Engineering and Environmental Microbiology, The Faculty of Geoengineering, University of Warmia and Mazury in Olsztyn, Prawocheńskiego 1 Str., 10-719 Olsztyn, Poland
| | - Elza Bontempi
- INSTM and Chemistry for Technologies Laboratory, Department of Mechanical and Industrial Engineering, University of Brescia, Via Branze, 38, 25123 Brescia, Italy.
| |
Collapse
|
4
|
Qin W, Zheng C, Yang J, Hong M, Song Y, Ma J. Long-term performance and biofilms of the novel nano manganese dioxide coupling carbon source pre-loaded biological activated carbon filters for drinking water. ENVIRONMENTAL RESEARCH 2024; 240:117436. [PMID: 37865322 DOI: 10.1016/j.envres.2023.117436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 10/09/2023] [Accepted: 10/16/2023] [Indexed: 10/23/2023]
Abstract
In order to accelerate the start-up of biological activated carbon (BAC) filters and enhance ammonium (NH4+-N) removal performance, three substrates (sucrose and/or nano manganese dioxide (nMnO2)) pre-loaded BAC filters were set up to investigate the pollutants removals and microbiological characteristics for a long-term operation of 197 days. The average NH4+-N removal performance treated by the sucrose coupled with nMnO2 loaded BAC filter was the highest (71.18 %), which was 3.83 times of that by the control filter (18.58 %). 29 % of NH4+-N treated by the sucrose coupled with nMnO2 loaded BAC removed through the traditional nitrification and denitrification, or simultaneous nitrification and denitrification (SND) pathways according to the calculation of the alkalinity consumption (6.12 mmol/L). There was no leakage of carbon source and Mn, and no accumulation of nitrite from the substrates loaded BAC. The dominant bacteria in the sucrose coupled with nMnO2 loaded BAC were Dechloromona (accounting for 8.02% of the total bacterial) and Acidaminobacter (accounting for 15.16% of total bacterial) on the Day 180, which had the capacity of nitrification or denitrification. NH4+-N and micropollutants removals treated by the combined process of peracetic acid (PAA) pre-oxidation and substrates loaded BAC were significant due to the generation of assimilable organic carbon (AOC) (5.98 ± 1.93 μg-C/mL) by PAA (100 μM)/Fe2+ pre-oxidation and the higher biomass ((4.57 ± 3.07) × 107 cells/g DW BAC) in the sucrose coupled with nMnO2 loaded BAC filter. Therefore, nMnO2 coupling carbon source pre-loading strategy could not only enhance initial colonization, but also promote pollutants removals for long-term operation.
Collapse
Affiliation(s)
- Wen Qin
- School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou, 510006, PR China.
| | - Chengyuan Zheng
- School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou, 510006, PR China.
| | - Jingru Yang
- School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou, 510006, PR China.
| | - Miaoqing Hong
- School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou, 510006, PR China.
| | - Yang Song
- School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou, 510006, PR China.
| | - Jun Ma
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China.
| |
Collapse
|
5
|
Gutkoski JP, Schneider EE, Michels C. How effective is biological activated carbon in removing micropollutants? A comprehensive review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 349:119434. [PMID: 39492392 DOI: 10.1016/j.jenvman.2023.119434] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 09/28/2023] [Accepted: 10/20/2023] [Indexed: 11/05/2024]
Abstract
Micropollutants (MPs), also called emerging contaminants, are detected in various environmental compartments. Wastewater is their main entry pathway due to the incomplete removal of MPs in wastewater treatment plants (WWTPs). These contaminants are a risk to human health and the integrity of the ecosystem because they are persistent and toxic to organisms. Complementary treatments such as adsorption are studied to increase the efficiency of existing WWTPs. However, a disadvantage of using activated carbon is its high cost of production and regeneration. Biological activated carbon (BAC) is an alternative to overpass this scenario. In BAC, biofilm development occurs on the surface of activated carbon, which enables bioregeneration of the adsorbent and extends its lifetime. This review focused on the studies that applied BAC to remove MPs in aqueous matrices. The review methodology was based on bibliometric and systematic analysis. Tables and thematic maps were presented to investigate trends and gaps in research and related themes. The study points out the leading MPs researched in adsorption in the last ten years. The systematic analysis showed that most studies bring sequential treatments with real wastewater/water, in which BAC is the final process. BAC has the potential to be a complementary treatment for removing MPs. However, there is a lack of articles investigating only BAC as the main tertiary treatment. Topics that should be further investigated in this area are the microbiological community formed in the biofilm, the column's lifetime, and the cost analysis of BAC implementation and operation.
Collapse
Affiliation(s)
- Júlia Pedó Gutkoski
- Department of Chemical and Food Engineering, Federal University of Santa Catarina, Florianópolis, Santa Catarina, 88040-900, Brazil.
| | - Elisângela Edila Schneider
- Department of Chemical and Food Engineering, Federal University of Santa Catarina, Florianópolis, Santa Catarina, 88040-900, Brazil.
| | - Camila Michels
- Department of Chemical and Food Engineering, Federal University of Santa Catarina, Florianópolis, Santa Catarina, 88040-900, Brazil.
| |
Collapse
|
6
|
Wang J, Yuan R, Feng Z, Ma F, Zhou B, Chen H. The advanced treatment of textile printing and dyeing wastewater by hydrodynamic cavitation and ozone: Degradation, mechanism, and transformation of dissolved organic matter. ENVIRONMENTAL RESEARCH 2022; 215:114300. [PMID: 36096166 DOI: 10.1016/j.envres.2022.114300] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 08/29/2022] [Accepted: 09/06/2022] [Indexed: 06/15/2023]
Abstract
The emission standards for textile printing and dyeing wastewater are stricter due to serious environmental issues. A novel technology, hydrodynamic cavitation combined with ozone (HC + O3), has attracted wide attention in wastewater advanced treatment, whereas the contaminants removal mechanism and transformation of dissolved organic matter (DOM) were rarely reported. This study investigated the removal efficiency and mechanism of HC + O3. The maximum removal rates of UV254, chrominance, CODCr, and TOC were 64.99%, 91.90%, 32.30%, and 36.67% in 60 min, respectively, at the inlet pressure of 0.15 MPa and O3 dosage of 6.25 mmol/L. The synergetic coefficient of HC + O3 was 2.77. The removal of contaminants was the synergy of 1O2, ·OH and ·O2-, and high molecular weight and strong aromaticity organic matters were degraded effectively. The main components in DOM were tryptophan-like and tyrosine-like, which were effectively removed after HC + O3. Meanwhile, most DOM had decreased to low apparent relative molecular weight (LARMW) compounds. Additionally, the HC + O3 effluent can reach the emission standard in 60 min for 8.07 USD/m3. It can be concluded that HC + O3 is an effective technology for the advanced treatment of industrial wastewater. This study will provide suggestions for the engineering application of HC + O3.
Collapse
Affiliation(s)
- Jihong Wang
- Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, People's Republic of China
| | - Rongfang Yuan
- Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, People's Republic of China.
| | - Zhuqing Feng
- Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, People's Republic of China
| | - Fangshu Ma
- Baiyi Environment Investment Jiangsu Co., Ltd, Jiangyin, 214000, People's Republic of China
| | - Beihai Zhou
- Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, People's Republic of China
| | - Huilun Chen
- Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, People's Republic of China.
| |
Collapse
|
7
|
Wilk BK, Szopińska M, Sobaszek M, Pierpaoli M, Błaszczyk A, Luczkiewicz A, Fudala-Ksiazek S. Electrochemical oxidation of landfill leachate using boron-doped diamond anodes: pollution degradation rate, energy efficiency and toxicity assessment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:65625-65641. [PMID: 35501433 DOI: 10.1007/s11356-022-19915-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 03/22/2022] [Indexed: 06/14/2023]
Abstract
Electrochemical oxidation (EO), due to high efficiency and small carbon footprint, is regarded as an attractive option for on-site treatment of highly contaminated wastewater. This work shows the effectiveness of EO using three boron-doped diamond electrodes (BDDs) in sustainable management of landfill leachate (LL). The effect of the applied current density (25-100 mA cm-2) and boron doping concentration (B/C ratio: 500 ppm, 10,000 ppm and 15,000 ppm) on the performance of EO was investigated. It was found that, of the electrodes used, the one most effective at COD, BOD20 and ammonia removal (97.1%, 98.8% and 62%, respectively) was the electrode with the lowest boron doping. Then, to better elucidate the ecological role of LLs, before and after EO, cultivation of faecal bacteria and microscopic analysis of total (prokaryotic) cell number, together with ecotoxicity assay (Daphnia magna, Thamnocephalus platyurus and Artemia salina) were combined for the two better-performing electrodes. The EO process was very effective at bacterial cell inactivation using each of the two anodes, even within 2 h of contact time. In a complex matrix of LLs, this is probably a combined effect of electrogenerated oxidants (hydroxyl radicals, active chlorine and sulphate radicals), which may penetrate into the bacterial cells and/or react with cellular components. The toxicity of EO-treated LLs proved to be lower than that of raw ones. Since toxicity drops with increased boron doping, it is believed that appropriate electrolysis parameters can diminish the toxicity effect without compromising the nutrient-removal and disinfection capability, although salinity of LLs and related multistep-oxidation pathways needs to be further elucidated.
Collapse
Affiliation(s)
- Barbara Krystyna Wilk
- Faculty of Civil and Environmental Engineering, Gdansk University of Technology, 11/12 Narutowicza St, 80-233, Gdansk, Poland.
| | - Malgorzata Szopińska
- Faculty of Civil and Environmental Engineering, Gdansk University of Technology, 11/12 Narutowicza St, 80-233, Gdansk, Poland
| | - Michał Sobaszek
- Faculty of Electronics, Telecommunication and Informatics, Gdansk University of Technology, 11/12 Narutowicza St, 80-233, Gdansk, Poland
| | - Mattia Pierpaoli
- Faculty of Electronics, Telecommunication and Informatics, Gdansk University of Technology, 11/12 Narutowicza St, 80-233, Gdansk, Poland
| | - Agata Błaszczyk
- Faculty of Oceanography and Geography, University of Gdansk, Al. Marszałka Piłsudskiego 46, 81-378, Gdynia, Poland
| | - Aneta Luczkiewicz
- Faculty of Civil and Environmental Engineering, Gdansk University of Technology, 11/12 Narutowicza St, 80-233, Gdansk, Poland
| | - Sylwia Fudala-Ksiazek
- Faculty of Civil and Environmental Engineering, Gdansk University of Technology, 11/12 Narutowicza St, 80-233, Gdansk, Poland
| |
Collapse
|