1
|
Huang DD, Hu Q, He X, Huang RJ, Ding X, Ma Y, Feng X, Jing S, Li Y, Lu J, Gao Y, Chang Y, Shi X, Qian C, Yan C, Lou S, Wang H, Huang C. Obscured Contribution of Oxygenated Intermediate-Volatility Organic Compounds to Secondary Organic Aerosol Formation from Gasoline Vehicle Emissions. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:10652-10663. [PMID: 38829825 DOI: 10.1021/acs.est.3c08536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
Secondary organic aerosol (SOA) formation from gasoline vehicles spanning a wide range of emission types was investigated using an oxidation flow reactor (OFR) by conducting chassis dynamometer tests. Aided by advanced mass spectrometric techniques, SOA precursors, including volatile organic compounds (VOCs) and intermediate/semivolatile organic compounds (I/SVOCs), were comprehensively characterized. The reconstructed SOA produced from the speciated VOCs and I/SVOCs can explain 69% of the SOA measured downstream of an OFR upon 0.5-3 days' OH exposure. While VOCs can only explain 10% of total SOA production, the contribution from I/SVOCs is 59%, with oxygenated I/SVOCs (O-I/SVOCs) taking up 20% of that contribution. O-I/SVOCs (e.g., benzylic or aliphatic aldehydes and ketones), as an obscured source, account for 16% of total nonmethane organic gas (NMOG) emission. More importantly, with the improvement in emission standards, the NMOG is effectively mitigated by 35% from China 4 to China 6, which is predominantly attributed to the decrease of VOCs. Real-time measurements of different NMOG components as well as SOA production further reveal that the current emission control measures, such as advances in engine and three-way catalytic converter (TWC) techniques, are effective in reducing the "light" SOA precursors (i.e., single-ring aromatics) but not for the I/SVOC emissions. Our results also highlight greater effects of O-I/SVOCs to SOA formation than previously observed and the urgent need for further investigation into their origins, i.e., incomplete combustion, lubricating oil, etc., which requires improvements in real-time molecular-level characterization of I/SVOC molecules and in turn will benefit the future design of control measures.
Collapse
Affiliation(s)
- Dan Dan Huang
- State Environmental Protection Key Laboratory of Formation and Prevention of Urban Air Pollution Complex, Shanghai Academy of Environmental Sciences, Shanghai 200233, China
| | - Qingyao Hu
- State Environmental Protection Key Laboratory of Formation and Prevention of Urban Air Pollution Complex, Shanghai Academy of Environmental Sciences, Shanghai 200233, China
| | - Xiao He
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518000, China
| | - Ru-Jin Huang
- State Key Laboratory of Loess and Quaternary Geology, Center for Excellence in Quaternary Science and Global Change, Institute of Earth and Environment, Chinese Academy of Sciences, Xi'an 710061, China
| | - Xiang Ding
- State Environmental Protection Key Laboratory of Formation and Prevention of Urban Air Pollution Complex, Shanghai Academy of Environmental Sciences, Shanghai 200233, China
| | - Yingge Ma
- State Environmental Protection Key Laboratory of Formation and Prevention of Urban Air Pollution Complex, Shanghai Academy of Environmental Sciences, Shanghai 200233, China
| | - Xinwei Feng
- State Environmental Protection Key Laboratory of Formation and Prevention of Urban Air Pollution Complex, Shanghai Academy of Environmental Sciences, Shanghai 200233, China
| | - Sheng'ao Jing
- State Environmental Protection Key Laboratory of Formation and Prevention of Urban Air Pollution Complex, Shanghai Academy of Environmental Sciences, Shanghai 200233, China
| | - Yingjie Li
- State Environmental Protection Key Laboratory of Formation and Prevention of Urban Air Pollution Complex, Shanghai Academy of Environmental Sciences, Shanghai 200233, China
| | - Jun Lu
- State Environmental Protection Key Laboratory of Formation and Prevention of Urban Air Pollution Complex, Shanghai Academy of Environmental Sciences, Shanghai 200233, China
| | - Yaqin Gao
- State Environmental Protection Key Laboratory of Formation and Prevention of Urban Air Pollution Complex, Shanghai Academy of Environmental Sciences, Shanghai 200233, China
| | - Yunhua Chang
- KLME & CIC-FEMD, Yale-NUIST Center on Atmospheric Environment, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Xu Shi
- Shanghai Motor Vehicle Inspection Certification & Tech Innovation Center Co., Ltd., Shanghai 201805, China
| | - Chunlei Qian
- Shanghai Motor Vehicle Inspection Certification & Tech Innovation Center Co., Ltd., Shanghai 201805, China
| | - Chao Yan
- Institute for Atmospheric and Earth System Research/Physics, Faculty of Science, University of Helsinki, Helsinki 00014, Finland
- Joint International Research Laboratory of Atmospheric and Earth System Research, School of Atmospheric Sciences, Nanjing University, Nanjing 210023, China
| | - Shengrong Lou
- State Environmental Protection Key Laboratory of Formation and Prevention of Urban Air Pollution Complex, Shanghai Academy of Environmental Sciences, Shanghai 200233, China
| | - Hongli Wang
- State Environmental Protection Key Laboratory of Formation and Prevention of Urban Air Pollution Complex, Shanghai Academy of Environmental Sciences, Shanghai 200233, China
| | - Cheng Huang
- State Environmental Protection Key Laboratory of Formation and Prevention of Urban Air Pollution Complex, Shanghai Academy of Environmental Sciences, Shanghai 200233, China
| |
Collapse
|
2
|
Saarikoski S, Järvinen A, Markkula L, Aurela M, Kuittinen N, Hoivala J, Barreira LMF, Aakko-Saksa P, Lepistö T, Marjanen P, Timonen H, Hakkarainen H, Jalava P, Rönkkö T. Towards zero pollution vehicles by advanced fuels and exhaust aftertreatment technologies. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 347:123665. [PMID: 38432344 DOI: 10.1016/j.envpol.2024.123665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/07/2024] [Accepted: 02/25/2024] [Indexed: 03/05/2024]
Abstract
Vehicular emissions deteriorate air quality in urban areas notably. The aim of this study was to conduct an in-depth characterization of gaseous and particle emissions, and their potential to form secondary aerosol emissions, of the cars meeting the most recent emission Euro 6d standards, and to investigate the impact of fuel as well as engine and aftertreatment technologies on pollutants at warm and cold ambient temperatures. Studied vehicles were a diesel car with a diesel particulate filter (DPF), two gasoline cars (with and without a gasoline particulate filter (GPF)), and a car using compressed natural gas (CNG). The impact of fuel aromatic content was examined for the diesel car and the gasoline car without the GPF. The results showed that the utilization of exhaust particulate filter was important both in diesel and gasoline cars. The gasoline car without the GPF emitted relatively high concentrations of particles compared to the other technologies but the implementation of the GPF decreased particle emissions, and the potential to form secondary aerosols in atmospheric processes. The diesel car equipped with the DPF emitted low particle number concentrations except during the DPF regeneration events. Aromatic-free gasoline and diesel fuel efficiently reduced exhaust particles. Since the renewal of vehicle fleet is a relatively slow process, changing the fuel composition can be seen as a faster way to affect traffic emissions.
Collapse
Affiliation(s)
- Sanna Saarikoski
- Atmospheric Composition Research, Finnish Meteorological Institute, P.O. Box 503, 00101, Helsinki, Finland
| | - Anssi Järvinen
- VTT Technical Research Centre of Finland, P.O. Box 1000, 02044, VTT, Espoo, Finland
| | - Lassi Markkula
- Aerosol Physics Laboratory, Physics Unit, Faculty of Engineering and Natural Sciences, Tampere University, Tampere, 33100, Finland
| | - Minna Aurela
- Atmospheric Composition Research, Finnish Meteorological Institute, P.O. Box 503, 00101, Helsinki, Finland
| | - Niina Kuittinen
- VTT Technical Research Centre of Finland, P.O. Box 1000, 02044, VTT, Espoo, Finland; Aerosol Physics Laboratory, Physics Unit, Faculty of Engineering and Natural Sciences, Tampere University, Tampere, 33100, Finland
| | - Jussi Hoivala
- Aerosol Physics Laboratory, Physics Unit, Faculty of Engineering and Natural Sciences, Tampere University, Tampere, 33100, Finland
| | - Luis M F Barreira
- Atmospheric Composition Research, Finnish Meteorological Institute, P.O. Box 503, 00101, Helsinki, Finland
| | - Päivi Aakko-Saksa
- VTT Technical Research Centre of Finland, P.O. Box 1000, 02044, VTT, Espoo, Finland
| | - Teemu Lepistö
- Aerosol Physics Laboratory, Physics Unit, Faculty of Engineering and Natural Sciences, Tampere University, Tampere, 33100, Finland
| | - Petteri Marjanen
- Aerosol Physics Laboratory, Physics Unit, Faculty of Engineering and Natural Sciences, Tampere University, Tampere, 33100, Finland
| | - Hilkka Timonen
- Atmospheric Composition Research, Finnish Meteorological Institute, P.O. Box 503, 00101, Helsinki, Finland
| | - Henri Hakkarainen
- Inhalation Toxicology Laboratory, Department of Environmental and Biological Sciences, University of Eastern Finland, P.O. Box 1627, 70211, Kuopio, Finland
| | - Pasi Jalava
- Inhalation Toxicology Laboratory, Department of Environmental and Biological Sciences, University of Eastern Finland, P.O. Box 1627, 70211, Kuopio, Finland
| | - Topi Rönkkö
- Aerosol Physics Laboratory, Physics Unit, Faculty of Engineering and Natural Sciences, Tampere University, Tampere, 33100, Finland.
| |
Collapse
|
3
|
Ghadimi S, Zhu H, Durbin TD, Cocker DR, Karavalakis G. Exceedances of Secondary Aerosol Formation from In-Use Natural Gas Heavy-Duty Vehicles Compared to Diesel Heavy-Duty Vehicles. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:19979-19989. [PMID: 37988584 DOI: 10.1021/acs.est.3c04880] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2023]
Abstract
This work, for the first time, assessed the secondary aerosol formation from both in-use diesel and natural gas heavy-duty vehicles of different vocations when they were operated on a chassis dynamometer while the vehicles were exercised on different driving cycles. Testing was performed on natural gas vehicles equipped with three-way catalysts (TWCs) and diesel trucks equipped with diesel oxidation catalysts, diesel particulate filters, and selective catalytic reduction systems. Secondary aerosol was measured after introducing dilute exhaust into a 30 m3 environmental chamber. Particulate matter ranged from 0.18 to 0.53 mg/mile for the diesel vehicles vs 1.4-85 mg/mile for the natural gas vehicles, total particle number ranged from 4.01 × 1012 to 3.61 × 1013 for the diesel vehicles vs 5.68 × 1012-2.75 × 1015 for the natural gas vehicles, and nonmethane organic gas emissions ranged from 0.032 to 0.05 mg/mile for the diesel vehicles vs 0.012-1.35 mg/mile for the natural gas vehicles. Ammonia formation was favored in the TWC and was found in higher concentrations for the natural gas vehicles (ranged from ∼0 to 1.75 g/mile) than diesel vehicles (ranged from ∼0 to 0.4 g/mile), leading to substantial secondary ammonium nitrate formation (ranging from 8.5 to 98.8 mg/mile for the natural gas vehicles). For the diesel vehicles, one had a secondary ammonium nitrate of 18.5 mg/mile, while the other showed essentially no secondary ammonium nitrate formation. The advanced aftertreatment controls in diesel vehicles resulted in almost negligible secondary organic aerosol (SOA) formation (ranging from 0.046 to 2.04 mg/mile), while the natural gas vehicles led to elevated SOA formation that was likely sourced from the engine lubricating oil (ranging from 3.11 to 39.7 mg/mile). For two natural gas vehicles, the contribution of lightly oxidized lubricating oil in the primary organic aerosol was dominant (as shown in the mass spectra analysis), leading to enhanced SOA mass. Heavily oxidized lubricating oil was also observed to contribute to the SOA formation for other natural gas vehicles.
Collapse
Affiliation(s)
- Sahar Ghadimi
- Bourns College of Engineering, Center for Environmental Research and Technology (CE-CERT), University of California, 1084 Columbia Avenue, Riverside, California 92507, United States
- Department of Chemical and Environmental Engineering, Bourns College of Engineering, University of California, Riverside, California 92521, United States
| | - Hanwei Zhu
- Bourns College of Engineering, Center for Environmental Research and Technology (CE-CERT), University of California, 1084 Columbia Avenue, Riverside, California 92507, United States
- Department of Chemical and Environmental Engineering, Bourns College of Engineering, University of California, Riverside, California 92521, United States
| | - Thomas D Durbin
- Bourns College of Engineering, Center for Environmental Research and Technology (CE-CERT), University of California, 1084 Columbia Avenue, Riverside, California 92507, United States
- Department of Chemical and Environmental Engineering, Bourns College of Engineering, University of California, Riverside, California 92521, United States
| | - David R Cocker
- Bourns College of Engineering, Center for Environmental Research and Technology (CE-CERT), University of California, 1084 Columbia Avenue, Riverside, California 92507, United States
- Department of Chemical and Environmental Engineering, Bourns College of Engineering, University of California, Riverside, California 92521, United States
| | - Georgios Karavalakis
- Bourns College of Engineering, Center for Environmental Research and Technology (CE-CERT), University of California, 1084 Columbia Avenue, Riverside, California 92507, United States
- Department of Chemical and Environmental Engineering, Bourns College of Engineering, University of California, Riverside, California 92521, United States
| |
Collapse
|
4
|
Bessagnet B, Allemand N, Putaud JP, Couvidat F, André JM, Simpson D, Pisoni E, Murphy BN, Thunis P. Emissions of Carbonaceous Particulate Matter and Ultrafine Particles from Vehicles—A Scientific Review in a Cross-Cutting Context of Air Pollution and Climate Change. APPLIED SCIENCES-BASEL 2022; 12:1-52. [PMID: 35529678 PMCID: PMC9067409 DOI: 10.3390/app12073623] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Airborne particulate matter (PM) is a pollutant of concern not only because of its adverse effects on human health but also on visibility and the radiative budget of the atmosphere. PM can be considered as a sum of solid/liquid species covering a wide range of particle sizes with diverse chemical composition. Organic aerosols may be emitted (primary organic aerosols, POA), or formed in the atmosphere following reaction of volatile organic compounds (secondary organic aerosols, SOA), but some of these compounds may partition between the gas and aerosol phases depending upon ambient conditions. This review focuses on carbonaceous PM and gaseous precursors emitted by road traffic, including ultrafine particles (UFP) and polycyclic aromatic hydrocarbons (PAHs) that are clearly linked to the evolution and formation of carbonaceous species. Clearly, the solid fraction of PM has been reduced during the last two decades, with the implementation of after-treatment systems abating approximately 99% of primary solid particle mass concentrations. However, the role of brown carbon and its radiative effect on climate and the generation of ultrafine particles by nucleation of organic vapour during the dilution of the exhaust remain unclear phenomena and will need further investigation. The increasing role of gasoline vehicles on carbonaceous particle emissions and formation is also highlighted, particularly through the chemical and thermodynamic evolution of organic gases and their propensity to produce particles. The remaining carbon-containing particles from brakes, tyres and road wear will still be a problem even in a future of full electrification of the vehicle fleet. Some key conclusions and recommendations are also proposed to support the decision makers in view of the next regulations on vehicle emissions worldwide.
Collapse
Affiliation(s)
- Bertrand Bessagnet
- Joint Research Centre, European Commission, 21027 Ispra, Italy
- Correspondence: or
| | | | | | - Florian Couvidat
- INERIS, Parc Technologique Alata, BP 2, 60550 Verneuil-en-Halatte, France
| | | | - David Simpson
- EMEP MSC-W, Norwegian Meteorological Institute, 0313 Oslo, Norway
- Department Space, Earth & Environment, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden
| | - Enrico Pisoni
- Joint Research Centre, European Commission, 21027 Ispra, Italy
| | - Benjamin N. Murphy
- Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, Durham, NC 27711, USA
| | - Philippe Thunis
- Joint Research Centre, European Commission, 21027 Ispra, Italy
| |
Collapse
|