1
|
Dumas T, Gomez E, Boccard J, Ramirez G, Armengaud J, Escande A, Mathieu O, Fenet H, Courant F. Mixture effects of pharmaceuticals carbamazepine, diclofenac and venlafaxine on Mytilus galloprovincialis mussel probed by metabolomics and proteogenomics combined approach. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 907:168015. [PMID: 37879482 DOI: 10.1016/j.scitotenv.2023.168015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/20/2023] [Accepted: 10/20/2023] [Indexed: 10/27/2023]
Abstract
Exposure to single molecules under laboratory conditions has led to a better understanding of the mechanisms of action (MeOAs) and effects of pharmaceutical active compounds (PhACs) on non-target organisms. However, not taking the co-occurrence of contaminants in the environment and their possible interactions into account may lead to underestimation of their impacts. In this study, we combined untargeted metabolomics and proteogenomics approaches to assess the mixture effects of diclofenac, carbamazepine and venlafaxine on marine mussels (Mytilus galloprovincialis). Our multi-omics approach and data fusion strategy highlighted how such xenobiotic cocktails induce important cellular changes that can be harmful to marine bivalves. This response is mainly characterized by energy metabolism disruption, fatty acid degradation, protein synthesis and degradation, and the induction of endoplasmic reticulum stress and oxidative stress. The known MeOAs and molecular signatures of PhACs were taken into consideration to gain insight into the mixture effects, thereby revealing a potential additive effect. Multi-omics approaches on mussels as sentinels offer a comprehensive overview of molecular and cellular responses triggered by exposure to contaminant mixtures, even at environmental concentrations.
Collapse
Affiliation(s)
- Thibaut Dumas
- HydroSciences Montpellier, IRD, CNRS, University of Montpellier, Montpellier, France
| | - Elena Gomez
- HydroSciences Montpellier, IRD, CNRS, University of Montpellier, Montpellier, France
| | - Julien Boccard
- School of Pharmaceutical Sciences, University of Geneva, Geneva 1211, Switzerland; Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Geneva 1211, Switzerland
| | - Gaëlle Ramirez
- HydroSciences Montpellier, IRD, CNRS, University of Montpellier, Montpellier, France
| | - Jean Armengaud
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SPI, Bagnols-sur-Cèze, France
| | - Aurélie Escande
- HydroSciences Montpellier, IRD, CNRS, University of Montpellier, Montpellier, France
| | - Olivier Mathieu
- HydroSciences Montpellier, IRD, CNRS, University of Montpellier, Montpellier, France; Laboratoire de Pharmacologie-Toxicologie, CHU de Montpellier, Montpellier, France
| | - Hélène Fenet
- HydroSciences Montpellier, IRD, CNRS, University of Montpellier, Montpellier, France
| | - Frédérique Courant
- HydroSciences Montpellier, IRD, CNRS, University of Montpellier, Montpellier, France.
| |
Collapse
|
2
|
Bouzidi I, Mougin K, Beyrem H, Sellami B. Biochemical and physiological alterations caused by Diuron and Triclosan in mussels (Mytilus galloprovincialis). PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 198:105714. [PMID: 38225063 DOI: 10.1016/j.pestbp.2023.105714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/17/2023] [Accepted: 11/27/2023] [Indexed: 01/17/2024]
Abstract
The rise in the utilization of pesticides within industrial and agricultural practices has been linked to the occurrence of these substances in aquatic environments. The objective of this work was to evaluate the uptake and adverse impacts of Diuron (Di) and Triclosan (TCS) on the mussel species Mytilus galloprovincialis. To accomplish this, the accumulation and toxicity of these pesticides were gauged following a brief period of exposure spanning 14 days, during which the mussels were subjected to two concentrations (50 and 100 μg/L) of each substance that are ecologically relevant. Chemical analysis of Di and TCS within gills and digestive gland showed that these pesticides could be accumulated in mussel's tissues. In addition, Di and TCS are preferably accumulated in digestive gland. Measured biomarkers included physiological parameters (filtration FC and respiration RC capacity), antioxidant enzyme activities (superoxide dismutase and catalase), oxidative damage indicator (Malondialdheyde concentration) and neurotoxicity level (acetylcholinesterase activity) were evaluated in gills and digestive glands. Both pesticides were capable of altering the physiology of this species by reducing the FC and RC in concentration and chemical dependent manner. Both pesticides induced also an oxidative imbalance causing oxidative stress. The high considered concentration exceeded the antioxidant defense capacity of the mussel and lead to membrane lipid peroxidation that resulted in cell damage. Finally, the two pesticides tested were capable of interacting with the neuromuscular barrier leading to neurotoxicity in mussel's tissues by inhibiting acetylcholinesterase. The ecotoxicological effect depended on the concentration and the chemical nature of the contaminant. Obtained results revealed also that the Di may exert toxic effects on M. galloprovincialis even at relatively low concentrations compared to TCS. In conclusion, this study presents innovative insights into the possible risks posed by Diuron (Di) and Triclosan (TCS) to the marine ecosystem. Moreover, it contributes essential data to the toxicological database necessary for developing proactive environmental protection measures.
Collapse
Affiliation(s)
- Imen Bouzidi
- University of Carthage, Faculty of Sciences of Bizerte, LR01ES14 Laboratory of Environment Biomonitoring, Coastal Ecology and Ecotoxicology Unit, 7021 Zarzouna, Tunisia; Institut supérieur de biotechnologies de Béja, Université de Jendouba, Tunisia
| | - Karine Mougin
- Université de Strasbourg, Université de Haute Alsace, Institut de Science des Matériaux, IS2M CNRS-UMR 7361, 15 Rue Jean Starcky, 68057 Mulhouse, France
| | - Hamouda Beyrem
- University of Carthage, Faculty of Sciences of Bizerte, LR01ES14 Laboratory of Environment Biomonitoring, Coastal Ecology and Ecotoxicology Unit, 7021 Zarzouna, Tunisia
| | - Badreddine Sellami
- Institut National des Sciences et Technologies de la Mer, Tabarka, Tunisia.
| |
Collapse
|
3
|
Jiang X, Li Y, Xu Y, Luo X, Liu Y, Zhao L. Sex-specific responses of Ruditapes philippinarum to ocean acidification following gonadal maturation. MARINE ENVIRONMENTAL RESEARCH 2023; 192:106235. [PMID: 37883827 DOI: 10.1016/j.marenvres.2023.106235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 10/11/2023] [Accepted: 10/17/2023] [Indexed: 10/28/2023]
Abstract
Ocean acidification (OA) can seriously affect marine bivalves at different levels of biological organization, generating widespread consequences on progeny recruitment and population maintenance. Yet, few effort has been devoted to elucidating whether female and male bivalves respond differentially to OA in their reproductive seasons. Here, we estimated differences in physiological responses of female and male Manila clams (Ruditapes philippinarum) to OA during gonadal maturation. In comparison to OA-stressed male clams, females significantly depressed activities in enzymes related to energy metabolism (NKA, T-ATP), antioxidant defence (SOD and MDA), and non-specific immune function (ACP), and downregulated expression of AMPK that plays a key role in cellular metabolism, indicating that sex did significantly affect responses of R. philippinarum to OA. Such sex-based differences can be likely couched in energetic terms, given the much more energetically expensive cost of egg production than that of sperms. These results indicate that sex-specific responses to OA during reproductive seasons do exist in marine bivalves, and therefore accounting for such sex specificity is of paramount importance when projecting population sustainability and formulating conservation strategies in an acidifying ocean.
Collapse
Affiliation(s)
- Xiaoyan Jiang
- Fisheries College, Guangdong Ocean University, Zhanjiang, China
| | - Yongren Li
- Key Laboratory for Aquatic Ecology and Aquaculture of Tianjin, Department of Fisheries Science, Tianjin Agricultural University, Tianjin, China
| | - Yang Xu
- Fisheries College, Guangdong Ocean University, Zhanjiang, China
| | - Xin Luo
- Fisheries College, Guangdong Ocean University, Zhanjiang, China
| | - Yong Liu
- Pearl Oyster Research Institute, Guangdong Ocean University, Zhanjiang, China
| | - Liqiang Zhao
- Fisheries College, Guangdong Ocean University, Zhanjiang, China; Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Guangdong Ocean University, Zhanjiang, China.
| |
Collapse
|
4
|
Bethke K, Kropidłowska K, Stepnowski P, Caban M. Review of warming and acidification effects to the ecotoxicity of pharmaceuticals on aquatic organisms in the era of climate change. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 877:162829. [PMID: 36924950 DOI: 10.1016/j.scitotenv.2023.162829] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 02/17/2023] [Accepted: 03/09/2023] [Indexed: 05/06/2023]
Abstract
An increase in the temperature and the acidification of the aquatic environment are among the many consequences of global warming. Climate change can also negatively affect aquatic organisms indirectly, by altering the toxicity of pollutants. Models of climate change impacts on the distribution, fate and ecotoxicity of persistent pollutants are now available. For pharmaceuticals, however, as new environmental pollutants, there are no predictions on this issue. Therefore, this paper organizes the existing knowledge on the effects of temperature, pH and both stressors combined on the toxicity of pharmaceuticals on aquatic organisms. Besides lethal toxicity, the molecular, physiological and behavioral biomarkers of sub-lethal stress were also assessed. Both acute and chronic toxicity, as well as bioaccumulation, were found to be affected. The direction and magnitude of these changes depend on the specific pharmaceutical, as well as the organism and conditions involved. Unfortunately, the response of organisms was enhanced by combined stressors. We compare the findings with those known for persistent organic pollutants, for which the pH has a relatively low effect on toxicity. The acid-base constant of molecules, as assumed, have an effect on the toxicity change with pH modulation. Studies with bivalves have been were overrepresented, while too little attention was paid to producers. Furthermore, the limited number of pharmaceuticals have been tested, and metabolites skipped altogether. Generally, the effects of warming and acidification were rather indicated than explored, and much more attention needs to be given to the ecotoxicology of pharmaceuticals in climate change conditions.
Collapse
Affiliation(s)
- Katarzyna Bethke
- University of Gdansk, Faculty of Chemistry, Department of Environmental Analysis, ul. Wita Stwosza 63, 80-308 Gdańsk, Poland
| | - Klaudia Kropidłowska
- University of Gdansk, Faculty of Chemistry, Department of Environmental Analysis, ul. Wita Stwosza 63, 80-308 Gdańsk, Poland
| | - Piotr Stepnowski
- University of Gdansk, Faculty of Chemistry, Department of Environmental Analysis, ul. Wita Stwosza 63, 80-308 Gdańsk, Poland
| | - Magda Caban
- University of Gdansk, Faculty of Chemistry, Department of Environmental Analysis, ul. Wita Stwosza 63, 80-308 Gdańsk, Poland.
| |
Collapse
|
5
|
Yu X, Liu J, Qiu T, Cao L, Dou S. Ocean acidification induces tissue-specific interactions with copper toxicity on antioxidant defences in viscera and gills of Asiatic hard clam Meretrix petechialis (Lamarck, 1818). THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 875:162634. [PMID: 36894092 DOI: 10.1016/j.scitotenv.2023.162634] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 02/15/2023] [Accepted: 03/01/2023] [Indexed: 06/18/2023]
Abstract
Toxicity of contaminants in organisms under ocean acidification (OA) has attracted increasing attention in ecotoxicological studies. This study investigated how pCO2-driven OA affected waterborne copper (Cu) toxicity in antioxidant defences in viscera and gills of Asiatic hard clam Meretrix petechialis (Lamarck, 1818). Clams were continuously exposed to Cu at ambient relevant (0/no metal exposure, 10 and 50 μg L-1) and polluted-high (100 μg L-1) concentrations in unacidified (pH 8.10) and acidified (pH 7.70/moderate OA and 7.30/extreme OA) seawater for 21 days. Following coexposure, metal bioaccumulation and responses of antioxidant defence-related biomarkers to OA and Cu coexposure were investigated. Results showed that metal bioaccumulation was positively correlated with waterborne metal concentrations but was not notably influenced by OA conditions. Both Cu and OA affected the antioxidant responses to environmental stress. Additionally, OA induced tissue-specific interactions with Cu on antioxidant defences, varying with exposure conditions. In unacidified seawater, antioxidant biomarkers were activated to defend against oxidative stress induced by Cu and prevented clams from lipid peroxidation (LPO or MDA), but failed to defend against DNA damage (8-OHdG). OA exacerbated Cu toxicity in antioxidant defences and increased LPO levels in tissues. Gills and viscera adopted adaptive antioxidant defence strategies to manage oxidative stress, with the former being more vulnerable to oxidative stress than the latter. MDA and 8-OHdG were sensitive to OA and Cu exposure, respectively, and were useful bioindicators for assessing oxidative stress. Integrated biomarker response (IBR) and PCA can reflect the integrative responses of antioxidant biomarkers to environmental stress and illuminate the contributions of specific biomarkers to antioxidant defence strategies. The findings provided insights for understanding antioxidant defences against metal toxicity in marine bivalves under OA scenarios, which is essential into managing wild populations.
Collapse
Affiliation(s)
- Xiang Yu
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100039, China
| | - Jinhu Liu
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China
| | - Tianlong Qiu
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China
| | - Liang Cao
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China
| | - Shuozeng Dou
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100039, China.
| |
Collapse
|
6
|
Cunha M, Silva MG, De Marchi L, Morgado RG, Esteves VI, Meucci V, Battaglia F, Soares AM, Pretti C, Freitas R. Toxic effects of a mixture of pharmaceuticals in Mytilus galloprovincialis: The case of 17α-ethinylestradiol and salicylic acid. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 324:121070. [PMID: 36641066 DOI: 10.1016/j.envpol.2023.121070] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 01/09/2023] [Accepted: 01/10/2023] [Indexed: 06/17/2023]
Abstract
The impact of pharmaceuticals on marine invertebrates has been a topic of rising concern, with an increasing number of studies regarding the impacts on bivalves. However, very few investigated the toxicity of mixtures of pharmaceuticals. This knowledge gap was investigated in the present study, where the toxicity of 17α-ethinylestradiol (EE2) and salicylic acid (SA) mixture was evaluated. To this end, Mytilus galloprovincialis mussels were chronically subjected to both pharmaceuticals, acting alone and in combination, and the effects at the cellular level were measured. The Independent Action (IA) model was performed aiming to compare obtained with predicted responses. The integrated biomarker response (IBR) index was used to assess the overall biochemical response given by mussels. The results obtained revealed that the most stressful condition was caused by the combined effect of EE2 and SA, with the highest metabolic capacity, antioxidant (catalase activity) and biotransformation (carboxylesterases activity) activation and cellular damage in organisms exposed to the mixture of both drugs in comparison to responses observed when each drug was acting alone. Predicted responses obtained from the IA model indicate that caution should be paid as frequent deviations to observed responses were found. This study highlights the need for future studies considering the mixture of pollutants, mimicking the actual environmental conditions.
Collapse
Affiliation(s)
- Marta Cunha
- Centre for Environmental and Marine Studies (CESAM) & Department of Biology, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Mónica G Silva
- Centre for Environmental and Marine Studies (CESAM) & Department of Biology, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Lucia De Marchi
- Interuniversity Consortium of Marine Biology and Applied Ecology "G. Bacci" (CIBM), 57128, Livorno, Italy
| | - Rui G Morgado
- Centre for Environmental and Marine Studies (CESAM) & Department of Biology, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Valdemar I Esteves
- Chemistry Department & CESAM, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Valentina Meucci
- Department of Veterinary Sciences, University of Pisa, 56122, San Piero a Grado (PI), Italy
| | - Federica Battaglia
- Department of Veterinary Sciences, University of Pisa, 56122, San Piero a Grado (PI), Italy
| | - Amadeu Mvm Soares
- Centre for Environmental and Marine Studies (CESAM) & Department of Biology, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Carlo Pretti
- Interuniversity Consortium of Marine Biology and Applied Ecology "G. Bacci" (CIBM), 57128, Livorno, Italy; Department of Veterinary Sciences, University of Pisa, 56122, San Piero a Grado (PI), Italy
| | - Rosa Freitas
- Centre for Environmental and Marine Studies (CESAM) & Department of Biology, University of Aveiro, 3810-193, Aveiro, Portugal.
| |
Collapse
|
7
|
Shang Y, Wang X, Shi Y, Huang W, Sokolova I, Chang X, Chen D, Wei S, Khan FU, Hu M, Wang Y. Ocean acidificationf affects the bioenergetics of marine mussels as revealed by high-coverage quantitative metabolomics. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 858:160090. [PMID: 36379341 DOI: 10.1016/j.scitotenv.2022.160090] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 10/14/2022] [Accepted: 11/05/2022] [Indexed: 06/16/2023]
Abstract
Ocean acidification has become a major ecological and environmental problem in the world, whereas the impact mechanism of ocean acidification in marine bivalves is not fully understood. Cellular energy allocation (CEA) approach and high-coverage metabolomic techniques were used to investigate the acidification effects on the energy metabolism of mussels. The thick shell mussels Mytilus coruscus were exposed to seawater pH 8.1 (control) and pH 7.7 (acidification) for 14 days and allowed to recover at pH 8.1 for 7 days. The levels of carbohydrates, lipids and proteins significantly decreased in the digestive glands of the mussels exposed to acidification. The 14-day acidification exposure increased the energy demands of mussels, resulting in increased electron transport system (ETS) activity and decreased cellular energy allocation (CEA). Significant carry-over effects were observed on all cellular energy parameters except the concentration of carbohydrates and cellular energy demand (Ec) after 7 days of recovery. Metabolomic analysis showed that acidification affected the phenylalanine, tyrosine and tryptophan biosynthesis, taurine and hypotaurine metabolism, and glycine, serine and threonine metabolism. Correlation analysis showed that mussel cell energy parameters (carbohydrates, lipids, proteins, CEA) were negatively/positively correlated with certain differentially abundant metabolites. Overall, the integrated biochemical and metabolomics analyses demonstrated the negative effects of acidification on energy metabolism at the cellular level and implicated the alteration of biosynthesis and metabolism of amino acids as a mechanism of metabolic perturbation caused by acidification in mussels.
Collapse
Affiliation(s)
- Yueyong Shang
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
| | - Xinghuo Wang
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
| | - Yuntian Shi
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
| | - Wei Huang
- Key Laboratory of Satellite Ocean Environment Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, China; Key Laboratory of Ocean Space Resource Management Technology, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, China; Key Laboratory of Marine Ecosystem Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, China.
| | - Inna Sokolova
- Department of Marine Biology, Institute for Biological Sciences, University of Rostock, Rostock, Germany; Department of Maritime Systems, Interdisciplinary Faculty, University of Rostock, Rostock, Germany
| | - Xueqing Chang
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
| | - Deying Chen
- State Key Laboratory and Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Shuaishuai Wei
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
| | - Fahim Ullah Khan
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai 201306, China; Fisheries & Aquaculture Program, Department of Zoology, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Menghong Hu
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
| | - Youji Wang
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Satellite Ocean Environment Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Marine Ecosystem Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, China.
| |
Collapse
|
8
|
Louros VL, Silva V, Silva CP, Calisto V, Otero M, Esteves VI, Freitas R, Lima DLD. Sulfadiazine's photodegradation using a novel magnetic and reusable carbon based photocatalyst: Photocatalytic efficiency and toxic impacts to marine bivalves. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 313:115030. [PMID: 35417811 DOI: 10.1016/j.jenvman.2022.115030] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 03/21/2022] [Accepted: 04/04/2022] [Indexed: 05/27/2023]
Abstract
In the present study, waste-based biochar functionalized with titanium dioxide (TiO2) and afterwards magnetized by an ex-situ approach, defined as synthetic photosensitizer (SPS), was explored for the photocatalytic degradation of sulfadiazine (SDZ), an antibiotic widely used in the aquaculture industry, under solar irradiation. The use of the SPS enhanced the photodegradation efficiency, with a half-life time (t1/2) reduction from 12.2 ± 0.1 h (without SPS) to 5.6 ± 0.4 h. The applied magnetization procedure allowed to obtain a SPS with good reusability for SDZ photodegradation even after five consecutive cycles. To evaluate the effects on marine bivalves of SDZ, before and after photodegradation and in presence or absence of the SPS, a typical bioindicator species, the mussel Mytilus galloprovincialis, was used and different biochemical markers were analysed. Results obtained indicated that the exposure to SDZbefore irradiation, both in absence and presence of SPS, caused an increase in mussels' metabolism and defence mechanisms, evidencing great biochemical impacts. However, after irradiation (in the absence and presence of SPS), biochemical responses were similar to those observed in organisms exposed to control conditions, without SDZ. Therefore, this work provided a promising eco-friendly treatment for the removal of SDZ from aquaculture effluents.
Collapse
Affiliation(s)
- Vitória L Louros
- CESAM, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| | - Valentina Silva
- CESAM, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal; CESAM, Department of Environment and Planning, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| | - Carla Patrícia Silva
- CESAM, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| | - Vânia Calisto
- CESAM, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| | - Marta Otero
- CESAM, Department of Environment and Planning, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal; Department of Applied Chemistry and Physics, Universidad de León, Campus de Vegazana, 24071, León, Spain
| | - Valdemar I Esteves
- CESAM, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| | - Rosa Freitas
- CESAM, Department of Biology, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| | - Diana L D Lima
- CESAM, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal.
| |
Collapse
|