1
|
Cui P, Wan N, Li C, Zou L, Ma M, Du J, Jiang Y. Comparative analysis of sulfur-driven autotrophic denitrification for pilot-scale application: Pollutant removal performance and metagenomic function. BIORESOURCE TECHNOLOGY 2024; 413:131433. [PMID: 39236908 DOI: 10.1016/j.biortech.2024.131433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 09/02/2024] [Accepted: 09/02/2024] [Indexed: 09/07/2024]
Abstract
Two parallel pilot-scale reactors were operated to investigate pollutant removal performance and metabolic pathways in elemental sulfur-driven autotrophic denitrification (SDAD) process under low temperature and after addition of external electron donors. The results showed that low temperature slightly inhibited SDAD (average total nitrogen removal of ∼4.7 mg L-1) while supplement of sodium thiosulfate (stage 2) and sodium acetate (stage 3) enhanced denitrification and secretion of extracellular polymeric substances (EPS), leading to the average removal rate of 0.75 and 1.01 kg N m-3 d-1, respectively with over twice higher total EPS. Correspondingly, nitrogen and sulfur related microbial metabolisms especially nitrite reductase and nitric oxide reductase encoding were promoted by genera including Thermomonas and Thiobacillus. The variations revealed that extra sodium acetate improved denitrification and enriched more SDAD-related microorganisms compared with sodium thiosulfate, which potentially catalyzed the refinement of practical strategies for optimizing denitrification in low carbon to nitrogen ratio wastewater treatment.
Collapse
Affiliation(s)
- Peng Cui
- Central and Southern China Municipal Design and Research Institute Co., Ltd, Wuhan 430070, China.
| | - Nianhong Wan
- Central and Southern China Municipal Design and Research Institute Co., Ltd, Wuhan 430070, China.
| | - Chaoyu Li
- School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan 430070, China.
| | - Lei Zou
- Central and Southern China Municipal Design and Research Institute Co., Ltd, Wuhan 430070, China.
| | - Min Ma
- Wuhan City Drainage Development Co., Ltd, Wuhan 430070, China.
| | - Jing Du
- Wuhan City Drainage Development Co., Ltd, Wuhan 430070, China.
| | - Yu Jiang
- School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan 430070, China.
| |
Collapse
|
2
|
Kou Z, Huo P, Qi X, Gu Y, Huang X, Liang P. Effect of dissolved oxygen on sulfur autotrophic denitrification and how to address it: An experimental and modelling work. WATER RESEARCH 2024; 267:122415. [PMID: 39305527 DOI: 10.1016/j.watres.2024.122415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/28/2024] [Accepted: 09/07/2024] [Indexed: 11/28/2024]
Abstract
Sulfur autotrophic denitrification (SAD) using elemental sulfur as the electron donor has aroused increasing interest of its application in treating secondary effluent from wastewater treatment plants (WWTPs). However, high influent dissolved oxygen (DO) in secondary effluent would limit the SAD process. This study examined the effect of different DO concentrations on SAD. Results revealed that both low (0-0.5 mg/L) and moderate (2.5-3.5 mg/L) DO concentrations would not harm the nitrate removal rate (NRR) (p > 0.05). However, high DO concentration (5.5-6.5 mg/L) significantly decreased the NRR (p < 0.05) through strong competition over the nitrate for electrons and cutting the relative abundance of sulfur-oxidizing bacteria (SOB). Both modeling and experimental results showed that applying internal reflux could serve as a strategy to mitigate the negative effect of high DO concentration, while keeping an appropriate ratio was crucial. When treating real membrane bioreactor (MBR) effluent with high DO concentration (5.5-6.5 mg/L), an internal reflux ratio of 0.5 boosted the NRR by 1.5 times. This study provided potential reference and strategy for dealing with high DO concentration wastewater by applying SAD technology.
Collapse
Affiliation(s)
- Ziwei Kou
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Pengfei Huo
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Xiang Qi
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, PR China.
| | - Yuyi Gu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Xia Huang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Peng Liang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, PR China.
| |
Collapse
|
3
|
Liang H, Jia Y, Khanal SK, Huang D, Sun L, Lu H. Electrochemical-coupled sulfur-driven autotrophic denitrification for nitrogen removal from raw landfill leachate: Evaluation of performance and mechanisms. WATER RESEARCH 2024; 256:121592. [PMID: 38626614 DOI: 10.1016/j.watres.2024.121592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 04/03/2024] [Accepted: 04/08/2024] [Indexed: 04/18/2024]
Abstract
The cost-effective and environment-friendly sulfur-driven autotrophic denitrification (SdAD) process has drawn significant attention for advanced nitrogen removal from low carbon-to-nitrogen (C/N) ratio wastewater in recent years. However, achieving efficient nitrogen removal and maintaining system stability of SdAD process in treating low C/N landfill leachate treatment have been a major challenge. In this study, a novel electrochemical-coupled sulfur-driven autotrophic denitrification (ESdAD) system was developed and compared with SdAD system through a long-term continuous study. Superior nitrogen removal performance (removal efficiency of 89.1 ± 2.5 %) was achieved in ESdAD system compared to SdAD process when treating raw landfill leachate (influent total nitrogen (TN) concentration of 241.7 ± 36.3 mg-N/L), and the effluent TN concentration of ESdAD bioreactor was as low as 24.8 ± 5.1 mg-N/L, which meets the discharge standard of China (< 40 mg N/L). Moreover, less sulfate production rate (1.3 ± 0.2 mg SO42--S/mgNOx--N vs 1.7 ± 0.2 mg SO42--S/mgNOx--N) and excellent pH modulation (pH of 6.9 ± 0.2 vs 5.8 ± 0.4) were also achieved in the ESdAD system compared to SdAD system. The improvement of ESdAD system performance was contributed to coexistence and interaction of heterotrophic bacteria (e.g., Rhodanobacter, Thermomonas, etc.), sulfur autotrophic bacteria (e.g., Thiobacillus, Sulfurimonas, Ignavibacterium etc.) and hydrogen autotrophic bacteria (e.g., Thauera, Comamonas, etc.) under current stimulation. In addition, microbial nitrogen metabolic activity, including functional enzyme (e.g., Nar and Nir) activities and electron transfer capacity of extracellular polymeric substances (EPS) and cytochrome c (Cyt-C), were also enhanced during current stimulation, which facilitated the nitrogen removal and maintained system stability. These findings suggested that ESdAD is an effective and eco-friendly process for advanced nitrogen removal for low C/N wastewater.
Collapse
Affiliation(s)
- Huiyu Liang
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou, PR China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology (Sun Yat-Sen University), Guangzhou, PR China
| | - Yanyan Jia
- School of Ecology, Sun Yat-Sen University, Shenzhen, PR China
| | - Samir Kumar Khanal
- Department of Molecular Biosciences and Bioengineering, University of Hawaii at Manoa, USA
| | - Dongqi Huang
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou, PR China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology (Sun Yat-Sen University), Guangzhou, PR China
| | - Lianpeng Sun
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou, PR China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology (Sun Yat-Sen University), Guangzhou, PR China
| | - Hui Lu
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou, PR China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology (Sun Yat-Sen University), Guangzhou, PR China.
| |
Collapse
|
4
|
Fu M, Qiu S, Wang J, Zhu Y, Yuan M, Wang L. Tourmaline mediated enhanced autotrophic denitrification: The mechanisms of electron transfer and Paracoccus enrichment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 915:169847. [PMID: 38185169 DOI: 10.1016/j.scitotenv.2023.169847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/19/2023] [Accepted: 12/30/2023] [Indexed: 01/09/2024]
Abstract
Autotrophic denitrification (AD) without carbon source is an inevitable choice for denitrification of municipal wastewater under the carbon peaking and carbon neutrality goals. This study first employed sulfur-tourmaline-AD (STAD) as an innovative nitrate removal trial technique in wastewater. STAD demonstrated a 2.23-fold increase in nitrate‑nitrogen (NO3--N) removal rate with reduced nitrite‑nitrogen (NO2--N) accumulation, effectively removing 99 % of nitrogen pollutants compared to sulfur denitrification. Some denitrifiers microorganisms that could secrete tyrosine, tryptophan, and aromatic protein (extracellular polymeric substances (EPS)). Moreover, according to the EPS composition and characteristics analysis, the secretion of loosely bound extracellular polymeric substances (LB-EPS) that bound to the bacterial endogenous respiration and enriched microbial abundance, was produced more in the STAD system, further improving the system stability. Furthermore, the addition of tourmaline (Tm) facilitated the discovery of a new genus (Paracoccus) that enhanced nitrate decomposition. Applying optimal electron donors through metabolic pathways and the microbial community helps to strengthen the AD process and treat low carbon/nitrogen ratio wastewater efficiently.
Collapse
Affiliation(s)
- Mengqi Fu
- School of Environment, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, 150090, China
| | - Shan Qiu
- School of Environment, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, 150090, China.
| | - Jue Wang
- School of Environment, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, 150090, China
| | - Yingshi Zhu
- Zhejiang Environment Technology Co., Ltd, Hangzhou 311100, China; Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
| | - Mu Yuan
- School of Environment, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, 150090, China
| | - Liang Wang
- School of Environment, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, 150090, China
| |
Collapse
|
5
|
Fan W, Huang X, Xiong J, Wang S. Salinity stress results in ammonium and nitrite accumulation during the elemental sulfur-driven autotrophic denitrification process. Front Microbiol 2024; 15:1353965. [PMID: 38419625 PMCID: PMC10901299 DOI: 10.3389/fmicb.2024.1353965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 01/29/2024] [Indexed: 03/02/2024] Open
Abstract
In this study, we investigated the effects of salinity on elemental sulfur-driven autotrophic denitrification (SAD) efficiency, and microbial communities. The results revealed that when the salinity was ≤6 g/L, the nitrate removal efficiency in SAD increased with the increasing salinity reaching 95.53% at 6 g/L salinity. Above this salt concentration, the performance of SAD gradually decreased, and the nitrate removal efficiency decreased to 33.63% at 25 g/L salinity. Approximately 5 mg/L of the hazardous nitrite was detectable at 15 g/L salinity, but decreased at 25 g/L salinity, accompanied by the generation of ammonium. When the salinity was ≥15 g/L, the abundance of the salt-tolerant microorganisms, Thiobacillus and Sulfurimonas, increased, while that of other microbial species decreased. This study provides support for the practical application of elemental sulfur-driven autotrophic denitrification in saline nitrate wastewater.
Collapse
Affiliation(s)
| | - Xuejiao Huang
- Guangxi University, Nanning, China
- Guangxi Key Laboratory of Agro-Environment and Agro-Product Safety, College of Agriculture, Guangxi University, Nanning, China
- Guangxi Key Laboratory of Environmental Pollution Control and Ecological Restoration Technology, Guangxi Bossco Environmental Protection Technology Co., Ltd., Nanning, China
| | - Jianhua Xiong
- Guangxi University, Nanning, China
- Guangxi Key Laboratory of Environmental Pollution Control and Ecological Restoration Technology, Guangxi Bossco Environmental Protection Technology Co., Ltd., Nanning, China
| | - Shuangfei Wang
- Guangxi University, Nanning, China
- Guangxi Key Laboratory of Environmental Pollution Control and Ecological Restoration Technology, Guangxi Bossco Environmental Protection Technology Co., Ltd., Nanning, China
| |
Collapse
|
6
|
Sun YL, Zhang JZ, Ngo HH, Shao CY, Wei W, Zhang XN, Guo W, Cheng HY, Wang AJ. Optimized start-up strategies for elemental sulfur packing bioreactor achieving effective autotrophic denitrification. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 907:168036. [PMID: 37890632 DOI: 10.1016/j.scitotenv.2023.168036] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/09/2023] [Accepted: 10/20/2023] [Indexed: 10/29/2023]
Abstract
The start-up efficiency of the elemental sulfur packing bioreactor (S0PB) is constrained by the slow growth kinetics of autotrophic microorganisms, which is essentially optimized. This study aims to optimize start-up procedures and offer scientific guidance for the practical applications of S0PB. Through comparing the start-up efficiencies under various conditions related to inoculation, backwashing, and EBCT, it was found that these conditions did not significantly influence start-up time, but they did impact denitrification performance in detail. Using activated sludge as the inoculum was not recommended as the 2.5 ± 0.2 mg-N/L higher nitrite accumulation and 26.0 ± 5.1 % lower TN removal rate, compared to self-enrichment. Starting with a long-to-short EBCT (1 → 0.33 h) achieved higher nitrate removal of 11.5 ± 0.6 mg-N/L and eliminated nitrite accumulation compared to constantly short EBCT (0.33 h) conditions. Daily and postponed backwashing were suggested for long-to-short EBCT and constantly short EBCT start-up, respectively. Enrichment of Sulfurimonas was beneficial for the effective nitrite reduction process.
Collapse
Affiliation(s)
- Yi-Lu Sun
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Jing-Zhe Zhang
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Huu Hao Ngo
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, New South Wales 2007, Australia
| | - Chen-Yang Shao
- School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Wei Wei
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, New South Wales 2007, Australia
| | - Xue-Ning Zhang
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Wenshan Guo
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, New South Wales 2007, Australia
| | - Hao-Yi Cheng
- State Key Laboratory of Urban Water Resources and Environment, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China
| | - Ai-Jie Wang
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| |
Collapse
|
7
|
Sun YL, Wang HL, Ngo HH, Guo W, Ni BJ, Zhang XN, Wei W. Adapting to seasonal temperature variations: A dynamic multi-subunit strategy for sulfur autotrophic denitrification bioreactors. ENVIRONMENTAL RESEARCH 2024; 240:117493. [PMID: 37890831 DOI: 10.1016/j.envres.2023.117493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/17/2023] [Accepted: 10/23/2023] [Indexed: 10/29/2023]
Abstract
Elemental sulfur autotrophic denitrification (S0AD) processes are temperature-sensitive, presenting a substantial challenge for the practical implementation of S0AD bioreactors. In this study, a comprehensive methodology for designing and operating S0AD bioreactors was developed, effectively managing fluctuations in nitrogen removal efficiency caused by seasonal temperature variations. Initially, the nitrate removal rate was correlated with simulated on-site temperature and nitrate loading, revealing correlation coefficients of k1, k2, k3, and A as 5.42×10-4, -0.41, 0.04, and 0.13, respectively, to establish a mathematical model for predicting S0AD efficiency. Subsequently, by considering influence factors such as dissolved oxygen and dynamic sulfur consumption, the model was employed to accurately design a pilot-scale S0AD bioreactor for a case study. By utilizing an alternative multi-subunit operation, a stable effluent nitrate concentration of less than 8 mg-N/L was maintained throughout the year. Importantly, this approach resulted in a substantial reduction of 76.8% in excessive nitrate removal, sulfur consumption, and sulfate production. This study aims to provide an optimal design and operation strategy for the practical application of S0AD bioreactors, thereby enhancing reliability and cost-effectiveness in the face of seasonal temperature changes.
Collapse
Affiliation(s)
- Yi-Lu Sun
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, PR China
| | - Han-Lin Wang
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, PR China
| | - Huu Hao Ngo
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, New South Wales 2007, Australia
| | - Wenshan Guo
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, New South Wales 2007, Australia
| | - Bing-Jie Ni
- School of Civil and Environmental Engineering, The University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Xue-Ning Zhang
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, PR China.
| | - Wei Wei
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, New South Wales 2007, Australia.
| |
Collapse
|
8
|
Gu Z, Liu Z, Cheng Y, Zhu Z, Tian J, Hu C, Qu J. Intensified denitrification in a fluidized-bed reactor with suspended sulfur autotrophic microbial fillers. BIORESOURCE TECHNOLOGY 2024; 391:129965. [PMID: 37918490 DOI: 10.1016/j.biortech.2023.129965] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 10/30/2023] [Accepted: 10/30/2023] [Indexed: 11/04/2023]
Abstract
Sulfur-based autotrophic denitrification (SAD) is a promising low-carbon approach to tackle nitrate pollution. However, practical SAD reactor implementation faces challenges of slow denitrification rates and prolonged start-up periods. In this work, a fluidized-bed denitrification reactor with suspended composite fillers immobilized with elemental sulfur and SAD bacteria was constructed. The reactor reaches a steady state within the first day of operation. A denitrification rate of 0.61 g N L-1 d-1 was realized, which is 2.4-fold higher than that in the packed-bed reactor. Mixotrophic denitrification prevailed during the start-up period, while the SAD process became the predominant pathway (>70%) after several days of operation. The prevailing bacteria in the fillers, notably Thiobacillus, are enriched during denitrification operations. Overall, this study highlights the impressive denitrification capabilities of the fluidized SAD reactor with microbial fillers, providing valuable insights for enhancing denitrification techniques.
Collapse
Affiliation(s)
- Zhenao Gu
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zheying Liu
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; School of Civil and Transportation Engineering, Hebei University of Technology, Tianjin 300401, China
| | - Yu Cheng
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Zongqiang Zhu
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin 541004, China.
| | - Jiayu Tian
- School of Civil and Transportation Engineering, Hebei University of Technology, Tianjin 300401, China
| | - Chengzhi Hu
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, China.
| | - Jiuhui Qu
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
9
|
Xu N, Guo J, Huang C, Li H, Hou Y, Han Y, Song Y, Zhang D. Effect of ibuprofen (IBU) on the sulfur-based and calcined pyrite-based autotrophic denitrification (SCPAD) systems with two filling modes: Performance and toxic response mechanism. ENVIRONMENTAL RESEARCH 2023; 239:117251. [PMID: 37783323 DOI: 10.1016/j.envres.2023.117251] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 09/06/2023] [Accepted: 09/19/2023] [Indexed: 10/04/2023]
Abstract
To investigate the effect of ibuprofen (IBU) on the sulfur-based and calcined pyrite-based autotrophic denitrification (SCPAD) systems, two individual reactors with the layered filling (L-SCPAD) and mixed filling (M-SCPAD) systems were established via sulfur and calcined pyrite. Effluent NO3--N concentration of the L-SCPAD and M-SCPAD systems was first increased to 6.44, 0.93 mg/L under 0.5 mg/L IBU exposure and gradually decreased to 1.66 mg/L, 0 mg/L under 4.0 mg/L IBU exposure, indicating that NO3--N removal performance of the M-SCPAD system was better than that of the L-SCPAD system. The variation of extracellular polymeric substances (EPS) characteristics demonstrated that more EPS was secreted in the M-SCPAD system compared to the L-SCPAD system, which contributed to forming a more stable biofilm structure and protecting microorganisms against the toxicity of IBU in the M-SCPAD system. Moreover, the increased electron transfer impedance and decreased cytochrome c implied that IBU inhibited the electron transfer efficiency of the L-SCPAD and M-SCPAD systems. The decreased adenosine triphosphate (ATP) and electron transfer system activity (ETSA) content showed that IBU inhibited metabolic activity, but the M-SCPAD system exhibited higher metabolic activity compared to the L-SCPAD system. In addition, the analysis of the bacterial community indicated a more stable abundance of nitrogen removal function bacteria (Bacillus) in the M-SCPAD system compared to the L-SCPAD system, which was conducive to maintaining a stable denitrification performance. The toxic response mechanism based on the biogeobattery effect was proposed in the SCPAD systems under IBU exposure. This study provided an important reference for the long-term toxic effect of IBU on the SCPAD systems.
Collapse
Affiliation(s)
- Nengyao Xu
- School of Environmental and Municipal Engineering, Tianjin Key Laboratory of Aquatic Science and Technology, Tianjin Chengjian University, Tianjin, 300384, China; School of Civil Engineering and Architecture, Taizhou University, Taizhou, 318000, Zhejiang, China; National Technology Innovation Center of Synthetic Biology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Jianbo Guo
- School of Civil Engineering and Architecture, Taizhou University, Taizhou, 318000, Zhejiang, China
| | - Cong Huang
- National Technology Innovation Center of Synthetic Biology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Haibo Li
- School of Environmental and Municipal Engineering, Tianjin Key Laboratory of Aquatic Science and Technology, Tianjin Chengjian University, Tianjin, 300384, China.
| | - Yanan Hou
- School of Environmental and Municipal Engineering, Tianjin Key Laboratory of Aquatic Science and Technology, Tianjin Chengjian University, Tianjin, 300384, China; National Technology Innovation Center of Synthetic Biology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China.
| | - Yi Han
- School of Environmental and Municipal Engineering, Tianjin Key Laboratory of Aquatic Science and Technology, Tianjin Chengjian University, Tianjin, 300384, China
| | - Yuanyuan Song
- School of Environmental and Municipal Engineering, Tianjin Key Laboratory of Aquatic Science and Technology, Tianjin Chengjian University, Tianjin, 300384, China
| | - Daohong Zhang
- School of Environmental and Municipal Engineering, Tianjin Key Laboratory of Aquatic Science and Technology, Tianjin Chengjian University, Tianjin, 300384, China
| |
Collapse
|
10
|
Qi X, Han J, Kou Z, Liang P. Supplementary sulfide during inoculation for improved sulfur autotrophic denitrification performance and adaptation to low temperature. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 900:166365. [PMID: 37598969 DOI: 10.1016/j.scitotenv.2023.166365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 08/07/2023] [Accepted: 08/15/2023] [Indexed: 08/22/2023]
Abstract
Elemental sulfur (S0) autotrophic denitrification (SAD) has been considered an advanced denitrification technology due to its low operating cost and small secondary pollution in wastewater treatment plants. However, the wide application of this technology is still challenged by its low denitrification rate, long start-up time, and poor low-temperature adaptation. This study employed supplementary sulfide to facilitate the conversion of S0 into polysulfide, a critical step in SAD. Batch experiments indicated that more polysulfide could be generated when S0 served as an electron donor and partnered with additional Na2S, leading to greatly increased nitrate removal than the controls. Particularly when the sulfide concentration was relatively high at 160 mg/L, a denitrification rate up to 11.3 mg-N/(L·d) was achieved, 3.8-fold of control group working with solely S0. Sulfide was further applied during inoculation of a packed bed reactor (PBR) with S0 particles and significantly benefit the development of biofilm. Although the feeding of sulfide was stopped after inoculation, the reactor was fast started up in just 2 days and delivered an average denitrification rate of 346.9 mg-N/(L·d), 1.4-fold of the control. In addition, benefit from the thick and well-developed biofilm, the reactor was able to restore its nitrate removal performance, when challenged by a low temperature (15 °C), to a larger rate than the control. Compared to short-term employment of the sulfide which was found a temporary solution addressing declined SAD rate during operating the PBR, applying sulfide for inoculation facilitated the formation of biofilm, leading to sustained improvement of SAD performance and better adaptation to coldness.
Collapse
Affiliation(s)
- Xiang Qi
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Jinbin Han
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Ziwei Kou
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Peng Liang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, PR China.
| |
Collapse
|
11
|
Han J, Qi X, Liang P. Improved sulfur autotrophic denitrification using supplementary bovine serum albumin. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 859:160147. [PMID: 36375551 DOI: 10.1016/j.scitotenv.2022.160147] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 11/08/2022] [Accepted: 11/08/2022] [Indexed: 06/16/2023]
Abstract
Excess nitrate presented in natural water body and drinking water has been a challenge for maintaining safe ecosystem and human health. Sulfur autotrophic denitrification is proved a feasible technology to remove nitrate from water environment. However, comparatively low rate of sulfur autotrophic denitrification needs to be addressed before wide application of this technology, which is a result of the low solubility of elemental sulfur. Therefore, this study employed bovine serum albumin (BSA) as a supplementary material to modify the elemental sulfur for improved sulfur autotrophic denitrification rate. Artificial biofilm of Thiobacillus denitrificans was prepared and employed in experiments. By testing different amount of BSA applied in both elemental sulfur and the biofilm, including 1 %, 2 % and 4 % mass ratios, it was found that larger employment of BSA had significant effect in increasing the denitrification rate. Particularly when 4 % BSA was added into elemental sulfur, the highest denitrification rate reached 26.8 mg-N/(L·d), 3.7 times of the control group. Meanwhile, the largest reaction rate constant was achieved, 4.13 mg0.5/(L0.5·d), 2.78 times of the control group. This effect was attributed to promoted conversion of elemental sulfur to polysulfide that was easily utilized by sulfur-oxidizing bacteria. A long-term operation (14 days) of packed bed reactor filled with sulfur particles and 1 % BSA delivered a much faster start-up than the control and outperformed it with better denitrification performance all-through the experiment. This result evidenced again that BSA could make a highly effective supplement in sulfur autotrophic denitrification.
Collapse
Affiliation(s)
- Jinbin Han
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Xiang Qi
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, PR China.
| | - Peng Liang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, PR China
| |
Collapse
|
12
|
Wang Z, Gao J, Dai H, Yuan Y, Zhao Y, Li D, Cui Y. Partial S(0)-driven autotrophic denitrification process facilitated the quick natural enrichment of anammox bacteria at room temperature. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 855:158916. [PMID: 36155029 DOI: 10.1016/j.scitotenv.2022.158916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 09/15/2022] [Accepted: 09/17/2022] [Indexed: 06/16/2023]
Abstract
Anaerobic ammonium oxidation (anammox) is well-known to be an environmental and promising biotechnology. However, the natural enrichment of anammox bacteria is still a challenging topic. In this study, partial S(0)-driven autotrophic denitrification (PSAD) was developed to stably supply nitrite, and natural enrichment of anammox bacteria was rapidly realized in a single sequencing moving bed biofilm reactor at room temperature. With the initiation of PSAD, anammox bacteria spontaneously emerged within 12 days, and PSAD-anammox coupling system was realized successfully. And then, the influent concentration of ammonium continuously increased to the same concentration as the nitrate, and the mean total nitrogen removal efficiency reached 92.77 %, which was mainly contributed by anammox. Moreover, the coupling of PSAD and anammox reduced the risk of sulfate emissions. cDNA high throughput sequencing revealed that the relative abundance of Candidatus Brocadia and Thiobacillus reached 39.03 % and 13.48 % at the 88th day. Oligotyping analysis illustrated that GATTTAAT and GTCCCA were the dominant Ca. Brocadia and Thiobacillus oligotypes in PSAD-anammox coupling system, respectively. DNA-based stable isotope probing further deciphered that Thiobacillus was the actual performer of PSAD and supported the nitrite for anammox bacteria in PSAD-anammox coupling system. Overall, this work provided a new strategy to naturally enrich anammox bacteria.
Collapse
Affiliation(s)
- Zhiqi Wang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
| | - Jingfeng Gao
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China.
| | - Huihui Dai
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
| | - Yukun Yuan
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
| | - Yifan Zhao
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
| | - Dingchang Li
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
| | - Yingchao Cui
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
| |
Collapse
|
13
|
Yang L, Qin Y, Liu X, Liu Z, Zheng S, Chen J, Gong S, Yang J, Lu T. The performance and microbial communities of Anammox and Sulfide-dependent autotrophic denitrification coupling system based on the gel immobilization. BIORESOURCE TECHNOLOGY 2022; 356:127287. [PMID: 35577222 DOI: 10.1016/j.biortech.2022.127287] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/03/2022] [Accepted: 05/05/2022] [Indexed: 06/15/2023]
Abstract
Anammox and sulfide-dependent autotrophic denitrification (ASDAD) coupling system can improve the nitrogen removal, but high sulfide concentration will affect the activity of anaerobic ammonia-oxidizing bacteria (AnAOB). Gel immobilization technology can enhance the survivability of microorganisms in unsuitable environments. Therefore, in this investigation, gel immobilization technology was applied into the ASDAD coupling system to explore the removal performance and microbial communities. The results showed that the optimal S2-/NO3- was 0.6, under which the best TN removal efficiency was 85.69%. The removal performance of ASDAD coupling system was stable under rapid variations of nitrogen loading rate and sulfide loading rate. Immobilized sludge cubes could attenuate the effects of temperature on AnAOB and sulfide-oxidizing bacteria. Observations of SEM and stereoscope suggested that AnAOB was more likely to exist on the surface of the sludge cubes. Thiobacillus, Candidatus Brocadia, and Candidatus Kuenenia were the main functional bacteria in the coupling system.
Collapse
Affiliation(s)
- Lan Yang
- School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, PR China
| | - Yujie Qin
- School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, PR China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, PR China
| | - Xiangyin Liu
- School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, PR China
| | - Zhiju Liu
- School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, PR China
| | - Shaohong Zheng
- School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, PR China
| | - Jiannv Chen
- School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, PR China
| | - Siyuan Gong
- School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, PR China
| | - Junfeng Yang
- School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, PR China
| | - Tiansheng Lu
- School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, PR China
| |
Collapse
|