1
|
Ye T, Li M, Lin Y, Wei B, Su Z. Enhanced nitrogen and phosphorus removal from mariculture water using immobilized bacteria and macroalgae. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:123004. [PMID: 39461145 DOI: 10.1016/j.jenvman.2024.123004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 10/12/2024] [Accepted: 10/20/2024] [Indexed: 10/29/2024]
Abstract
With the vigorous development of the mariculture industry, the untreated wastewater from mariculture has exerted significant pressure on the water environment. The untreated N and P in the wastewater from mariculture can deteriorate the quality of the mariculture. In this study, a composite in situ treatment system involving macroalgae (Caulerpa lentillifera/Caulerpa sertularoides f. Longipes) and immobilized degrading bacteria was established to handle wastewater from shrimp culture. The changes in nutrients in aquaculture wastewater were studied by chemical analysis, and the microbial community structure was analyzed using molecular biology technology and high-throughput sequencing technology. The removal efficacy of nutrients in aquaculture wastewater and the composition of microorganisms in the wastewater were examined, and the primary causes for the alteration of the microbial community were analyzed. The results demonstrated that when the macroalgae in the system were Caulerpa lentillifera (CL), the removal efficiencies of TN, PO43--P, and COD from shrimp culture were 59.04%, 34.26%, and 68.61% respectively. When the macroalgae was Caulerpa sertularoides f. Longipes (CSF), the removal efficiencies of TN, PO43--P, and COD generated by experimental shrimp culture were 51.50%, 33.69%, and 50.88% respectively. The biomass (wet weight) of both macroalgae species also increased, facilitating the removal of nutrients from the wastewater. Additionally, both Proteobacteria and Bacteroidetes were the dominant bacteria in the three samples, and the addition of the composite in-situ treatment system had no impact on the dominant bacteria in the water. The results of FAPROTAX analysis indicated that compared with the untreated samples, the abundances of methyl-functional bacteria and amino acid-functional bacteria in the samples increased due to organic matter such as COD produced during shrimp culture and the addition of feed, suggesting that shrimp culture can influence the abundances of functional bacteria in the water. In conclusion, the combined in situ treatment system can effectively eliminate nutrients from aquaculture wastewater, and the combined effect of macroalgae and immobilized degrading bacteria plays a vital role in this process.
Collapse
Affiliation(s)
- Tingting Ye
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province (Hainan University), Haikou, Hainan Province, China.
| | - Min Li
- CATAS, Environment and Plant Protection Research Institute, Haikou, Hainan Province, China.
| | - Yuanbin Lin
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province (Hainan University), Haikou, Hainan Province, China.
| | - Bingtao Wei
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province (Hainan University), Haikou, Hainan Province, China.
| | - Zengjian Su
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province (Hainan University), Haikou, Hainan Province, China.
| |
Collapse
|
2
|
Wu Y, Zhou D, Lu Y, Li S, Zhu G, Wang H. High-performance multi-stage baffled A 2O treatment process for domestic sewage on plateaus. WATER RESEARCH 2024; 268:122695. [PMID: 39536637 DOI: 10.1016/j.watres.2024.122695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 10/20/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024]
Abstract
At high altitudes, the low air pressure, low atmospheric oxygen content, and cryogenic environment during the cold season greatly limit the treatment efficiency of wastewater treatment plants (WWTPs). A novel pilot-plant configuration of the multi-stage baffled A2O wastewater treatment process was proposed and tested in Xizang. Different operational conditions involving at different influent loads and at low temperatures (10.0-11.0 °C) were tested. When the influent flowrate increased to 4 m3∙d-1, the hydraulic retention time (HRT), internal and external reflux ratio, dissolved oxygen (DO), and aeration demands (gas to water ratio) all decreased to 34.2 h, 3.5/7, a stable 2.0-2.5 mg∙L-1, and 17.5, respectively. The effluent chemical oxygen demand (COD), total nitrogen (TN), ammonia nitrogen (NH4+-N), and total phosphorus (TP) all met the requirements of Class 1 Grade A of the China National Municipal Wastewater Discharge Standards (GB 18918-2002). The contribution of denitrifying phosphorus removal (DPR) to the removal of both nitrogen and phosphorus was over 50%. The alpha diversity and abundance of the top genera in the microbial community structure were both higher than the plateau WWTP. The reaction activity of the DPR process was significantly enhanced via the increased abundance of key functional genes within the metabolism pathway of ammonia-oxidizing bacteria (AOB) and nitrogen-oxidizing bacteria (NOB). The special multi-stage baffled structure featured a strategy of high sludge storage that improved the system tolerance for low temperatures and ensured favorable and stable performance for nitrogen and phosphorus removal at low temperatures. A short, periodic, and cyclically intermittent operation mode, with each cycle lasting only 20 min, effectively inhibited filamentous bacteria sludge bulking, resulting in a sludge volume index (SVI) that decreased to within 120 mL∙g-1 during the first 15 days of system start-up. A long sludge retention time (SRT) with no sludge discharging over 169 days and reduced aeration demands contributed to lower operation costs. The investigation revealed that the system had a high capacity for storing sludge phosphorus, possessing a TP content within a range of 23.45-28.99 mg∙g-1. This study provides a feasible solution for efficiently and economically treating wastewater in high-altitude areas.
Collapse
Affiliation(s)
- Yang Wu
- School of Energy and Environment, Southeast University, Nanjing 210096, China
| | - Dakai Zhou
- School of Energy and Environment, Southeast University, Nanjing 210096, China
| | - Yongze Lu
- School of Energy and Environment, Southeast University, Nanjing 210096, China; Key Laboratory of Water Pollution Control and Ecological Restoration of Xizang, National Ethnic Affairs Commission, Xizang Minzu University, Xianyang 712082, China; Key Laboratory of Water Safety and Aquatic Ecosystem Health of Xizang, Xizang Minzu University, Xianyang 712082, China
| | - Shuping Li
- Key Laboratory of Water Pollution Control and Ecological Restoration of Xizang, National Ethnic Affairs Commission, Xizang Minzu University, Xianyang 712082, China; Key Laboratory of Water Safety and Aquatic Ecosystem Health of Xizang, Xizang Minzu University, Xianyang 712082, China
| | - Guangcan Zhu
- School of Energy and Environment, Southeast University, Nanjing 210096, China; Key Laboratory of Water Pollution Control and Ecological Restoration of Xizang, National Ethnic Affairs Commission, Xizang Minzu University, Xianyang 712082, China; Key Laboratory of Water Safety and Aquatic Ecosystem Health of Xizang, Xizang Minzu University, Xianyang 712082, China.
| | - Hongyang Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| |
Collapse
|
3
|
Jiang L, Yi M, Jiang Z, Wu Y, Cao J, Liu Z, Wang Z, Lu M, Ke X, Wang M. Effect of Pond-Based Rice Floating Bed on the Microbial Community Structure and Quality of Water in Pond of Mandarin Fish Fed Using Artificial Diet. BIOLOGY 2024; 13:549. [PMID: 39056741 PMCID: PMC11274348 DOI: 10.3390/biology13070549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 07/11/2024] [Accepted: 07/15/2024] [Indexed: 07/28/2024]
Abstract
The culture of mandarin fish using artificial feed has been gaining increasing attention in China. Ensuring good water quality in the ponds is crucial for successful aquaculture. Recently, the trial of pond-based rice floating beds (PRFBs) in aquaculture ponds has shown promising results. This research assessed the impact of PRFBs on the microbial community structure and overall quality of the aquaculture pond, thereby enhancing our understanding of its functions. The results revealed that the PRFB group exhibited lower levels of NH4+-N, NO2--N, NO3--N, TN, TP, and Alk in pond water compared to the control group. The microbial diversity indices in the PRFB group showed a declining trend, while these indices were increasing in the control group. At the phylum level, there was a considerable increase in Proteobacteria abundance in the PRFB group throughout the culture period, suggesting that PRFBs may promote the proliferation of Proteobacteria. In the PRFB group, there was a remarkable decrease in bacterial populations related to carbon, nitrogen, and phosphorus metabolism, including genera Rhodobacter, Rhizorhapis, Dinghuibacter, Candidatus Aquiluna, and Chryseomicrobium as well as the CL500_29_marine_group. Overall, the research findings will provide a basis for the application of aquaculture of mandarin fish fed an artificial diet and rice floating beds.
Collapse
Affiliation(s)
- Lijin Jiang
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Aquatic Animal Immunology and Sustainable Aquaculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Science, Guangzhou 510380, China; (L.J.); (M.Y.); (J.C.); (Z.L.); (Z.W.); (M.L.); (X.K.)
| | - Mengmeng Yi
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Aquatic Animal Immunology and Sustainable Aquaculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Science, Guangzhou 510380, China; (L.J.); (M.Y.); (J.C.); (Z.L.); (Z.W.); (M.L.); (X.K.)
| | - Zhiyong Jiang
- Guangdong Agricultural Technology Extension Center, Guangzhou 510520, China; (Z.J.); (Y.W.)
| | - Yuli Wu
- Guangdong Agricultural Technology Extension Center, Guangzhou 510520, China; (Z.J.); (Y.W.)
| | - Jianmeng Cao
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Aquatic Animal Immunology and Sustainable Aquaculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Science, Guangzhou 510380, China; (L.J.); (M.Y.); (J.C.); (Z.L.); (Z.W.); (M.L.); (X.K.)
| | - Zhigang Liu
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Aquatic Animal Immunology and Sustainable Aquaculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Science, Guangzhou 510380, China; (L.J.); (M.Y.); (J.C.); (Z.L.); (Z.W.); (M.L.); (X.K.)
| | - Zhang Wang
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Aquatic Animal Immunology and Sustainable Aquaculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Science, Guangzhou 510380, China; (L.J.); (M.Y.); (J.C.); (Z.L.); (Z.W.); (M.L.); (X.K.)
| | - Maixin Lu
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Aquatic Animal Immunology and Sustainable Aquaculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Science, Guangzhou 510380, China; (L.J.); (M.Y.); (J.C.); (Z.L.); (Z.W.); (M.L.); (X.K.)
| | - Xiaoli Ke
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Aquatic Animal Immunology and Sustainable Aquaculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Science, Guangzhou 510380, China; (L.J.); (M.Y.); (J.C.); (Z.L.); (Z.W.); (M.L.); (X.K.)
| | - Miao Wang
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Aquatic Animal Immunology and Sustainable Aquaculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Science, Guangzhou 510380, China; (L.J.); (M.Y.); (J.C.); (Z.L.); (Z.W.); (M.L.); (X.K.)
| |
Collapse
|
4
|
Wei Y, Shen D, Nicholaus R, Wang Y, Lukwambe B, Zhu J, Yang W, Zheng Z. Exogenous compound bacteria enhance the nutrient removal efficiency of integrated bioremediation systems: Functional genes and microorganisms play key roles. ENVIRONMENTAL RESEARCH 2024; 252:118864. [PMID: 38574987 DOI: 10.1016/j.envres.2024.118864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 03/16/2024] [Accepted: 04/01/2024] [Indexed: 04/06/2024]
Abstract
With the continuous development of intensive mariculture, the application of the integrated bioremediation system of aquaculture wastewater (IBSAW) is increasingly promoted. However, the process and nutrients removal performance of the IBSAW need to be further optimized due to its immature technologies. In this study, exogenous compound bacteria (ECB) were added to IBSAW to investigate its pollutants removal efficiency and the relevant mechanisms. High-throughput sequencing and Geochip gene array were used to analyze the correlation between nutrients and bacteria, and the abundance of N and P cycling genes were quantified. Multivariable statistics, dimensionality reduction analysis, and network analysis were applied to explore the mechanisms of IBSAW operation. The results showed that the nutrients decreased significantly after adding ECB, with the brush treatment group significantly outperforming the ceramsite in removing NO3- and PO43-. Ceramsite has an advantage in removing NO2--N. The addition of ECB and different substrates significantly affected the composition of bacterial communities. The contents of nosZ and nirKS related to denitrification in the treatment groups were significantly higher than those in the control group, and the contents in the brush treatment group were significantly higher than that of ceramsite. The biomarkers Psychroserpens and Ruegeria on the biofilm of the brush treatment group were positively correlated with nirKS, while Mycobacterium, Erythrobacter and Paracoccus, Pseudohaliea in the ceramsite group were positively correlated with nirS and nirK, respectively. Therefore, it is speculated that the ECB significantly promoted the increase of denitrification bacteria by affecting the composition of bacterial communities, and the ECB combined with functional genera improved the efficiency of nutrients removal in the system. This study provided a reference for understanding the process and mechanism of nutrients removal, optimizing the wastewater purification technology of the IBSAW and improving the performance of the system.
Collapse
Affiliation(s)
- Yingzhen Wei
- School of Marine Sciences, Ningbo University, Ningbo, 315211, China
| | - Ding Shen
- School of Marine Sciences, Ningbo University, Ningbo, 315211, China
| | - Regan Nicholaus
- Department of Natural Sciences, Mbeya University of Science and Technology, Mbeya, Tanzania
| | - Yangcai Wang
- Ningbo Academy of Oceanology and Fishery, Ningbo, 315048, China
| | - Betina Lukwambe
- School of Aquatic Sciences and Fisheries Technology, University of Dar es Salaam, Dar es Salaam, Tanzania
| | - Jinyong Zhu
- School of Marine Sciences, Ningbo University, Ningbo, 315211, China
| | - Wen Yang
- School of Marine Sciences, Ningbo University, Ningbo, 315211, China.
| | - Zhongming Zheng
- School of Marine Sciences, Ningbo University, Ningbo, 315211, China.
| |
Collapse
|
5
|
Lu Z, Cheng X, Xie J, Li Z, Li X, Jiang X, Zhu D. Iron-based multi-carbon composite and Pseudomonas furukawaii ZS1 co-affect nitrogen removal, microbial community dynamics and metabolism pathways in low-temperature aquaculture wastewater. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 349:119471. [PMID: 37913618 DOI: 10.1016/j.jenvman.2023.119471] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 10/24/2023] [Accepted: 10/25/2023] [Indexed: 11/03/2023]
Abstract
Aerobic denitrification is the key process in the elimination of nitrogen from aquaculture wastewater, especially for wastewater with high dissolved oxygen and low carbon/nitrogen (C/N) ratio. However, a low C/N ratio, especially in low-temperature environments, restricts the activity of aerobic denitrifiers and decreases the nitrogen elimination efficiency. In this study, an iron-based multi-solid carbon source composite that immobilized aerobic denitrifying bacteria ZS1 (IMCSCP) was synthesized to treat aerobic (DO > 5 mg/L), low temperature (<15 °C) and low C/N ratio (C/N = 4) aquaculture wastewater. The results showed that the sequencing batch biofilm reactor (SBBR) packed with IMCSCP exhibited the highest nitrogen removal performance, with removal rates of 95.63% and 85.44% for nitrate nitrogen and total nitrogen, respectively, which were 33.03% and 30.75% higher than those in the reactor filled with multi-solid carbon source composite (MCSC). Microbial community and network analysis showed that Pseudomonas furukawaii ZS1 successfully colonized the SBBR filled with IMCSCP, and Exiguobacterium, Cellulomonas and Pseudomonas were essential for the nitrogen elimination. Metagenomic analysis showed that an increase in gene abundance related to carbon metabolism, nitrogen metabolism, extracellular polymer substance synthesis and electron transfer in the IMCSCP, enabling denitrification in the SBBR to be achieved via multiple pathways. The results of this study provided new insights into the microbial removal mechanism of nitrogen in SBBR packed with IMCSCP at low temperatures.
Collapse
Affiliation(s)
- Zhuoyin Lu
- School of Civil Engineering and Transportation, State Key Laboratory of Subtropical Building and Urban Science, South China University of Technology, Guangzhou, 510641, China
| | - Xiangju Cheng
- School of Civil Engineering and Transportation, State Key Laboratory of Subtropical Building and Urban Science, South China University of Technology, Guangzhou, 510641, China.
| | - Jun Xie
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Ministry of Agriculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510380, China
| | - Zhifei Li
- School of Civil Engineering and Transportation, State Key Laboratory of Subtropical Building and Urban Science, South China University of Technology, Guangzhou, 510641, China; Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Ministry of Agriculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510380, China
| | - Xiangyang Li
- Guanghuiyuan Hydraulic Construction Engineering Co., Ltd., Shenzhen, 518020, China; Guangdong Engineering Technology Research Center of Smart and Ecological River, Guangzhou, 510640, China
| | - Xiaotian Jiang
- Guanghuiyuan Hydraulic Construction Engineering Co., Ltd., Shenzhen, 518020, China
| | - Dantong Zhu
- School of Civil Engineering and Transportation, State Key Laboratory of Subtropical Building and Urban Science, South China University of Technology, Guangzhou, 510641, China
| |
Collapse
|
6
|
Wang F, Zhang S, Hu X, Lv X, Liu M, Ma Y, Manirakiza B. Floating plants reduced methane fluxes from wetlands by creating a habitat conducive to methane oxidation. J Environ Sci (China) 2024; 135:149-160. [PMID: 37778791 DOI: 10.1016/j.jes.2023.01.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 01/13/2023] [Accepted: 01/13/2023] [Indexed: 10/03/2023]
Abstract
Wetlands are one of the important natural sources of atmospheric methane (CH4), as an important part of wetlands, floating plants can be expected to affect methane release. However, the effects of floating plants on methane release are limited. In this study, methane fluxes, physiochemical properties of the overlying water, methane oxidation potential and rhizospheric bacterial community were investigated in simulated wetlands with floating plants Eichhornia crassipes, Hydrocharis dubia, and Trapa natans. We found that E. crassipes, H. dubia, and T. natans plants could inhibit 84.31% - 97.31%, 4.98% - 88.91% and 43.62% - 92.51% of methane fluxes at interface of water-atmosphere compared to Control, respectively. Methane fluxes were negatively related to nutrients concentration in water column but positively related to the aerenchyma proportions of roots, stems, and leaves. At the same biomass, root of E. crassipes (36.44%) had the highest methane oxidation potential, followed by H. dubia (12.99%) and T. natans (11.23%). Forty-five bacterial phyla in total were identified on roots of three plants and 7 bacterial genera (2.10% - 3.33%) were known methanotrophs. Type I methanotrophs accounted for 95.07% of total methanotrophs. The pmoA gene abundances ranged from 1.90 × 1016 to 2.30 × 1018 copies/g fresh weight of root biofilms. Abundances of pmoA gene was significantly positively correlated with environmental parameters. Methylotrophy (5.40%) and methanotrophy (3.75%) function were closely related to methane oxidation. This study highlights that floating plant restoration can purify water and promote carbon neutrality partially by reducing methane fluxes through methane oxidation in wetlands.
Collapse
Affiliation(s)
- Fuwei Wang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Songhe Zhang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China.
| | - Xiuren Hu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Xin Lv
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Min Liu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China; China Machinery International Engineering Desigh and Research Institute co., Ltd. East China Regional Center, Nanjing 210008, China
| | - Yu Ma
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | | |
Collapse
|
7
|
Yang L, Luo X, Sun J, Ma X, Ren Q, Wang Y, Wang W, He Y, Li Q, Han B, Yu Y, Sun J. The Antimicrobial Potential and Aquaculture Wastewater Treatment Ability of Penaeidins 3a Transgenic Duckweed. PLANTS (BASEL, SWITZERLAND) 2023; 12:1715. [PMID: 37111939 PMCID: PMC10144588 DOI: 10.3390/plants12081715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 04/02/2023] [Accepted: 04/05/2023] [Indexed: 06/19/2023]
Abstract
With the development of aquaculture, wastewater treatment and diseases have been paid more and more attention. The question of how to improve the immunity of aquatic species, as well as treat aquaculture wastewater, has become an urgent problem. In this study, duckweed with a high protein content (37.4%) (Lemna turionifera 5511) has been employed as a feedstock for aquatic wastewater treatment and the production of antimicrobial peptides. Penaeidins 3a (Pen3a), from Litopenaeus vannamei, were expressed under the control of CaMV-35S promoter in duckweed. Bacteriostatic testing using the Pen3a duckweed extract showed its antibacterial activity against Escherichia coli and Staphylococcus aureus. Transcriptome analysis of wild type (WT) duckweed and Pen3a duckweed showed different results, and the protein metabolic process was the most up-regulated by differential expression genes (DEGs). In Pen3a transgenic duckweed, the expression of sphingolipid metabolism and phagocytosis process-related genes have been significantly up-regulated. Quantitative proteomics suggested a remarkable difference in protein enrichment in the metabolic pathway. Pen3a duckweed decreased the bacterial number, and effectively inhibited the growth of Nitrospirae. Additionally, Pen3a duckweed displayed better growth in the lake. The study showed the nutritional and antibacterial value of duckweed as an animal feed ingredient.
Collapse
Affiliation(s)
- Lin Yang
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin 300387, China
| | - Ximeng Luo
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin 300387, China
| | - Jinge Sun
- Tianjin Nankai Xiangyu School, Tianjin 300387, China
| | - Xu Ma
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin 300387, China
| | - Qiuting Ren
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin 300387, China
| | - Yaya Wang
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin 300387, China
| | - Wenqiao Wang
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin 300387, China
| | - Yuman He
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin 300387, China
| | - Qingqing Li
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin 300387, China
| | - Bing Han
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin 300387, China
| | - Yiqi Yu
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin 300387, China
| | - Jinsheng Sun
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin 300387, China
| |
Collapse
|
8
|
Cui H, Feng Y, Yin Z, Qu K, Wang L, Li J, Jin T, Bai Y, Cui Z. Organic carbon release, denitrification performance and microbial community of solid-phase denitrification reactors using the blends of agricultural wastes and artificial polymers for the treatment of mariculture wastewater. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 255:114791. [PMID: 36934547 DOI: 10.1016/j.ecoenv.2023.114791] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 03/01/2023] [Accepted: 03/14/2023] [Indexed: 06/18/2023]
Abstract
This paper explored the possibility of heterotrophic denitrification driven by composite solid carbon sources in low carbon/nitrogen ratio marine recirculating aquaculture wastewater. In this study, two agricultural wastes, reed straw (RS), corn cob (CC) and two artificial polymers, polycaprolactone (PCL), poly3-hydroxybutyrate-hydroxypropionate (PHBV) were mixed in a 1:1 ratio to compare the carbon release characteristics of the four composite carbon sources (RS+PCL, RS+PHBV, CC+PCL, and CC+PHBV) and their effects on improving the mariculture wastewater for denitrification. Dissolved organic carbon (DOC) after carbon source release (4.96-1.07 mg/g), total organic carbon/chemical oxygen demand (1.9-0.79) and short-chain fatty acids (SCFAs) (4.23-0.21 mg/g) showed that all the four composite solid carbon sources had excellent organic carbon release ability, and the CC+PCL group had the highest release of DOC and SCFAs. Energy-dispersive X-ray spectroscopy, scanning electron microscopy, and Fourier-transform infrared spectroscopy were used to observe the changes in the surface characteristics of the composite carbon source before and after application. And results showed that the stable internal structure enabled CC+PCL group to have continuous carbon release performance and achieved the maximum denitrification efficiency (93.32 %). The NRE results were supported by the abundance of the Proteobacteria microbial community at the phylum level and Marinobacter at the genus level. Quantitative real-time PCR (q-PCR) indicated CC-containing composite carbon source groups have good nitrate reduction ability, while PCL-containing composite carbon source groups have better nitrite reduction level. In conclusion, the carbon source for agricultural wastes and artificial polymers can be used as an economic and effective solid carbon source for denitrification and treatment of marine recirculating aquaculture wastewater.
Collapse
Affiliation(s)
- Hongwu Cui
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; Laoshan Laboratory, Qingdao 266237, China
| | - Yuna Feng
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; National Experimental Teaching Demonstration Center for Aquatic Science, National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China
| | - Zhendong Yin
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China
| | - Keming Qu
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; Laoshan Laboratory, Qingdao 266237, China
| | - Lu Wang
- Laoshan Laboratory, Qingdao 266237, China
| | - Jiaxin Li
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; School of Marine Science & Technology, Zhejiang Ocean University, Zhoushan 316022, China
| | - Tongtong Jin
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China
| | - Ying Bai
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; Laoshan Laboratory, Qingdao 266237, China
| | - Zhengguo Cui
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; Laoshan Laboratory, Qingdao 266237, China.
| |
Collapse
|
9
|
Feng Y, Wang L, Yin Z, Cui Z, Qu K, Wang D, Wang Z, Zhu S, Cui H. Comparative investigation on heterotrophic denitrification driven by different biodegradable polymers for nitrate removal in mariculture wastewater: Organic carbon release, denitrification performance, and microbial community. Front Microbiol 2023; 14:1141362. [PMID: 36891393 PMCID: PMC9986267 DOI: 10.3389/fmicb.2023.1141362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 01/31/2023] [Indexed: 02/22/2023] Open
Abstract
Heterotrophic denitrification is widely studied to purify freshwater wastewater, but its application to seawater wastewater is rarely reported. In this study, two types of agricultural wastes and two types of synthetic polymers were selected as solid carbon sources in denitrification process to explore their effects on the purification capacity of low-C/N marine recirculating aquaculture wastewater (NO3 --N 30 mg/L, salinity 32‰). The surface properties of reed straw (RS), corn cob (CC), polycaprolactone (PCL) and poly3-hydroxybutyrate-hydroxypropionate (PHBV) were evaluated by Brunauer-Emmett-Teller, Scanning electron microscope and Fourier-transform infrared spectroscopy. Short-chain fatty acids, dissolved organic carbon (DOC), and chemical oxygen demand (COD) equivalents were used to analyze the carbon release capacity. Results showed that agricultural waste had higher carbon release capacity than PCL and PHBV. The cumulative DOC and COD of agricultural waste were 0.56-12.65 and 1.15-18.75 mg/g, respectively, while those for synthetic polymers were 0.07-1.473 and 0.045-1.425 mg/g, respectively. The removal efficiency of nitrate nitrogen (NO3 --N) was CC 70.80%, PCL 53.64%, RS 42.51%, and PHBV 41.35%. Microbial community analysis showed that Proteobacteria and Firmicutes were the most abundant phyla in agricultural wastes and biodegradable natural or synthetic polymers. Quantitative real-time PCR indicated the conversion from nitrate to nitrogen was achieved in all four carbon source systems, and all six genes had the highest copy number in CC. The contents of medium nitrate reductase, nitrite reductase and nitrous oxide reductase genes in agricultural wastes were higher than those in synthetic polymers. In summary, CC is an ideal carbon source for denitrification technology to purify low C/N recirculating mariculture wastewater.
Collapse
Affiliation(s)
- Yuna Feng
- National Experimental Teaching Demonstration Center for Aquatic Science, National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
| | - Lu Wang
- Marine Life Research Center, Laoshan Laboratory, Qingdao, China
| | - Zhendong Yin
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
- College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, China
| | - Zhengguo Cui
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
- Marine Life Research Center, Laoshan Laboratory, Qingdao, China
| | - Keming Qu
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
- Marine Life Research Center, Laoshan Laboratory, Qingdao, China
| | - Dawei Wang
- National Experimental Teaching Demonstration Center for Aquatic Science, National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
| | - Zhanying Wang
- National Experimental Teaching Demonstration Center for Aquatic Science, National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
| | - Shengmin Zhu
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
- College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, China
| | - Hongwu Cui
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
- Marine Life Research Center, Laoshan Laboratory, Qingdao, China
| |
Collapse
|
10
|
Das P, Paul K. A review on integrated vermifiltration as a sustainable treatment method for wastewater. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 328:116974. [PMID: 36516714 DOI: 10.1016/j.jenvman.2022.116974] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 12/03/2022] [Accepted: 12/03/2022] [Indexed: 06/17/2023]
Abstract
To overcome the scarcity of fresh water, concerned authorities worldwide are bound to think about remediation and reuse of domestic and industrial effluents. The present review study on integrated vermifiltrationwith hydroponic system explains mechanism followed in system and presently the reutilization and remediation of domestic and industrial effluents. It explains the result of integrated vermifiltration and recognizes factors such as clogging, hydraulic loading rate or rain on bed, salinity, and sunlight affect the efficiency of system. The study also focuses on limitations associated with vermifiltration and also suggestions have been made for enhancing the sustainability and performance of existing practices. After literature review, integrated vermifiltration with hydroponic system considered as a natural and eco-friendly method for treating polluted water. Active zone of vermifilter remove organics, nitrate from nitrogen, total and dissolved phosphorus from wastewater. The vermifiltration and integrated vermifiltration with macrophyte able remove chemical oxygen demand (COD) in the range (53.7%-64.4%) and (75.5%-82.8%) respectively. The integrated system reduces land consumption and wastewater can be reutilized in cultivation.
Collapse
Affiliation(s)
- Pragyan Das
- Department of Civil Engineering, National Institute of Technology, Rourkela, 769008, India.
| | - KakoliKarar Paul
- Department of Civil Engineering, National Institute of Technology, Rourkela, 769008, India.
| |
Collapse
|
11
|
Tong H, Duan Z, Yang X, Li E, Liu Y, Zhou H, Zhang X, Yang X, Xu W. Characteristics of sludge-based pyrolysis biochar and its application of enhancing denitrification. CHEMOSPHERE 2022; 309:136813. [PMID: 36216110 DOI: 10.1016/j.chemosphere.2022.136813] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 09/20/2022] [Accepted: 10/06/2022] [Indexed: 06/16/2023]
Abstract
A modified biochar for enhanced denitrification was developed through a facile pyrolysis method using sewage sludge as raw material and melamine as nitrogen source. Through electrochemical analysis, sludge-based pyrolysis biochar (SPBC) has superior electrical conductivity and poor redox activity. SPBC can increase the electron transfer through the geoconductor mechanism. The effect and the mechanism of SPBC on denitrification were studied. The nitrate treatment efficiency increased with the increase of SPBC dosage. From the perspective of molecular biology, the activities of NAR and NIR enzymes, the degradation efficiency of glucose and the ETSA of bacteria were all promoted with the increase of SPBC, thereby promoting the removal of NO3-. In addition, SPBC had a certain screening effect on microbial communities, and biodiversity decreased with the increase of SPBC dosage. Although the biodiversity decreased, the relative abundance of microorganisms conducive to denitrification increased with the increase of SPBC dosage. The transformation strategy of SPBC proposed in this paper provides a technical solution for sludge recycling and application for strengthening denitrification.
Collapse
Affiliation(s)
- Huiyan Tong
- School of Ocean Science and Technology, Dalian University of Technology, NO.2 Dagong Road, New District of Liaodong Bay, Panjin City, Liaoning Province, 124221, China.
| | - Zhenghang Duan
- School of Ocean Science and Technology, Dalian University of Technology, NO.2 Dagong Road, New District of Liaodong Bay, Panjin City, Liaoning Province, 124221, China
| | - Xin Yang
- School of Ocean Science and Technology, Dalian University of Technology, NO.2 Dagong Road, New District of Liaodong Bay, Panjin City, Liaoning Province, 124221, China
| | - E Li
- School of Ocean Science and Technology, Dalian University of Technology, NO.2 Dagong Road, New District of Liaodong Bay, Panjin City, Liaoning Province, 124221, China
| | - Yiding Liu
- School of Ocean Science and Technology, Dalian University of Technology, NO.2 Dagong Road, New District of Liaodong Bay, Panjin City, Liaoning Province, 124221, China
| | - Hao Zhou
- School of Ocean Science and Technology, Dalian University of Technology, NO.2 Dagong Road, New District of Liaodong Bay, Panjin City, Liaoning Province, 124221, China
| | - Xuwang Zhang
- School of Ocean Science and Technology, Dalian University of Technology, NO.2 Dagong Road, New District of Liaodong Bay, Panjin City, Liaoning Province, 124221, China
| | - Xiaojing Yang
- School of Ocean Science and Technology, Dalian University of Technology, NO.2 Dagong Road, New District of Liaodong Bay, Panjin City, Liaoning Province, 124221, China
| | - Weiping Xu
- School of Ocean Science and Technology, Dalian University of Technology, NO.2 Dagong Road, New District of Liaodong Bay, Panjin City, Liaoning Province, 124221, China
| |
Collapse
|