1
|
Curveira-Santos G, Marion S, Sutherland C, Beirne C, Herdman EJ, Tattersall ER, Burgar JM, Fisher JT, Burton AC. Disturbance-mediated changes to boreal mammal spatial networks in industrializing landscapes. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2024; 34:e3004. [PMID: 38925578 DOI: 10.1002/eap.3004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 01/19/2024] [Accepted: 04/22/2024] [Indexed: 06/28/2024]
Abstract
Compound effects of anthropogenic disturbances on wildlife emerge through a complex network of direct responses and species interactions. Land-use changes driven by energy and forestry industries are known to disrupt predator-prey dynamics in boreal ecosystems, yet how these disturbance effects propagate across mammal communities remains uncertain. Using structural equation modeling, we tested disturbance-mediated pathways governing the spatial structure of multipredator multiprey boreal mammal networks across a landscape-scale disturbance gradient within Canada's Athabasca oil sands region. Linear disturbances had pervasive direct effects, increasing site use for all focal species, except black bears and threatened caribou, in at least one landscape. Conversely, block (polygonal) disturbance effects were negative but less common. Indirect disturbance effects were widespread and mediated by caribou avoidance of wolves, tracking of primary prey by subordinate predators, and intraguild dependencies among predators and large prey. Context-dependent responses to linear disturbances were most common among prey and within the landscape with intermediate disturbance. Our research suggests that industrial disturbances directly affect a suite of boreal mammals by altering forage availability and movement, leading to indirect effects across a range of interacting predators and prey, including the keystone snowshoe hare. The complexity of network-level direct and indirect disturbance effects reinforces calls for increased investment in addressing habitat degradation as the root cause of threatened species declines and broader ecosystem change.
Collapse
Affiliation(s)
- Gonçalo Curveira-Santos
- Department of Forest Resources Management, University of British Columbia, Vancouver, Canada
- CIBIO Research Center in Biodiversity and Genetic Resources, InBIO Associated Laboratory, Universidade do Porto, Vairão, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Vairão, Portugal
| | - Solène Marion
- Department of Forest Resources Management, University of British Columbia, Vancouver, Canada
| | - Chris Sutherland
- Centre for Research into Ecological and Environmental Modelling, University of St Andrews, St Andrews, UK
| | - Christopher Beirne
- Department of Forest Resources Management, University of British Columbia, Vancouver, Canada
| | | | - Erin R Tattersall
- Department of Forest Resources Management, University of British Columbia, Vancouver, Canada
| | - Joanna M Burgar
- Department of Forest Resources Management, University of British Columbia, Vancouver, Canada
- School of Environmental Studies, University of Victoria, Victoria, Canada
| | - Jason T Fisher
- School of Environmental Studies, University of Victoria, Victoria, Canada
| | - A Cole Burton
- Department of Forest Resources Management, University of British Columbia, Vancouver, Canada
- Biodiversity Research Centre, University of British Columbia, Vancouver, Canada
| |
Collapse
|
2
|
Gaston MV, Barnas AF, Smith RM, Murray S, Fisher JT. Native prey, not landscape change or novel prey, drive cougar ( Puma concolor) distribution at a boreal forest range edge. Ecol Evol 2024; 14:e11146. [PMID: 38571804 PMCID: PMC10985369 DOI: 10.1002/ece3.11146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 02/22/2024] [Accepted: 02/29/2024] [Indexed: 04/05/2024] Open
Abstract
Many large carnivores, despite widespread habitat alteration, are rebounding in parts of their former ranges after decades of persecution and exploitation. Cougars (Puma concolor) are apex predator with their remaining northern core range constricted to mountain landscapes and areas of western North America; however, cougar populations have recently started rebounding in several locations across North America, including northward in boreal forest landscapes. A camera-trap survey of multiple landscapes across Alberta, Canada, delineated a range edge; within this region, we deployed an array of 47 camera traps in a random stratified design across a landscape spanning a gradient of anthropogenic development relative to the predicted expansion front. We completed multiple hypotheses in an information-theoretic framework to determine if cougar occurrence is best explained by natural land cover features, anthropogenic development features, or competitor and prey activity. We predicted that anthropogenic development features from resource extraction and invading white-tailed deer (Odocoileus virgianius) explain cougar distribution at this boreal range edge. Counter to our predictions, the relative activity of native prey, predominantly snowshoe hare (Lepus americanus), was the best predictor of cougar occurrence at this range edge. Small-bodied prey items are particularly important for female and sub-adult cougars and may support breeding individuals in the northeast boreal forest. Also, counter to our predictions, there was not a strong relationship detected between cougar occurrence and gray wolf (Canis lupus) activity at this range edge. However, further investigation is recommended as the possibility of cougar expansion into areas of the multi-prey boreal system, where wolves have recently been controlled, could have negative consequences for conservation goals in this region (e.g. the recovery of woodland caribou [Rangifer tarandus caribou]). Our study highlights the need to monitor contemporary distributions to inform conservation management objectives as large carnivores recover across North America.
Collapse
Affiliation(s)
- Millicent V. Gaston
- School of Environmental StudiesUniversity of VictoriaVictoriaBritish ColumbiaCanada
| | - Andrew F. Barnas
- School of Environmental StudiesUniversity of VictoriaVictoriaBritish ColumbiaCanada
| | - Rebecca M. Smith
- School of Environmental StudiesUniversity of VictoriaVictoriaBritish ColumbiaCanada
| | - Sean Murray
- School of Environmental StudiesUniversity of VictoriaVictoriaBritish ColumbiaCanada
| | - Jason T. Fisher
- School of Environmental StudiesUniversity of VictoriaVictoriaBritish ColumbiaCanada
| |
Collapse
|
3
|
Barnas AF, Ladle A, Burgar JM, Burton AC, Boyce MS, Eliuk L, Grey F, Heim N, Paczkowski J, Stewart FEC, Tattersall E, Fisher JT. How landscape traits affect boreal mammal responses to anthropogenic disturbance. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 915:169285. [PMID: 38103612 DOI: 10.1016/j.scitotenv.2023.169285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 12/04/2023] [Accepted: 12/09/2023] [Indexed: 12/19/2023]
Abstract
Understanding mammalian responses to anthropogenic disturbance is challenging, as ecological processes and the patterns arising therefrom notoriously change across spatial and temporal scales, and among different landscape contexts. Responses to local scale disturbances are likely influenced by landscape context (e.g., overall landscape-level disturbance, landscape-level productivity). Hierarchical approaches considering small-scale sampling sites as nested holons within larger-scale landscapes, which constrain processes in lower-level holons, can potentially explain differences in ecological processes between multiple locations. We tested hypotheses about mammal responses to disturbance and interactions among holons using collected images from 957 camera sites across 9 landscapes in Alberta from 2007 to 2020 and examined occurrence for 11 mammal species using generalized linear mixed models. White-tailed deer occurred more in higher disturbed sites within lower disturbed landscapes (β = -0.30 [-0.4 to -0.15]), whereas occurrence was greater in highly disturbed sites within highly disturbed landscapes for moose (β = 0.20 [0.09-0.31]), coyote (β = 0.20 [0.08-0.26]), and lynx (β = 0.20 [0.07-0.26]). High disturbance sites in high productivity landscapes had higher occurrence of black bears (β = -0.20 [-0.46 to -0.01]), lynx (β = -0.70 [-0.97 to -0.34]), and wolves (β = -0.50 [-0.73 to -0.21]). Conversely, we found higher probability of occurrence in low productivity landscapes with increasing site disturbance for mule deer (β = 0.80 [0.39-1.14]), and white-tailed deer (β = 0.20 [0.01-0.47]). We found the ecological context created by aggregate sums (high overall landscape disturbance), and by subcontinental hydrogeological processes in which that landscape is embedded (high landscape productivity), alter mammalian responses to anthropogenic disturbance at local scales. These responses also vary by species, which has implications for large-scale conservation planning. Management interventions must consider large-scale geoclimatic processes and geographic location of a landscape when assessing wildlife responses to disturbance.
Collapse
Affiliation(s)
- Andrew F Barnas
- School of Environmental Studies, University of Victoria, Victoria, Canada.
| | - Andrew Ladle
- School of Environmental Studies, University of Victoria, Victoria, Canada; Department of Biological Sciences, University of Alberta, Edmonton, Canada
| | - Joanna M Burgar
- School of Environmental Studies, University of Victoria, Victoria, Canada; Department of Forest Resources Management, University of British Columbia, Vancouver, Canada
| | - A Cole Burton
- Department of Forest Resources Management, University of British Columbia, Vancouver, Canada; Biodiversity Research Centre, University of British Columbia, Vancouver, Canada
| | - Mark S Boyce
- Department of Biological Sciences, University of Alberta, Edmonton, Canada
| | - Laura Eliuk
- School of Environmental Studies, University of Victoria, Victoria, Canada
| | - Fabian Grey
- Whitefish Lake First Nation #459, Atikameg, Alberta, Canada
| | - Nicole Heim
- School of Environmental Studies, University of Victoria, Victoria, Canada
| | - John Paczkowski
- Government of Alberta, Forests, Parks, and Tourism, Canmore, Alberta, Canada
| | - Frances E C Stewart
- School of Environmental Studies, University of Victoria, Victoria, Canada; Department of Biology, Wilfrid Laurier University, Waterloo, Ontario (Haldimand Tract), Canada
| | - Erin Tattersall
- Department of Forest Resources Management, University of British Columbia, Vancouver, Canada
| | - Jason T Fisher
- School of Environmental Studies, University of Victoria, Victoria, Canada
| |
Collapse
|
4
|
Harris NC, Bhandari A, Doamba B. Ungulate co-occurrence in a landscape of antagonisms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169552. [PMID: 38142990 DOI: 10.1016/j.scitotenv.2023.169552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 12/15/2023] [Accepted: 12/18/2023] [Indexed: 12/26/2023]
Abstract
Protected areas largely now exist as coupled natural-human ecosystems where human activities are increasingly forcing wildlife to adjust behaviors. For many ungulate species that rely on protected areas for their persistence, they must balance these anthropogenic pressures amid natural regulators. Here, we investigated the pressures exerted from humans and livestock, apex predators, and within guild competitors on ungulate co-occurrence patterns in a fragile protected area complex in West Africa. Specifically, we used multi-species occupancy modeling to quantify co-occurrence among four ungulates (Tragelaphus scriptus, Redunca redunca, Kobus kob, Phacochoerus africanus) and applied structural equation models to discern the relative contributions of pressures on co-occurrence patterns. We observed a strong spatial gradient across with higher co-occurrence in the wetter western portion of our ~13,000 km2 study area. Co-occurrence patterns among ungulate dyads ranged from 0.15 to 0.49 with the smallest body sized pair showing highest levels of sympatry, warthog and reedbuck. We found that anthropogenic pressures, namely cattle had the greatest effect in reducing sympatry among wild ungulates more strongly than the presence of African lions that also exhibited negative effects. Humans, hyenas, and competitors showed positive effects on ungulate co-occurrence. In a region of the world ongoing rapid socio-ecological change with increasing threats from climate and environmental instability, protected areas in West Africa represent a major safeguard for wildlife and human livelihoods alike. Our findings highlight the need for effective interventions that focus on large carnivore conservation, habitat restoration, and containment of livestock grazing to promote the coexistence of biodiversity and socio-economic goals within the region.
Collapse
Affiliation(s)
- Nyeema C Harris
- Applied Wildlife Ecology (AWE) Lab, Yale School of the Environment, United States of America.
| | - Aishwarya Bhandari
- Applied Wildlife Ecology (AWE) Lab, Yale School of the Environment, United States of America
| | - Benoit Doamba
- National Office of Protected Areas (OFINAP), Ouagadougou, Burkina Faso
| |
Collapse
|
5
|
Boczulak H, Boucher NP, Ladle A, Boyce MS, Fisher JT. Industrial development alters wolf spatial distribution mediated by prey availability. Ecol Evol 2023; 13:e10224. [PMID: 37396026 PMCID: PMC10307794 DOI: 10.1002/ece3.10224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 06/07/2023] [Accepted: 06/12/2023] [Indexed: 07/04/2023] Open
Abstract
Increasing resource extraction and human activity are reshaping species' spatial distributions in human-altered landscape and consequently shaping the dynamics of interspecific interactions, such as between predators and prey. To evaluate the effects of industrial features and human activity on the occurrence of wolves (Canis lupus), we used wildlife detection data collected in 2014 from an array of 122 remote wildlife camera traps in Alberta's Rocky Mountains and foothills near Hinton, Canada. Using generalized linear models, we compared the occurrence frequency of wolves at camera sites to natural land cover, industrial disturbance (forestry and oil/gas exploration), human activity (motorized and non-motorized), and prey availability (moose, Alces alces; elk, Cervus elaphus; mule deer, Odocoileus hemionus; and white-tailed deer, Odocoileus virginianus). Industrial block features (well sites and cutblocks) and prey (elk or mule deer) availability interacted to influence wolf occurrence, but models including motorized and non-motorized human activity were not strongly supported. Wolves occurred infrequently at sites with high densities of well sites and cutblocks, except when elk or mule deer were frequently detected. Our results suggest that wolves risk using industrial block features when prey occur frequently to increase predation opportunities, but otherwise avoid them due to risk of human encounters. Effective management of wolves in anthropogenically altered landscapes thus requires the simultaneous consideration of industrial block features and populations of elk and mule deer.
Collapse
Affiliation(s)
- Hannah Boczulak
- School of Environmental StudiesUniversity of VictoriaVictoriaBritish ColumbiaCanada
| | - Nicole P. Boucher
- School of Environmental StudiesUniversity of VictoriaVictoriaBritish ColumbiaCanada
| | - Andrew Ladle
- School of Environmental StudiesUniversity of VictoriaVictoriaBritish ColumbiaCanada
| | - Mark S. Boyce
- Department of Biological SciencesUniversity of AlbertaEdmontonAlbertaCanada
| | - Jason T. Fisher
- School of Environmental StudiesUniversity of VictoriaVictoriaBritish ColumbiaCanada
| |
Collapse
|
6
|
Fuller HW, Frey S, Fisher JT. Integration of aerial surveys and resource selection analysis indicates human land use supports boreal deer expansion. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2023; 33:e2722. [PMID: 36053995 DOI: 10.1002/eap.2722] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 06/07/2022] [Accepted: 06/13/2022] [Indexed: 06/15/2023]
Abstract
Landscape change is a driver of global biodiversity loss. In the western Nearctic, petroleum exploration and extraction is a major contributor to landscape change, with concomitant effects on large mammal populations. One of those effects is the continued expansion of invasive white-tailed deer populations into the boreal forest, with ramifications for the whole ecosystem. We explored deer resource selection within the oil sands region of the boreal forest using a novel application of aerial ungulate survey (AUS) data. Deer locations from AUS were "used" points and together with randomly allocated "available" points informed deer resource selection in relation to landscape variables in the boreal forest. We created a candidate set of generalized linear models representing competing hypotheses about the role of natural landscape features, forest harvesting, cultivation, roads, and petroleum features. We ranked these in an information-theoretic framework. A combination of natural and anthropogenic landscape features best explained deer resource selection. Deer strongly selected seismic lines and other linear features associated with petroleum exploration and extraction, likely as movement corridors and resource subsidies. Forest harvesting and cultivation, important contributors to expansion in other parts of the white-tailed deer range, were not as important here. Stemming deer expansion to conserve native ungulates and maintain key predator-prey processes will likely require landscape management to restore the widespread linear features crossing the vast oil sands region.
Collapse
Affiliation(s)
- Hugh W Fuller
- School of Environmental Studies, University of Victoria, Victoria, British Columbia, Canada
| | - Sandra Frey
- School of Environmental Studies, University of Victoria, Victoria, British Columbia, Canada
| | - Jason T Fisher
- School of Environmental Studies, University of Victoria, Victoria, British Columbia, Canada
| |
Collapse
|
7
|
Gorczynski D, Hsieh C, Ahumada J, Akampurira E, Andrianarisoa MH, Espinosa S, Johnson S, Kayijamahe C, Lima MGM, Mugerwa B, Rovero F, Salvador J, Santos F, Sheil D, Uzabaho E, Beaudrot L. Human density modulates spatial associations among tropical forest terrestrial mammal species. GLOBAL CHANGE BIOLOGY 2022; 28:7205-7216. [PMID: 36172946 PMCID: PMC9827980 DOI: 10.1111/gcb.16434] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 08/16/2022] [Indexed: 06/16/2023]
Abstract
The spatial aggregation of species pairs often increases with the ecological similarity of the species involved. However, the way in which environmental conditions and anthropogenic activity affect the relationship between spatial aggregation and ecological similarity remains unknown despite the potential for spatial associations to affect species interactions, ecosystem function, and extinction risk. Given that human disturbance has been shown to both increase and decrease spatial associations among species pairs, ecological similarity may have a role in mediating these patterns. Here, we test the influences of habitat diversity, primary productivity, human population density, and species' ecological similarity based on functional traits (i.e., functional trait similarity) on spatial associations among tropical forest mammals. Large mammals are highly sensitive to anthropogenic change and therefore susceptible to changes in interspecific spatial associations. Using two-species occupancy models and camera trap data, we quantified the spatial overlap of 1216 species pairs from 13 tropical forest protected areas around the world. We found that the association between ecological similarity and interspecific species associations depended on surrounding human density. Specifically, aggregation of ecologically similar species was more than an order of magnitude stronger in landscapes with the highest human density compared to those with the lowest human density, even though all populations occurred within protected areas. Human-induced changes in interspecific spatial associations have been shown to alter top-down control by predators, increase disease transmission and increase local extinction rates. Our results indicate that anthropogenic effects on the distribution of wildlife within protected areas are already occurring and that impacts on species interactions, ecosystem functions, and extinction risk warrant further investigation.
Collapse
Affiliation(s)
- Daniel Gorczynski
- Department of BiosciencesRice UniversityHoustonTexasUSA
- Program in Ecology and Evolutionary BiologyRice UniversityHoustonTexasUSA
| | - Chia Hsieh
- Department of BiosciencesRice UniversityHoustonTexasUSA
- Program in Ecology and Evolutionary BiologyRice UniversityHoustonTexasUSA
| | - Jorge Ahumada
- Moore Center for Science, Conservation InternationalArlingtonVirginiaUSA
| | - Emmanuel Akampurira
- Institute of Tropical Forest Conservation (ITFC), Mbarara University of Science and Technology (MUST)KabaleUganda
- Department of Conflict and Development Studies, Ghent UniversityGentBelgium
| | | | - Santiago Espinosa
- Facultad de CienciasUniversidad Autónoma de San Luis PotosíSan Luis PotosíMexico
- Escuela de Ciencias BiológicasPontificia Universidad Católica del EcuadorQuitoEcuador
| | - Steig Johnson
- Department of Anthropology and ArchaeologyUniversity of CalgaryCalgaryAlbertaCanada
| | | | - Marcela Guimarães Moreira Lima
- Biogeography of Conservation and Macroecology LaboratoryInstitute of Biological Sciences, Universidade Federal do ParáParáBrazil
| | - Badru Mugerwa
- Leibniz Institute for Zoo and Wildlife ResearchBerlinGermany
- Department of EcologyTechnische Universität BerlinBerlinGermany
| | - Francesco Rovero
- Department of BiologyUniversity of FlorenceFlorenceItaly
- MUSE‐Museo delle ScienzeTrentoItaly
| | - Julia Salvador
- Wildlife Conservation SocietyQuitoEcuador
- Pontificia Universidad Católica del EcuadorQuitoEcuador
| | - Fernanda Santos
- Programa de Capacitação Institucional, Coordenação de Ciências da Terra e Ecologia, Museu Paraense Emílio GoeldiBelémBrazil
| | - Douglas Sheil
- Faculty of Environmental Sciences and Natural Resource ManagementNorwegian University of Life Sciences (NMBU)AasNorway
- Forest Ecology and Forest Management GroupWageningen University & ResearchWageningenNetherlands
| | | | - Lydia Beaudrot
- Department of BiosciencesRice UniversityHoustonTexasUSA
- Program in Ecology and Evolutionary BiologyRice UniversityHoustonTexasUSA
| |
Collapse
|
8
|
McKay TL, Finnegan LA. Predator–prey co‐occurrence in harvest blocks: Implications for caribou and forestry. CONSERVATION SCIENCE AND PRACTICE 2022. [DOI: 10.1111/csp2.12847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|