1
|
Horsák M, Janáč M, Zhai M, Bojková J. Temporal niche dynamics of spreading native invertebrates underlie doubling of richness in pristine temperate streams. J Anim Ecol 2025; 94:693-705. [PMID: 39957326 PMCID: PMC11962250 DOI: 10.1111/1365-2656.70005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 12/19/2024] [Indexed: 02/18/2025]
Abstract
While biodiversity loss is undeniably a global phenomenon, an increase in taxonomic richness has recently been reported from some ecosystems and spatial scales. A striking increase in abundance and/or species richness has been documented from temperate rivers over the last 25 years, with many of the expanding species (i.e. winners) being native species. However, the lack of repeatedly collected local environmental data prevents the exploration of their niche dynamics and also makes it difficult to distinguish between possible causes. We fill this gap by using species occurrence data from 65 pristine Czech rivers sampled in 1997-2000 and 2015. The same methods were used for sampling macroinvertebrates and measuring environmental parameters in both periods. We selected 43 winners, defined as taxonomically validated and originally non-rare native macroinvertebrate species whose occupancy increased by at least six sites between the time periods. We searched for consistent patterns of niche dynamics (i.e. stability, expansion and restriction) among species that might contribute most to the overall increase in species richness. Using several biological traits, we also compared the winners with the other 253 taxa collected to look for differences. Analysis of the occurrence data showed that niche stability was by far the predominant pattern of the niche dynamics. This clearly indicates that the winners fill their original niches, with a limited contribution of niche shift or expansion, depending on the species. As no significant differences in either temperature preferences or the other biological traits were found between the winners and the other taxa, there is no unique set of functional traits that explain the success of the winners. The observed mechanism of filling the original niche space by the spreading native species not only explains the increase in local species richness, but also contributes to support the hypothesis of a climate-driven increase in ecosystem energy flow from a new perspective. The increased metabolism of the system may relax interspecific competition allowing it to carry more individuals and species, even without the need for an increase in nutrients and ecosystem recovery.
Collapse
Affiliation(s)
- Michal Horsák
- Department of Botany and Zoology, Faculty of ScienceMasaryk UniversityBrnoCzech Republic
| | - Michal Janáč
- Department of Botany and Zoology, Faculty of ScienceMasaryk UniversityBrnoCzech Republic
- Institute of Vertebrate BiologyCzech Academy of SciencesBrnoCzech Republic
| | - Marie Zhai
- Department of Botany and Zoology, Faculty of ScienceMasaryk UniversityBrnoCzech Republic
| | - Jindřiška Bojková
- Department of Botany and Zoology, Faculty of ScienceMasaryk UniversityBrnoCzech Republic
| |
Collapse
|
2
|
Felin S, Belliard J, Grenouillet G, Moatar F, Le Pichon C, Thieu V, Thirel G, Jeliazkov A. The role of river connectivity in the distribution of fish in an anthropized watershed. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 959:178204. [PMID: 39754939 DOI: 10.1016/j.scitotenv.2024.178204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 12/10/2024] [Accepted: 12/17/2024] [Indexed: 01/06/2025]
Abstract
The ongoing biodiversity crisis is especially severe in freshwater habitats. Anthropized watersheds, such as the Seine-Normandie basin in France, are particularly affected by human interference. The study of fish species distribution in watersheds often relies on environmental drivers such as land use or climate. Yet, fish are also exposed to river connectivity constraints, such as dams, that are understudied despite their potential impact on fish dispersal. For this study, we investigated the role of local and whole-basin longitudinal connectivity in fish distribution. We designed connectivity indices based on river network characteristics and specific mobility for 33 species and included these indices in species distribution models, taking into account habitat suitability, to quantify their role in species distribution. Keeping the best index for each species, an average of 29 % - and up to 57 % - of explained fish distribution, depending on species, was tied to connectivity. We found that high connectivity often had a significant and positive linear effect on species presence probability. Using a scoring system across multiple indices, we found connectivity indices that took local context into account (e.g. the ecological zonation of the river) performed consistently better than others. Indices that took only dispersal limitation into account scored higher for 12 species, while barriers, alone, were the most important constraint for 10 species, the remaining 11 being associated with both. This work points to fragmentation as a cause for lower likelihood of presence for many non-diadromous river fish species. It highlights the importance of considering both physical and functional connectivity constraints in fish distribution and provides additional insights for river management and restoration.
Collapse
Affiliation(s)
- Swann Felin
- University of Paris-Saclay, INRAE, HYCAR, Antony, France.
| | | | - Gaël Grenouillet
- Centre de Recherche sur la Biodiversité et l'Environnement (CRBE), UMR5300 Université Toulouse, CNRS, IRD, Toulouse INP, Université Toulouse 3 - Paul Sabatier (UT3), Toulouse, France; Institut Universitaire de France, Paris, France
| | - Florentina Moatar
- INRAE, Riverly, Centre de Lyon-Grenoble Auvergne-Rhône-Alpes, 69100, France
| | | | - Vincent Thieu
- Sorbonne Université, CNRS, EPHE, UMR 7619 METIS, 4 place Jussieu, Box 105, 75005 Paris, France
| | | | | |
Collapse
|
3
|
de Donnová S, Devánová A, Barešová L, Zahrádková S, Bojková J. Hydromorphological degradation modifies long-term macroinvertebrate responses to water quality and climate changes in lowland rivers. ENVIRONMENTAL RESEARCH 2024; 261:119638. [PMID: 39032623 DOI: 10.1016/j.envres.2024.119638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 07/15/2024] [Accepted: 07/16/2024] [Indexed: 07/23/2024]
Abstract
Due to decades of persistent anthropogenic pressures, lowland rivers represent one of the most severely impaired habitats in Europe. Despite improved water quality, novel stressors, particularly climate change, are emerging with most lowland rivers suffering from past hydromorphological degradation. We aim to elucidate how such degradation alters the biological response in multiple-stressor environments, as this has rarely been considered in studies documenting long-term development of anthropogenically impacted rivers. Here, benthic macroinvertebrates, water quality and hydroclimatic variables were monitored over a period of two decades in nine of the largest Czech rivers. Detailed data on hydromorphological degradation allowed us to track distinct patterns in rivers with high and low levels of degradation. Temporal changes in environmental variables showed similar patterns in both site groups, characterised by reduced organic and nutrient pollution but increased hydroclimatic and salinity stress. 150 % increase in total abundance, especially in abundance and richness of sediment-dwelling and non-native taxa was found in both site groups. While the increase in abundance was due to improved water quality and rising water temperature, the longer duration of minimal flows had a negative effect on species richness, hampering species gain particularly at highly degraded sites. Our results provide novel evidence that degree of hydromorphological degradation modifies long-term macroinvertebrate responses to anthropogenic pressures. Less degraded sites displayed several favourable changes, such as 27 % increase in total and 23 % increase in potamal indicator richness, and stabilisation of the assemblages with few functional changes. In contrast, highly degraded sites experienced 9 % reduction in evenness, 235 % increase in proportion of non-native taxa and functional reorganisation, changes congruent with continuous deterioration. While overall water quality at studied sites has improved, consequences of climate change and high degree of hydromorphological degradation limit biotic recovery in multiple-stressor lowland rivers.
Collapse
Affiliation(s)
- Selma de Donnová
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlářská 2, CZ-61137 Brno, 611 37 Brno, Czech Republic.
| | - Alžbeta Devánová
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlářská 2, CZ-61137 Brno, 611 37 Brno, Czech Republic
| | - Libuše Barešová
- Czech Hydrometeorological Institute, Na Šabatce 17, 143 06 Praha, CZ-14306 , Czech Republic
| | - Světlana Zahrádková
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlářská 2, CZ-61137 Brno, 611 37 Brno, Czech Republic
| | - Jindřiška Bojková
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlářská 2, CZ-61137 Brno, 611 37 Brno, Czech Republic
| |
Collapse
|
4
|
Zhang S, Zhan A, Zhao J, Yao M. Metropolitan pressures: Significant biodiversity declines and strong filtering of functional traits in fish assemblages. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 944:173885. [PMID: 38871310 DOI: 10.1016/j.scitotenv.2024.173885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 06/06/2024] [Accepted: 06/07/2024] [Indexed: 06/15/2024]
Abstract
Accelerating global urbanization is leading to drastic losses and restructuring of biodiversity. Although it is crucial to understand urban impacts on biodiversity to develop mitigation strategies, there is a dearth of knowledge on the functional structure of fish assemblages spanning the entire city-scale spectrum of urbanization intensity. Here, using environmental DNA sampled from 109 water sites in Beijing, we investigated the taxonomic and functional diversity patterns of fish assemblages across the city and uncovered community-, trait-, and species-level responses to various environmental stressors. By ranking sampling sites into three disturbance levels according to water physiochemical and landcover conditions, we found that both native and non-native fish taxonomic and functional α-diversity decreased significantly with elevating disturbance, as strong disturbance led to the disappearance of many species. However, the quantitative taxonomic and functional β-diversity components of native and non-native fish showed distinct patterns; assemblage turnover dominated native fish β-diversity and decreased with increasing disturbance, whereas species/trait richness differences dominated non-native fish β-diversity and increased with disturbance intensity particularly in lotic waters. RLQ and fourth-corner analyses revealed that fish size, fecundity, diet, and reproductive behaviors were significantly correlated with water quality, with pollution-tolerant, larger-sized native and omnivorous non-native fishes being urban winners, which indicates strong trait-dependent environmental filtering. Potential ecological indicator species were identified based on the sensitivity of fish responses to pollution loads; these were mostly small native species, and many have bivalve-dependent reproduction. Our results demonstrate that, along with native fish assemblage simplification and homogenization, urban stressors exert profound impacts on community trait composition, highlighting the need to consider both biodiversity loss and functional reorganization in combating disturbance of aquatic ecosystems under global urbanization. Furthermore, correlations between cropland cover and water nutrient level suggested that the management of agricultural runoff might be critically important for safeguarding urban water quality.
Collapse
Affiliation(s)
- Shan Zhang
- School of Life Sciences, Peking University, Beijing 100871, China; Institute of Ecology, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China; Ministry of Education Key Laboratory for Biodiversity Science and Engineering, NFGA Key Laboratory for Conservation Ecology of Northeast Tiger and Leopard, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Aibin Zhan
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100049, China
| | - Jindong Zhao
- School of Life Sciences, Peking University, Beijing 100871, China; Institute of Ecology, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Meng Yao
- School of Life Sciences, Peking University, Beijing 100871, China; Institute of Ecology, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China.
| |
Collapse
|
5
|
Nguyen HH, Peters K, Kiesel J, Welti EAR, Gillmann SM, Lorenz AW, Jähnig SC, Haase P. Stream macroinvertebrate communities in restored and impacted catchments respond differently to climate, land-use, and runoff over a decade. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 929:172659. [PMID: 38657809 DOI: 10.1016/j.scitotenv.2024.172659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 04/10/2024] [Accepted: 04/19/2024] [Indexed: 04/26/2024]
Abstract
Identifying which environmental drivers underlie degradation and improvements of ecological communities is a fundamental goal of ecology. Achieving this goal is a challenge due to diverse trends in both environmental conditions and ecological communities across regions, and it is constrained by the lack of long-term parallel monitoring of environmental and community data needed to study causal relationships. Here, we identify key environmental drivers using a high-resolution environmental - ecological dataset, an ensemble of the Soil and Water Assessment Tool (SWAT+) model, and ecological models to investigate effects of climate, land-use, and runoff on the decadal trend (2012-2021) of stream macroinvertebrate communities in a restored urban catchment and an impacted catchment with mixed land-uses in Germany. The decadal trends showed decreased precipitation, increased temperature, and reduced anthropogenic land-uses, which led to opposing runoff trends - with decreased runoff in the restored catchment and increased runoff in the impacted catchment. The two catchments also varied in decadal trends of taxonomic and trait composition and metrics. The most significant improvements over time were recorded in communities of the restored catchment sites, which have become wastewater free since 2007 to 2009. Within the restored catchment sites, community metric trends were primarily explained by land-use and evaporation trends, while community composition trends were mostly associated with precipitation and runoff trends. Meanwhile, the communities in the impacted catchment did not undergo significant changes between 2012 and 2021, likely influenced by the effects of prolonged droughts following floods after 2018. The results of our study confirm the significance of restoration and land-use management in fostering long-term improvements in stream communities, while climate change remains a prodigious threat. The coupling of long-term biodiversity monitoring with concurrent sampling of relevant environmental drivers is critical for preventative and restorative management in ecology.
Collapse
Affiliation(s)
- Hanh H Nguyen
- Faculty of Biology, University of Duisburg-Essen, Essen, Germany; Department of River Ecology and Conservation, Senckenberg Research Institute and Natural History Museum Frankfurt, Germany.
| | - Kristin Peters
- Institute for Natural Resource Conservation, Christian-Albrechts-University Kiel, Germany.
| | - Jens Kiesel
- Institute for Natural Resource Conservation, Christian-Albrechts-University Kiel, Germany.
| | - Ellen A R Welti
- Conservation Ecology Center, Smithsonian's National Zoo and Conservation Biology Institute, Front Royal, VA, USA
| | - Svenja M Gillmann
- Faculty of Biology, University of Duisburg-Essen, Essen, Germany; Centre for Water and Environmental Research (ZWU), University of Duisburg-Essen, Essen, Germany.
| | - Armin W Lorenz
- Faculty of Biology, University of Duisburg-Essen, Essen, Germany; Centre for Water and Environmental Research (ZWU), University of Duisburg-Essen, Essen, Germany.
| | - Sonja C Jähnig
- Leibniz Institute of Freshwater Ecology and Inland Fisheries, Berlin, Germany; Geography Department, Humboldt-Universität zu Berlin, Berlin, Germany.
| | - Peter Haase
- Faculty of Biology, University of Duisburg-Essen, Essen, Germany; Department of River Ecology and Conservation, Senckenberg Research Institute and Natural History Museum Frankfurt, Germany; Centre for Water and Environmental Research (ZWU), University of Duisburg-Essen, Essen, Germany.
| |
Collapse
|
6
|
Jeliazkov A, Chase JM. When Do Traits Tell More Than Species about a Metacommunity? A Synthesis across Ecosystems and Scales. Am Nat 2024; 203:E1-E18. [PMID: 38207141 DOI: 10.1086/727471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2024]
Abstract
AbstractLinking species traits with the variation in species assemblages across habitats has often proved useful for developing a more mechanistic understanding of species distributions in metacommunities. However, summarizing the rich tapestry of a species in all of its nuance with a few key ecological traits can also lead to an abstraction that provides less predictability than when using taxonomy alone. As a further complication, taxonomic and functional diversities can be inequitably compared, either by integrating taxonomic-level information into the calculation of how functional aspects of communities vary or by detecting spurious trait-environment relationships. To remedy this, we here synthesize analyses of 80 datasets on different taxa, ecosystems, and spatial scales that include information on abundance or presence/absence of species across sites with variable environmental conditions and the species' traits. By developing analyses that treat functional and taxonomic diversity equitably, we ask when functional diversity helps to explain metacommunity structure. We found that patterns of functional diversity explained metacommunity structure and response to environmental variation in only 25% of the datasets using a multitrait approach but up to 59% using a single-trait approach. Nevertheless, an average of only 19% (interquartile range = 0%-29%) of the traits showed a significant signal across environmental gradients. Species-level traits, as typically collected and analyzed through functional diversity patterns, often do not bring predictive advantages over what the taxonomic information already holds. While our assessment of a limited advantage of using traits to explain variation in species assemblages was largely true across ecosystems, traits played a more useful role in explaining variation when many traits were used and when trait constructs were more related to species' status, life history, and mobility. We propose future research directions to make trait-based approaches and data more helpful for inference in metacommunity ecology.
Collapse
|
7
|
Du W, Wang J, Zhao X, Liang E, He J, Kong L, Cai P, Xu N. Algal or bacterial community: Who can be an effective indicator of the impact of reclaimed water recharge in an urban river. WATER RESEARCH 2023; 247:120821. [PMID: 37952398 DOI: 10.1016/j.watres.2023.120821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 10/30/2023] [Accepted: 10/31/2023] [Indexed: 11/14/2023]
Abstract
Reclaimed water has been widely utilized for water resource replenishment, yet little is known regarding its impacts on various microorganisms in the receiving water. To address this knowledge gap, we systematically investigated the responses of bacteria and algae to the recharge of reclaimed water by using the high-throughput sequencing technology in the urban Chaobai River. After the inputs of reclaimed water, lower contents of NO2--N, NH4+-N, and TP were observed in the downstream section compared to that of upstream without reclaimed water, indicating that reclaimed water could improve the water quality of the receiving water. Correspondingly, both bacterial and algal communities showed the decreased network complexity in the downstream section, but many common freshwater bacteria and typical bloom-forming algae were dominant in the downstream, potentially suggesting that algae were more sensitive to the local environmental conditions. More importantly, although nitrogen and phosphorus served as the paramount factors in shaping both bacterial and algal communities, environmental selection contributed more to algal rather than bacterial community, and simultaneously algal variations could further affect bacterial dynamics in the urban river. Overall, these findings revealed distinct characteristics of bacteria and algae in responding to the reclaimed water recharge, highlighting the superiority of algae in indicating environmental changes, especially in monitoring and regulating the replenishment of reclaimed water in urban rivers.
Collapse
Affiliation(s)
- Wenran Du
- School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen 518055, China; College of Environmental Sciences and Engineering, Key Laboratory of Water and Sediment Sciences, Ministry of Education, Peking University, Beijing 100871, China
| | - Jiawen Wang
- School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen 518055, China; College of Environmental Sciences and Engineering, Key Laboratory of Water and Sediment Sciences, Ministry of Education, Peking University, Beijing 100871, China.
| | - Xiaohui Zhao
- College of Environmental Sciences and Engineering, Key Laboratory of Water and Sediment Sciences, Ministry of Education, Peking University, Beijing 100871, China; School of Water Resources and Hydropower Engineering, Xi'an University of Technology, Xi'an 710048, China
| | - Enhang Liang
- College of Environmental Sciences and Engineering, Key Laboratory of Water and Sediment Sciences, Ministry of Education, Peking University, Beijing 100871, China
| | - Jinxi He
- School of Water Resources and Environment, China University of Geosciences Beijing, Beijing 100083, China
| | - Lingrui Kong
- College of Environmental Sciences and Engineering, Key Laboratory of Water and Sediment Sciences, Ministry of Education, Peking University, Beijing 100871, China
| | - Pinggui Cai
- School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen 518055, China; College of Environmental Sciences and Engineering, Key Laboratory of Water and Sediment Sciences, Ministry of Education, Peking University, Beijing 100871, China
| | - Nan Xu
- School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| |
Collapse
|
8
|
Jupke JF, Birk S, Apostolou A, Aroviita J, Baattrup-Pedersen A, Baláži P, Barešová L, Blanco S, Borrego-Ramos M, van Dam H, Dimitriou E, Feld CK, Ferreira MT, Gecheva G, Gomà J, Hanžek N, Haslev IM, Isheva T, Jamoneau A, Jyrkänkallio-Mikkola J, Kahlert M, Karaouzas I, Karjalainen SM, Olenici A, Panek P, Paril P, Peeters ETHM, Polášek M, Pont D, Pumputyte A, Sandin L, Sochuliaková L, Soininen J, Stanković I, Straka M, Šušnjara M, Sutela T, Tison-Rosebery J, Udovič MG, Verhofstad M, Žutinić P, Schäfer RB. European river typologies fail to capture diatom, fish, and macrophyte community composition. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 896:165081. [PMID: 37355122 DOI: 10.1016/j.scitotenv.2023.165081] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 06/16/2023] [Accepted: 06/21/2023] [Indexed: 06/26/2023]
Abstract
Typology systems are frequently used in applied and fundamental ecology and are relevant for environmental monitoring and conservation. They aggregate ecosystems into discrete types based on biotic and abiotic variables, assuming that ecosystems of the same type are more alike than ecosystems of different types with regard to a specific property of interest. We evaluated whether this assumption is met by the Broad River Types (BRT), a recently proposed European river typology system, that classifies river segments based on abiotic variables, when it is used to group biological communities. We compiled data on the community composition of diatoms, fishes, and aquatic macrophytes throughout Europe and evaluated whether the composition is more similar in site groups with the same river type than in site groups of different river types using analysis of similarities, classification strength, typical species analysis, and the area under zeta diversity decline curves. We compared the performance of the BRT with those of four region-based typology systems, namely, Illies Freshwater Ecoregions, the Biogeographic Regions, the Freshwater Ecoregions of the World, and the Environmental Zones, as well as spatial autocorrelation (SA) classifications. All typology systems received low scores from most evaluation methods, relative to predefined thresholds and the SA classifications. The BRT often scored lowest of all typology systems. Within each typology system, community composition overlapped considerably between site groups defined by the types of the systems. The overlap tended to be the lowest for fishes and between Illies Freshwater Ecoregions. In conclusion, we found that existing broad-scale river typology systems fail to delineate site groups with distinct and compositionally homogeneous communities of diatoms, fishes, and macrophytes. A way to improve the fit between typology systems and biological communities might be to combine segment-based and region-based typology systems to simultaneously account for local environmental variation and historical distribution patterns, thus potentially improving the utility of broad-scale typology systems for freshwater biota.
Collapse
Affiliation(s)
- Jonathan F Jupke
- Institute for Environmental Sciences iES, RPTU Kaiserslautern-Landau, Campus Landau, Fortstraße 7, 76829 Landau, Germany.
| | - Sebastian Birk
- Faculty of Biology, Department of Aquatic Ecology, University of Duisburg-Essen, 45117 Essen, Germany; Centre for Water and Environmental Research (ZWU), University of Duisburg-Essen, 45117 Essen, Germany
| | - Apostolos Apostolou
- Department of Aquatic Ecosystems, Institute for Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences, Gagarin 2, Sofia 1113, Bulgaria
| | - Jukka Aroviita
- Finnish Environment Institute, Paavo Havaksen tie 3, 90570 Oulu, Finland
| | | | - Peter Baláži
- Water Research Institute, Nabr. arm. gen. L. Svobodu 7, 81249 Bratislava, Slovakia
| | - Libuše Barešová
- Czech Hydrometeorological Institute, Na Šabatce 17, 143 06 Praha, Czech Republic
| | - Saúl Blanco
- Diatom Lab, Universidad de León, La Serna 58, E24007 Leon, Spain
| | | | - Herman van Dam
- Consultancy for Water and Nature, Spyridon Louisweg 141, 1034 WR Amsterdam, the Netherlands
| | - Elias Dimitriou
- Institute of Marine Biological Resources & Inland Waters, Hellenic Centre for Marine Research, 46.7 km Athens-Sounio Av., 19013 Anavyssos, Attica, Greece
| | - Christian K Feld
- Faculty of Biology, Department of Aquatic Ecology, University of Duisburg-Essen, 45117 Essen, Germany; Centre for Water and Environmental Research (ZWU), University of Duisburg-Essen, 45117 Essen, Germany
| | - Maria Teresa Ferreira
- Forest Research Centre and Associate Laboratory TERRA, Instituto Superior de Agronomia, Tapada da Ajuda, 1349-017 Lisboa, Portugal
| | - Gana Gecheva
- Faculty of Biology, Plovdiv University, Tsar Asen 24, 4000 Plovdiv, Bulgaria
| | - Joan Gomà
- Faculty of Biology, Universitat de Barcelona, Av. Diagonal 643, 08028 Barcelona, Spain
| | - Nikola Hanžek
- Josip Juraj Strossmayer Water Institute, Ulica grada Vukovara 220, HR-10000 Zagreb, Croatia
| | | | - Tsvetelina Isheva
- Department of Aquatic Ecosystems, Institute for Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences, Gagarin 2, Sofia 1113, Bulgaria
| | | | | | - Maria Kahlert
- Swedish University of Agricultural Sciences, Department of Aquatic Sciences and Assessment, PO Box 7050, 750 07 Uppsala, Sweden
| | - Ioannis Karaouzas
- Institute of Marine Biological Resources & Inland Waters, Hellenic Centre for Marine Research, 46.7 km Athens-Sounio Av., 19013 Anavyssos, Attica, Greece
| | | | - Adriana Olenici
- Diatom Lab, Universidad de León, La Serna 58, E24007 Leon, Spain; Babeș-Bolyai University, Faculty of Environmental Sciences and Engineering, Fântânele Street, No. 30, 400294 Cluj-Napoca, Romania
| | - Piotr Panek
- Chief Inspectorate for Environmental Protection, ul. Bitwy Warszawskiej 1920 r. 3, 02-362 Warszawa, Poland
| | - Petr Paril
- Department of Botany and Zoology, Faculty of Science, Masaryk University, 61137, Brno, Czech Republic
| | - Edwin T H M Peeters
- Aquatic Ecology and Water Quality Management Group, Wageningen University, P.O. Box 47, 6700 AA Wageningen, the Netherlands
| | - Marek Polášek
- Department of Botany and Zoology, Faculty of Science, Masaryk University, 61137, Brno, Czech Republic
| | - Didier Pont
- Institute of Hydrobiology and Aquatic Ecosystem Management, University of Natural Resources and Life Sciences, Gregor-MendelStrasse 33, Vienna, Austria
| | - Audrone Pumputyte
- Aplinkos apsaugos agentūra, A Juozapavičiaus g.9, 09311 Vilnius, Lithuania
| | - Leonard Sandin
- Norwegian institute for nature research (NINA), Lillehammer, Norway
| | - Lucia Sochuliaková
- Department of Biology and Ecology, Faculty of Natural Sciences, Matej Bel University, Tajovského 40, 97401 Banská Bystrica, Slovakia
| | - Janne Soininen
- Department of Geosciences and Geography, PO Box 64, Fi-00014, University of Helsinki, Finland
| | - Igor Stanković
- Josip Juraj Strossmayer Water Institute, Ulica grada Vukovara 220, HR-10000 Zagreb, Croatia
| | - Michal Straka
- Department of Botany and Zoology, Faculty of Science, Masaryk University, 61137, Brno, Czech Republic; T.G. Masaryk Water Research Institute, 612 00, Brno, Czech Republic
| | - Mirela Šušnjara
- Faculty of Science, University of Zagreb, Horvatovac 102a, HR-10000 Zagreb, Croatia
| | - Tapio Sutela
- Natural Resources Institute Finland, Paavo Havaksen tie 3, 90570 Oulu, Finland
| | | | | | - Michiel Verhofstad
- FLORON: Plant Conservation Netherlands, Toernooiveld 1, 6525ED Nijmegen, the Netherlands
| | - Petar Žutinić
- Faculty of Science, University of Zagreb, Horvatovac 102a, HR-10000 Zagreb, Croatia
| | - Ralf B Schäfer
- Institute for Environmental Sciences iES, RPTU Kaiserslautern-Landau, Campus Landau, Fortstraße 7, 76829 Landau, Germany
| |
Collapse
|
9
|
Xu X, Yuan Y, Wang Z, Zheng T, Cai H, Yi M, Li T, Zhao Z, Chen Q, Sun W. Environmental DNA metabarcoding reveals the impacts of anthropogenic pollution on multitrophic aquatic communities across an urban river of western China. ENVIRONMENTAL RESEARCH 2023; 216:114512. [PMID: 36208790 DOI: 10.1016/j.envres.2022.114512] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 09/29/2022] [Accepted: 10/03/2022] [Indexed: 06/16/2023]
Abstract
Anthropogenic activities are intensively affecting the structure and function of biological communities in river ecosystems. The effects of anthropogenic pollution on single-trophic community have been widely explored, but their effects on the structures and co-occurrence patterns of multitrophic communities remain largely unknown. In this study, we collected 13 water samples from the Neijiang River in Chengdu City of China, and identified totally 2352 bacterial, 207 algal, 204 macroinvertebrate, and 33 fish species based on the eDNA metabarcoding to systematically investigate the responses of multitrophic communities to environmental stressors. We observed significant variations in bacterial, algal, and macroinvertebrate community structures (except fish) with the pollution levels in the river. Network analyses indicated a more intensive interspecific co-occurrence pattern at high pollution level. Although taxonomic diversity of the multitrophic communities varied insignificantly, phylogenetic diversities of fish and algae showed significantly positive and negative associations with the pollution levels, respectively. We demonstrated the primary role of environmental filtering in driving the structures of bacteria, algae, and macroinvertebrates, while the fish was more controlled by dispersal limitation. Nitrogen was identified as the most important factor impacting the multitrophic community, where bacterial composition was mostly associated with NO3--N, algal spatial differentiation with TN, and macroinvertebrate and fish with NH4+-N. Further partial least-squares path model confirmed more important effect of environmental variables on the relative abundance of bacteria and algae, while macroinvertebrate and fish communities were directly driven by the algae-mediated pathway in the food web. Our study highlighted the necessity of integrated consideration of multitrophic biodiversity for riverine pollution management, and emphasized the importance of controlling nitrogen inputs targeting a healthy ecosystem.
Collapse
Affiliation(s)
- Xuming Xu
- College of Environmental Sciences and Engineering, Key Laboratory of Water and Sediment Sciences, Ministry of Education, Peking University, Beijing, 100871, China; State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, Beijing, 100871, China
| | - Yibin Yuan
- College of Water Resource & Hydropower, Sichuan University, Chengdu, 610065, China; Chengdu Research Academy of Environmental Protection Science, Chengdu, 610072, China
| | - Zhaoli Wang
- Chengdu Research Academy of Environmental Protection Science, Chengdu, 610072, China
| | - Tong Zheng
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510655, China
| | - Hetong Cai
- College of Environmental Sciences and Engineering, Key Laboratory of Water and Sediment Sciences, Ministry of Education, Peking University, Beijing, 100871, China; State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, Beijing, 100871, China
| | - Malan Yi
- Tianjin Research Institute for Water Transport Engineering, M. O. T, Tianjin, 300000, China
| | - Tianhong Li
- College of Environmental Sciences and Engineering, Key Laboratory of Water and Sediment Sciences, Ministry of Education, Peking University, Beijing, 100871, China; State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, Beijing, 100871, China
| | - Zhijie Zhao
- College of Environmental Sciences and Engineering, Key Laboratory of Water and Sediment Sciences, Ministry of Education, Peking University, Beijing, 100871, China; State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, Beijing, 100871, China
| | - Qian Chen
- College of Environmental Sciences and Engineering, Key Laboratory of Water and Sediment Sciences, Ministry of Education, Peking University, Beijing, 100871, China; State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, Beijing, 100871, China.
| | - Weiling Sun
- College of Environmental Sciences and Engineering, Key Laboratory of Water and Sediment Sciences, Ministry of Education, Peking University, Beijing, 100871, China; State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, Beijing, 100871, China
| |
Collapse
|
10
|
Linking Micropollutants to Trait Syndromes across Freshwater Diatom, Macroinvertebrate, and Fish Assemblages. WATER 2022. [DOI: 10.3390/w14081184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The ecological quality of freshwater ecosystems is endangered by various micropollutants released into the environment by human activities. The cumulative effects of these micropollutants can affect the fitness of organisms and populations and the functional diversity of stream ecosystems. In this study, we investigated the relationships between the joint toxicity of micropollutants and trait syndromes. A trait syndrome corresponds to a combination of traits that could occur together in communities due to the trait selection driven by exposure to these micropollutants. Our objectives were to (i) identify trait syndromes specific to diatom, macroinvertebrate, and fish assemblages and their responses to exposure, taking into account four micropollutant types (mineral micropollutants, pesticides, PAHs, and other organic micropollutants) and nine modes of action (only for pesticides), (ii) explore how these syndromes vary within and among the three biological compartments, (iii) investigate the trait categories driving the responses of syndromes to micropollutant exposure, and (iv) identify specific taxa, so-called paragons, which are highly representative of these syndromes. To achieve these objectives, we analyzed a dataset including the biological and physico-chemical results of 2007 sampling events from a large-scale monitoring survey routinely performed in French wadeable streams. We have identified five (diatoms), eight (macroinvertebrates), and eight (fishes) trait syndromes, either positively or negatively related to an increasing toxicity gradient of different clusters of micropollutant types or modes of action. Our analyses identified several key trait categories and sets of paragons, exhibiting good potential for highlighting exposure by specific micropollutant types and modes of action. Overall, trait syndromes might represent a novel and integrative bioassessment tool, driven by the diversity of trait-based responses to increasing gradients of micropollutant toxic cocktails.
Collapse
|