1
|
Valente IDL, Wancura JHC, Zabot GL, Mazutti MA. Endophytic and Rhizospheric Microorganisms: An Alternative for Sustainable, Organic, and Regenerative Bioinput Formulations for Modern Agriculture. Microorganisms 2025; 13:813. [PMID: 40284649 PMCID: PMC12029156 DOI: 10.3390/microorganisms13040813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2025] [Revised: 03/25/2025] [Accepted: 03/28/2025] [Indexed: 04/29/2025] Open
Abstract
Large amounts of chemical fertilizers are still used to suppress pathogens and boost agricultural productivity and food generation. However, their use can cause harmful environmental imbalance. Furthermore, plants typically absorb limited amounts of the nutrients provided by chemical fertilizers. Recent studies are recommending the use of microbiota present in the soil in different formulations, considering that several microorganisms are found in nature in association with plants in a symbiotic, antagonistic, or synergistic way. This ecological alternative is positive because no undesirable significant alterations occur in the environment while stimulating plant nutrition development and protection against damage caused by control pathogens. Therefore, this review presents a comprehensive discussion regarding endophytic and rhizospheric microorganisms and their interaction with plants, including signaling and bio-control processes concerning the plant's defense against pathogenic spread. A discussion is provided about the importance of these bioinputs as a microbial resource that promotes plant development and their sustainable protection methods aiming to increase resilience in the agricultural system. In modern agriculture, the manipulation of bioinputs through Rhizobium contributes to reducing the effects of greenhouse gases by managing nitrogen runoff and decreasing nitrous oxide. Additionally, mycorrhizal fungi extend their root systems, providing plants with greater access to water and nutrients.
Collapse
Affiliation(s)
- Isabela de L. Valente
- Department of Chemical Engineering, Federal University of Santa Maria (UFSM), 1000 Roraima Av., Camobi, Santa Maria 97105-340, RS, Brazil; (I.d.L.V.); (M.A.M.)
| | - João H. C. Wancura
- Laboratory of Biomass and Biofuels (L2B), Federal University of Santa Maria (UFSM), 1000 Roraima Av., Camobi, Santa Maria 97105-340, RS, Brazil;
| | - Giovani L. Zabot
- Laboratory of Agroindustrial Process Engineering (LAPE), Federal University of Santa Maria (UFSM), 3013 Taufik Germano Rd, Universitário II, Cachoeira do Sul 96503-205, RS, Brazil
| | - Marcio A. Mazutti
- Department of Chemical Engineering, Federal University of Santa Maria (UFSM), 1000 Roraima Av., Camobi, Santa Maria 97105-340, RS, Brazil; (I.d.L.V.); (M.A.M.)
| |
Collapse
|
2
|
Beechey‐Gradwell Z, Mackay A, Condron L, Bowatte S, Agrelo FDL, Brock S, Thompson D, Theobald P, Lieffering M, Shi S, Villamizar L, Newton P. Loss of P Fertilizer Effectiveness in Raising Soil P Availability in a Grazed Grassland Enriched With CO 2 for 24 Years. GLOBAL CHANGE BIOLOGY 2025; 31:e70150. [PMID: 40186453 PMCID: PMC11971680 DOI: 10.1111/gcb.70150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2025] [Revised: 03/04/2025] [Accepted: 03/05/2025] [Indexed: 04/07/2025]
Abstract
Phosphorus (P) is a finite resource and an essential macronutrient for plant growth. The importance of low soil P availability in constraining plant biomass responses to elevated CO2 (eCO2) is increasingly recognized. P fertilization could alleviate these constraints, but biogeochemical feedbacks under eCO2 may diminish the effectiveness of P fertilizer in raising soil P availability. Here, we present data from a botanically diverse grazed pasture enriched with CO2 (+84-111 ppm) and supplied with P fertilizer (1.5 g P m-2 year-1) for approximately 24 years, showing (1) a sustained 27% reduction in topsoil Olsen P under eCO2 prior to annual fertilizer application, and (2) an approximate halving of the short-term (approximately 4 months) effectiveness of P fertilizer in raising Olsen P by 1 unit under eCO2. Similar results occurred with the Bray-1 soil P test. These effects soon disappeared after CO2 enrichment stopped. Accumulation of moderately labile organic P in the eCO2 topsoil shortly after fertilization indicated rapid biological immobilization of newly applied P occurring under eCO2. Alternative P loss mechanisms under eCO2, including inorganic P depletion due to increased pasture growth, increased P offtake versus return through the plant→animal→dung pathway, or P movement down the soil profile, were not supported by the available evidence. Despite this, pasture P concentration and uptake were similar under eCO2 and ambient CO2, and the biomass of the P-sensitive legume Trifolium repens was often greater under eCO2. Thus, either the fertilizer regime was sufficient to maintain a non-limiting pasture P status, or integrated plant-soil biological adjustments under eCO2 compensated for reduced P availability. If compensatory mechanisms play a greater role in supporting crop P nutrition under eCO2 but are neglected by routine soil P availability tests focused on inorganic P, overapplication of P fertilizers will occur as CO2 levels continue to rise.
Collapse
Affiliation(s)
| | - Alec Mackay
- AgResearch LtdClimate Change and Forage InnovationsPalmerston NorthNew Zealand
| | - Leo Condron
- Agriculture and Life SciencesLincoln UniversityChristchurchNew Zealand
| | - Saman Bowatte
- AgResearch LtdClimate Change and Forage InnovationsPalmerston NorthNew Zealand
| | | | - Shona Brock
- AgResearch LtdClimate Change and Forage InnovationsPalmerston NorthNew Zealand
| | - Danica Thompson
- AgResearch LtdClimate Change and Forage InnovationsPalmerston NorthNew Zealand
| | - Phil Theobald
- AgResearch LtdClimate Change and Forage InnovationsPalmerston NorthNew Zealand
| | - Mark Lieffering
- AgResearch LtdClimate Change and Forage InnovationsPalmerston NorthNew Zealand
| | - Shengjing Shi
- AgResearch LtdClimate Change and Forage InnovationsPalmerston NorthNew Zealand
| | - Laura Villamizar
- AgResearch LtdClimate Change and Forage InnovationsPalmerston NorthNew Zealand
| | - Paul Newton
- AgResearch LtdClimate Change and Forage InnovationsPalmerston NorthNew Zealand
| |
Collapse
|
3
|
Zhang W, Zhao L, Zhang T, Shi M, Lu D, Wang S, Zhang J, Jiang W, Wei M. 3,4-dimethylpyrazole phosphate (DMPP) may negate the expected stimulation of elevated atmospheric CO 2 and warming on fertilizer-N loss. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2025; 352:112386. [PMID: 39793710 DOI: 10.1016/j.plantsci.2025.112386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 12/27/2024] [Accepted: 01/06/2025] [Indexed: 01/13/2025]
Abstract
People have accepted the clear fact that elevated CO2 (eCO2) and climate warming are happening, but sustainable agricultural systems are still struggling to adapt. 3,4-dimethyl-1H-pyrazol phosphate (DMPP) is currently recognized as a highly effective strategy for reducing nitrogen (N) loss and related environmental impacts. There is still uncertainty, however, whether DMPP could contribute to building climate-resilient ecosystems in a future climate scenario with co-elevated CO2 and temperature. Thus, this study evaluated the responses of plant N derived from soil or fertilizer and strawberry growth to the tested climate conditions. Plants were supplied with or without DMPP, grown in controlled climate chambers under ambient CO2 and temperature (aCT; 400 ppm + 25℃), and co-elevated CO2 and temperature (eCT; 800 ppm + 27℃). The results showed that DMPP increased plant N accumulation by 9 % and 19 % under aCT and eCT conditions, respectively, compared to N treatment without DMPP. We also found a similar trend in total C content in the plants. Compared with aCT, DMPP demonstrated higher efficiency in improving N use efficiency (NUE, 51 % vs. 36 %) and reducing N loss (21 % vs. 29 %) under eCT, which could ensure higher N demand of plant, making fertilizer-N, rather than soil-N, a primary contributor to the N accumulation increment. Moreover, in terms of combating climate challenge, the combination with DMPP further strengthened the beneficial influence of eCT on the N accumulation and biomass in strawberry but reduced fertilizer-N loss. In summary, DMPP exhibits better performance under eCT, which may alleviate the potential adverse effects of co-elevated CO2 and temperature on ecosystem by reducing fertilizer-N loss and soil-N mineralization more efficiently, providing a promising approach to optimizing sustainable agricultural management under future climate change.
Collapse
Affiliation(s)
- Wenjie Zhang
- Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District, Xuzhou 221131, China.
| | - Lin Zhao
- Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District, Xuzhou 221131, China.
| | - Ting Zhang
- Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District, Xuzhou 221131, China.
| | - Mengyun Shi
- Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District, Xuzhou 221131, China.
| | - Dianjun Lu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 21008, China.
| | - Shuai Wang
- Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District, Xuzhou 221131, China.
| | - Jia Zhang
- Tongshan Test Station, Xuzhou Institute of Agricultural Sciences of the Xuhuai District of Jiangsu Province, Xuzhou 221121, China.
| | - Wei Jiang
- Tongshan Test Station, Xuzhou Institute of Agricultural Sciences of the Xuhuai District of Jiangsu Province, Xuzhou 221121, China.
| | - Meng Wei
- Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District, Xuzhou 221131, China.
| |
Collapse
|
4
|
Zhou N, Han X, Hu N, Han S, Yuan M, Li Z, Wang S, Li Y, Li H, Rengel Z, Jiang Y, Lou Y. The crop mined phosphorus nutrition via modifying root traits and rhizosphere micro-food web to meet the increased growth demand under elevated CO 2. IMETA 2024; 3:e245. [PMID: 39742301 PMCID: PMC11683460 DOI: 10.1002/imt2.245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 09/28/2024] [Accepted: 10/01/2024] [Indexed: 01/03/2025]
Abstract
Elevated CO2 (eCO2) stimulates productivity and nutrient demand of crops. Thus, comprehensively understanding the crop phosphorus (P) acquisition strategy is critical for sustaining agriculture to combat climate changes. Here, wheat (Triticum aestivum L) was planted in field in the eCO2 (550 µmol mol-1) and ambient CO2 (aCO2, 415 µmol mol-1) environments. We assessed the soil P fractions, root morphological and physiological traits and multitrophic microbiota [including arbuscular mycorrhizal fungi (AMF), alkaline phosphomonoesterase (ALP)-producing bacteria, protozoa, and bacterivorous and fungivorous nematodes] in the rhizosphere and their trophic interactions at jointing stage of wheat. Compared with aCO2, significant 20.2% higher shoot biomass and 26.8% total P accumulation of wheat occurred under eCO2. The eCO2 promoted wheat root length and AMF hyphal biomass, and increased the concentration of organic acid anions and the ALP activity, which was accompanied by significant decreases in calcium-bound inorganic P (Ca-Pi) (by 16.7%) and moderately labile organic P (by 26.5%) and an increase in available P (by 14.4%) in the rhizosphere soil. The eCO2 also increased the growth of ALP-producing bacteria, protozoa, and bacterivorous and fungivorous nematodes in the rhizosphere, governed their diversity and community composition. In addition, the eCO2 strengthened the trophic interactions of microbiota in rhizosphere; specifically, the eCO2 promoted the associations between protozoa and ALP-producing bacteria, between protozoa and AMF, whereas decreased the associations between ALP-producing bacteria and nematodes. Our findings highlighted the important role of root traits and multitrophic interactions among microbiota in modulating crop P-acquisition strategies, which could advance our understanding about optimal P management in agriculture systems under global climate changes.
Collapse
Affiliation(s)
- Na Zhou
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural SciencesBeijingChina
| | - Xue Han
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural SciencesBeijingChina
| | - Ning Hu
- School of Food and Biological EngineeringHezhou UniversityHezhouChina
| | - Shuo Han
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural SciencesBeijingChina
| | - Meng Yuan
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural SciencesBeijingChina
| | - Zhongfang Li
- School of Food and Biological EngineeringHezhou UniversityHezhouChina
| | - Sujuan Wang
- School of Food and Biological EngineeringHezhou UniversityHezhouChina
| | - Yingchun Li
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural SciencesBeijingChina
| | - Hongbo Li
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural SciencesBeijingChina
| | - Zed Rengel
- Soil Science & Plant Nutrition, UWA School of Agriculture and EnvironmentThe University of Western AustraliaPerthAustralia
| | - Yuji Jiang
- College of Resources and EnvironmentFujian Agriculture and Forestry UniversityFuzhouChina
| | - Yilai Lou
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural SciencesBeijingChina
| |
Collapse
|
5
|
Song B, Li Y, Yu Z, Jin J, Liu Z, Yang R, Adams JM, Razavi BS. Changes in enzyme activity, structure and growth strategies of the rhizosphere microbiome influenced by elevated temperature and CO 2. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176522. [PMID: 39326750 DOI: 10.1016/j.scitotenv.2024.176522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 09/22/2024] [Accepted: 09/23/2024] [Indexed: 09/28/2024]
Abstract
The impacts of global warming and increased CO2 levels on soil processes and crop growth are concerning. Soil enzymes in the rhizosphere, produced mainly by microbes, play a vital role in nutrients mobilization for plants. Nevertheless, a comprehensive understanding of how microbial communities in the rhizosphere respond to increased temperatures and CO2 levels, particularly in relation to nutrient acquisition, is still lacking. Addressing this problem, we grew soybeans under elevated temperature (ET, +2 °C) and CO2 levels (eCO2, +300 ppm), both individually and in combination (eCO2 + eT), in rhizobox mesocosms. Enzyme activity and microbial communities in soybean rhizospheres were investigated using soil zymography. eCO2 increased enzyme activity by 2.5 % to 8.7 %, while eT expanded the hotspot area from 1.8 % to 3.3 %. The combined factors amplified both the hotspot area by 5.3 % to 10.1 % and enzyme activity by 35.4 % to 67.3 %. Compared to ambient conditions, rhizosphere communities under eCO2 were predominantly comprised of r-strategist keystone taxa, including Acidobacteria, Proteobacteria, and Ascomycota. On the contrary, eT induced a shift in the microbial community towards K-selected taxa, characterized by an increased relative abundance of Basidiomycota and Actinobacteria. Furthermore, the combination of eCO2 and eT led to an increase in the relative abundance of key bacterial species (Acidobacteria, Proteobacteria, and Actinobacteria) as well as fungi (Ascomycota and Basidiomycota). These findings indicate the potential significance of enzyme hotspots in modulating responses to climate change. Changes in enzyme activity and hotspot area could indicate the alteration in microbial growth strategies. The treatments exhibited distinct changes in the composition of microbial communities, in network organization, and in the proportion of species designated as r or K-strategists. Overall, these findings highlight the combined effects of global change factors on bacterial and fungal communities, providing insights into their growth strategies and nutrient mobilization under climate change scenarios.
Collapse
Affiliation(s)
- Bin Song
- School of Geography and Ocean Science, Nanjing University, Nanjing 210008, China; State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, 138 Haping Road, Harbin 150081, China; College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang 110866, China
| | - Yansheng Li
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, 138 Haping Road, Harbin 150081, China
| | - Zhenhua Yu
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, 138 Haping Road, Harbin 150081, China.
| | - Jian Jin
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, 138 Haping Road, Harbin 150081, China; Centre for AgriBioscience, La Trobe University, Bundoora, Vic, 3086, Australia
| | - Zihao Liu
- School of Geography and Ocean Science, Nanjing University, Nanjing 210008, China
| | - Ruizhe Yang
- School of Geography and Ocean Science, Nanjing University, Nanjing 210008, China
| | - Jonathan M Adams
- School of Geography and Ocean Science, Nanjing University, Nanjing 210008, China.
| | - Bahar S Razavi
- Department of Soil and Plant Microbiome, Institute of Phytopathology, Christian-Albrechts-University of Kiel, 24118 Kiel, Germany
| |
Collapse
|
6
|
Yang Z, Meng L, Liu Z, Chen J, Wang J, Cui H, Naz B, Wang Y, Xu Y, Song H, An L, Xiao S, Chen S. Warming enhances the negative effects of shrub removal on phosphorus mineralization potential. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 924:171517. [PMID: 38461985 DOI: 10.1016/j.scitotenv.2024.171517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 03/03/2024] [Accepted: 03/04/2024] [Indexed: 03/12/2024]
Abstract
Shrubs have developed various mechanisms for soil phosphorus utilization. Shrub encroachment caused by climate warming alters organic phosphorus mineralization capability by promoting available phosphorus absorption and mediating root exudates. However, few studies have explored how warming regulates the effects of dominant shrubs on soil organic phosphorus mineralization capability. We provide insights into warming, dominant shrub removal, and their interactive effects on the soil organic phosphorus mineralization potential in the Qinghai-Tibetan Plateau. Real-time polymerase chain reaction was used to quantify the soil microbial phosphatase genes (phoC and phoD), which can characterize the soil organic phosphate mineralization potential. We found that warming had no significant effect on the soil organic phosphate-mineralized components (total phosphate, organic phosphate, and available phosphate), genes (phoC and phoD), or enzymes (acid and alkaline phosphatases). Shrub removal negatively influenced the organic phosphate-mineralized components and genes. It significantly decreased soil organic phosphate mineralization gene copy numbers only under warming conditions. Warming increased fungal richness and buffered the effects of shrub removal on bacterial richness and gene copy numbers. However, the change in the microbial community was not the main factor affecting organic phosphate mineralization. We found only phoC copy number had significant correlation to AP. Structural equation modelling revealed that shrub removal and the interaction between warming and shrub removal had a negative direct effect on phoC copy numbers. We concluded that warming increases the negative effect of shrub removal on phosphorus mineralization potential, providing a theoretical basis for shrub encroachment on soil phosphate mineralization under warming conditions.
Collapse
Affiliation(s)
- Zi Yang
- Key Laboratory of Cell Activities and Stress Adaptations Ministry of Education, School of Life Sciences, Lanzhou University, Tianshui Road 222, Lanzhou, Gansu, People's Republic of China
| | - Lihua Meng
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Tianshui Road 222, Lanzhou, Gansu, People's Republic of China
| | - Ziyang Liu
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Tianshui Road 222, Lanzhou, Gansu, People's Republic of China
| | - Jingwei Chen
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Tianshui Road 222, Lanzhou, Gansu, People's Republic of China
| | - Jiajia Wang
- Key Laboratory of Cell Activities and Stress Adaptations Ministry of Education, School of Life Sciences, Lanzhou University, Tianshui Road 222, Lanzhou, Gansu, People's Republic of China
| | - Hanwen Cui
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Tianshui Road 222, Lanzhou, Gansu, People's Republic of China
| | - Beenish Naz
- Key Laboratory of Cell Activities and Stress Adaptations Ministry of Education, School of Life Sciences, Lanzhou University, Tianshui Road 222, Lanzhou, Gansu, People's Republic of China
| | - Yajun Wang
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Tianshui Road 222, Lanzhou, Gansu, People's Republic of China
| | - Yifeng Xu
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Tianshui Road 222, Lanzhou, Gansu, People's Republic of China
| | - Hongxian Song
- Key Laboratory of Cell Activities and Stress Adaptations Ministry of Education, School of Life Sciences, Lanzhou University, Tianshui Road 222, Lanzhou, Gansu, People's Republic of China
| | - Lizhe An
- Key Laboratory of Cell Activities and Stress Adaptations Ministry of Education, School of Life Sciences, Lanzhou University, Tianshui Road 222, Lanzhou, Gansu, People's Republic of China
| | - Sa Xiao
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Tianshui Road 222, Lanzhou, Gansu, People's Republic of China
| | - Shuyan Chen
- Key Laboratory of Cell Activities and Stress Adaptations Ministry of Education, School of Life Sciences, Lanzhou University, Tianshui Road 222, Lanzhou, Gansu, People's Republic of China.
| |
Collapse
|
7
|
Zhang T, Wang J, Zhou S, Chen Y, Li D. Spatio-temporal dynamic diversity of bacterial alkaline phosphatase phoD gene and its environmental drivers in sediments during algal blooms: A case study of shallow Lake Taihu. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 336:117595. [PMID: 36871452 DOI: 10.1016/j.jenvman.2023.117595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 02/13/2023] [Accepted: 02/24/2023] [Indexed: 06/18/2023]
Abstract
Bacterial alkaline phosphatase encoded by the phoD gene is essential for phosphorus (P) cycling in ecosystems. Until now, knowledge of the phoD gene diversity in shallow lake sediments is still lacking. In this study, from early to late stage of cyanobacterial blooms, we investigated the dynamic changes of the abundance of phoD gene (hereafter phoD abundance) and phoD-harboring bacterial community composition (hereafter phoD-harboring BCC) in sediments from different ecological regions of Lake Taihu, the third-largest shallow freshwater lake in China, as well as explored their environmental driving factors. Results showed that phoD abundance in the sediments of Lake Taihu showed spatiotemporal heterogeneity. The highest abundance was found in macrophyte-dominated area (mean 3.25*106copies/g DW), where Haliangium and Aeromicrobium were identified as the major contributors. Due to the negative impact of Microcystis species, phoD abundance decreased significantly (by 40.28% on average) during cyanobacterial blooms in all other regions except the estuary area. The phoD abundance in sediment was positively correlated with total organic carbon (TOC) and total nitrogen (TN). However, the relationship between phoD abundance and alkaline phosphatase activity (APA) varied with time, showing positive correlation (R2 = 0.763, P < 0.01) in the early stage of cyanobacterial blooms, but not (R2 = -0.052, P = 0.838) in the later stage. The predominant phoD-harboring genera in sediments were Kribbella, Streptomyces and Lentzea, all of which belong to Actinobacteria. Non-metric multidimensional scaling (NMDS) analysis revealed that the spatial heterogeneity of phoD-harboring BCC in the sediments of Lake Taihu was significantly higher than the temporal heterogeneity. TP and sand were the principle environmental factors affecting the phoD-harboring BCC in the sediments of the estuary area, while DO, pH, organic phosphorus (Po) and diester phosphorus were the key driving factors for other lake regions. We concluded that the C, N, and P cycles in sediments might work in concert. This study extends the understanding of the phoD gene diversity in shallow lake sediments.
Collapse
Affiliation(s)
- Tingxi Zhang
- School of Environment, Jiangsu Province Engineering Research Center of Environmental Risk Prevention and Emergency Response Technology, Nanjing Normal University, Nanjing, 210023, China; Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, School of Geography Science, Nanjing Normal University, Nanjing, 210023, China.
| | - Jiaying Wang
- School of Environment, Jiangsu Province Engineering Research Center of Environmental Risk Prevention and Emergency Response Technology, Nanjing Normal University, Nanjing, 210023, China.
| | - Siqi Zhou
- School of Remote Sensing and Geomatics Engineering, Nanjing University of Information Science and Technology, Nanjing, 210044, China.
| | - Youling Chen
- School of Environment, Jiangsu Province Engineering Research Center of Environmental Risk Prevention and Emergency Response Technology, Nanjing Normal University, Nanjing, 210023, China.
| | - Defang Li
- School of Environment, Jiangsu Province Engineering Research Center of Environmental Risk Prevention and Emergency Response Technology, Nanjing Normal University, Nanjing, 210023, China.
| |
Collapse
|
8
|
Liu Z, Yu Z, Song B, Li Y, Fang J, Guo Y, Jin J, Adams JM. Elevated CO 2 and temperature increase arbuscular mycorrhizal fungal diversity, but decrease root colonization, in maize and wheat. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 873:162321. [PMID: 36801413 DOI: 10.1016/j.scitotenv.2023.162321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 02/14/2023] [Accepted: 02/14/2023] [Indexed: 06/18/2023]
Abstract
Anthropogenic climate change threatens ecosystem multifunctionality. Arbuscular mycorrhizal (AM) fungi are important symbionts that participate in mediating many ecosystem processes, and thus being potentially essential link in the chain of responses to climate change. Yet, how climate change affect the abundance and community structure of AM fungi associated with different crops remains elusive. Here, we investigated the changes in rhizosphere AM fungal communities and growth performance of maize and wheat grown in Mollisols under experimentally elevated CO2 (eCO2, +300 ppm), temperature (eT, +2 °C) and both in-combination (eCT) with open-top chambers, representing a scenario likely to occur by this century's end. The results showed that eCT significantly shifted AM fungal communities in both rhizospheres compared with control, but with no remarkable variation of the overall communities in maize rhizosphere, suggesting their greater resistance to climate change. Both eCO2 and eT increased rhizosphere AM fungal diversity, and conversely they reduced mycorrhizal colonization of both crops, probably since AM fungi had distinct adaptive strategies to climate change in rhizospheres (i.e., r-strategy) and roots (K-strategy), while the colonization intensity positively correlated with a decreased phosphorus (P)-uptake in two crops. Furthermore, co-occurrence network analysis showed that eCO2 strongly decreased the modularity and betweenness centrality of network structure than that of eT and eCT in both rhizospheres, along with the reduced network robustness, implied their destabilized communities under eCO2, while root stoichiometry (C:N and C:P ratio) was the most important factor associating with taxa in networks regardless of climate change. Overall, those findings suggest that rhizosphere AM fungal communities in wheat appear to be more sensitive to climate change than that in maize, further highlighting the importance of effective monitoring and managing AM fungi, which may allow crops to maintain critical levels of mineral nutrients (at least P) under future global change.
Collapse
Affiliation(s)
- Zihao Liu
- School of Geography and Oceanography, Nanjing University, Nanjing 210008, China
| | - Zhenhua Yu
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, 138 Haping Road, Harbin 150081, China.
| | - Bin Song
- School of Geography and Oceanography, Nanjing University, Nanjing 210008, China
| | - Yansheng Li
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, 138 Haping Road, Harbin 150081, China
| | - Jie Fang
- School of Geography and Oceanography, Nanjing University, Nanjing 210008, China
| | - Yaping Guo
- School of Geography and Oceanography, Nanjing University, Nanjing 210008, China
| | - Jian Jin
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, 138 Haping Road, Harbin 150081, China
| | - Jonathan M Adams
- School of Geography and Oceanography, Nanjing University, Nanjing 210008, China.
| |
Collapse
|
9
|
Zhang C, Li Y, Yu Z, Wang G, Liu X, Liu J, Liu J, Zhang X, Yin K, Jin J. Co-elevation of atmospheric [CO 2] and temperature alters photosynthetic capacity and instantaneous water use efficiency in rice cultivars in a cold-temperate region. FRONTIERS IN PLANT SCIENCE 2022; 13:1037720. [PMID: 36507439 PMCID: PMC9727307 DOI: 10.3389/fpls.2022.1037720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 11/08/2022] [Indexed: 06/17/2023]
Abstract
Crop photosynthetic capacity in response to climate change likely constrains crop productivity and adaptability to changing environments, which requests the investigation on the dynamics of photosynthetic parameters over growth season among varieties, especially in cold-temperate regions. Three Japonica rice cultivars i.e., Shoubaimao (SH), Hejiang 19 (HJ); Longjing 31, (LJ). were planted under the control, e[CO2] (700 μmol mol-1), warming (2°C above the air temperature) and the co-elevation of [CO2] and temperature in open-top chambers (OTC). The objective of this study is to examine the rice photosynthetic parameters, water use efficiency (WUE) and yield formation in responses to the co-elevation of [CO2] and temperature which is the main predicted features of future climate. e[CO2] significantly increased An of SH, HJ and LJ by 37%, 39% and 23% in comparison to 34%, 34% and 27% under elevated [CO2] plus warming, respectively. However, An had a weak response to warming for three cultivars. [CO2] and temperature co-elevation significantly decreased the stomatal conductance, resulting in a significant increase of the WUE. e[CO2] significantly increased Vc, max , Jmax and Jmax /Vc, max . e[CO2] significantly increased grain yield and grain number of all cultivars. The positive effect of co-elevation of [CO2] and temperature on grain yield was less than e[CO2]. Warming is likely to partially offset the increased photosynthetic rate caused by e[CO2]. The [CO2] and temperature co-elevation may be favorable to rice crop with increasing the photosynthetic ability of rice crop and improving water use efficiency. The present study provided evidence that the rice genotypic difference in photosynthetic potential under [CO2] and temperature co-elevation. Therefore, it is crucial to explore a broader range of phenotypes and cultivars to be applied to climate change response research, advancing the knowledge that climate change impacts rice crop under the cold-temperate climate region.
Collapse
Affiliation(s)
- Chunyu Zhang
- College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing, China
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, China
| | - Yansheng Li
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, China
| | - Zhenhua Yu
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, China
| | - Guanghua Wang
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, China
| | - Xiaobing Liu
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, China
| | - Junjie Liu
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, China
| | - Judong Liu
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, China
| | - Xingmei Zhang
- College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Kuide Yin
- College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Jian Jin
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, China
- Centre for AgriBioscience, La Trobe University, Bundoora, VIC, Australia
| |
Collapse
|
10
|
Sun C, Bei K, Liu Y, Pan Z. Humic Acid Improves Greenhouse Tomato Quality and Bacterial Richness in Rhizosphere Soil. ACS OMEGA 2022; 7:29823-29831. [PMID: 36061675 PMCID: PMC9434616 DOI: 10.1021/acsomega.2c02663] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 07/22/2022] [Indexed: 05/14/2023]
Abstract
Humic acid (HA) has attracted increasing attention as a new type of organic fertilizer in horticultural production, such as greenhouse-planted cherry tomato. However, we need more information to evaluate the effects of HA on soil rhizosphere bacteria and tomato performance under greenhouse conditions. In this study, greenhouse-planted cherry tomato was observed with HA added at dosages of 1500, 3000, 4500, and 6000 kg·ha-1, respectively. The other two organic fertilizers [farmyard manure (FM) and commercial organic fertilizer (COF)], were used as comparison with a dosage of 3000 kg·ha-1. Illumina MiSeq sequencing was conducted for bacterial diversity analysis, and tomato quality analysis based on total soluble solids, titratable acid, and sugar-acid ratio was performed for different fertilizer treatments. The results revealed that HA application resulted in the best flavor, compared to CK without the organic fertilizer used and with the other two organic fertilizers. The Chaol estimator and Shannon index showed that fertilizer addition decreased microbial diversity but increased species richness. At a dosage of 3000 kg·ha-1, the effects of different fertilizers were ranked as HA > FM > COF. Our findings offered suggestions to reasonably optimize cherry tomato organic fertilizer application.
Collapse
Affiliation(s)
- Caixia Sun
- College
of Environment, Zhejiang University of Technology, Hangzhou 310032, China
- Institute
of Quality and Nutrition for Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
- State
Key Laboratory for Quality and Safety of Agro-Products, Key Lab for Pesticide Residue Detection of Ministry
of Agriculture and Rural Affairs, Hangzhou 310021, China
| | - Ke Bei
- College
of Life and Environmental Science, Wenzhou
University, Wenzhou 325035, China
| | - Yuhong Liu
- Institute
of Quality and Nutrition for Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Zhiyan Pan
- College
of Environment, Zhejiang University of Technology, Hangzhou 310032, China
| |
Collapse
|