1
|
Wang C, Wang M. Healthier lifestyles can modify the air pollutants effect on cardiovascular disease among the middle-aged and elderly. Sci Rep 2025; 15:14293. [PMID: 40274910 PMCID: PMC12022070 DOI: 10.1038/s41598-025-97093-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Accepted: 04/02/2025] [Indexed: 04/26/2025] Open
Abstract
There is increasing evidence that air pollutants significantly increase the risk of cardiovascular disease (CVD). Nevertheless, less research has been conducted to date to reveal protective factors. Therefore, this study aims to indicate whether a healthy lifestyle can modify the effects of environmental pollution on CVD. This study screened 3010 participants from the China Health and Retirement Longitudinal Study (CHARLS) Wave 3 (2015). The study aimed to systematically demonstrate the impact of environmental pollution on CVD and elucidate the role of a healthy lifestyle. Air pollutant data were obtained from the China High Air Pollutant (CHAP) datasets. We analyzed the relationship between these pollutants and cardiovascular disease risk using generalized linear mixed models. In addition, healthy lifestyles were categorized as low, medium, and high; stratified analyses were conducted to estimate the effect of healthy lifestyles on the risk of CVD due to air pollutants. 607 had CVD among 3010 participants, and the three-year mean concentrations of the pollutants chloride ion (Cl-), nitrate ion (NO3-), particulate matter with a diameter of 10 micrometers or less (PM10), particulate matter with a diameter of 10 micrometers or less (PM1), particulate matter with a diameter of 10 micrometers or less (PM2.5) were each linked 1.37 (95%CI:1.22,1.54), 1.03 (95%CI:1.00,1.06), 1.02 (95%CI:1.01,1.03), 1.01 (95%CI:1.00,1.01), and 1.01 (95%CI:1.00,1.01) fold risk of CVD, respectively. For the subgroups of low, medium, and high according to the healthy lifestyle score in model 2, the average concentration of Cl- pollutant was each associated with 1.34 (1.12,1.62), 1.34 (1.12,1.61), and 1.32 (1.03,1.71) times risk with CVD, respectively. The NO3 - was each associated with 1.06 (1.02,1.11), 1.01 (0.97,1.05), and 0.98 (0.93,1.04) times risk with CVD, respectively. The PM1 was each associated with 1.03 (1.01,1.05), 1.01 (0.99,1.02), and 1.00 (0.97,1.02) times risk with CVD, respectively. The PM10 was each associated with 1.01 (1.00,1.01), 1.01 (0.99,1.01), and 1.00 (0.99,1.01) times risk with CVD, respectively. PM2.5 was each associated with 1.02 (1.01,1.03), 1.00 (0.99,1.01), and 1.00 (0.99,1.01) times risk with CVD, respectively. Exposure to these pollutants(Cl-, NO3-, PM10, PM1, PM2.5)is associated with higher risk of CVD, and healthier lifestyles can reduce the risk of CVD due to overall air pollutants.
Collapse
Affiliation(s)
- Congzhi Wang
- Department of Internal Medicine Nursing, School of Nursing, Wannan Medical College, 22 Wenchang West Road, Higher Education Park, Wuhu City, 241000, An Hui Province, P.R. China
| | - Min Wang
- Department of Pharmacy, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou City, 570311, Hainan Province, P.R. China.
| |
Collapse
|
2
|
Pan H, Li Y, Zhu W, Wu C, Gao M, Wang Q, Wang Y, Lu Y, Rao Y, Yu C. Oriented bioconversion of food waste to lactic acid for external carbon source production: Microbial communities and comparison of denitrification performance. BIORESOURCE TECHNOLOGY 2025; 416:131739. [PMID: 39491737 DOI: 10.1016/j.biortech.2024.131739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 10/20/2024] [Accepted: 10/31/2024] [Indexed: 11/05/2024]
Abstract
The lactic acid fermentation supernatant of food waste (FSFW-LA) is an excellent carbon source for denitrification regarding performance and cost. Currently, limited attention has been paid to the concentration of lactic acid and its composition in the final product. In this study, five types of liquid carbon sources were obtained under optimal conditions to ensure a high concentration and percentage of the target products. Among them, FSFW-LA reached 68.1 g/L (81.8 %, w/w) of lactic acid by oriented bioconversion and possessed denitrification parameters closest to sodium acetate. Under the combined long-term operation of the SBR system with domestic wastewater, the TN and COD removal in the effluent after the addition of FSFW-LA stabilized at 96 % and 84 %, respectively, similar to sodium acetate (96 % and 85 %). Overall, the denitrification capabilities of high-quality FSFW-LA were explored, providing details on economic carbon source production.
Collapse
Affiliation(s)
- Haichuan Pan
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Yuan Li
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Wenbin Zhu
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Chuanfu Wu
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China; Beijing Key Laboratory On Resource-oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing 100083, China
| | - Ming Gao
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China; Beijing Key Laboratory On Resource-oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing 100083, China.
| | - Qunhui Wang
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China; Beijing Key Laboratory On Resource-oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing 100083, China
| | - Ying Wang
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, Guangdong, China; Chengdu Environmental Investment Group Co., Ltd, Chengdu 610042, Sichuan, China
| | - Yuan Lu
- Chengdu Environmental Investment Group Co., Ltd, Chengdu 610042, Sichuan, China
| | - Yi Rao
- Chengdu Environmental Investment Group Co., Ltd, Chengdu 610042, Sichuan, China
| | - Chunjiang Yu
- Chengdu Environmental Investment Group Co., Ltd, Chengdu 610042, Sichuan, China
| |
Collapse
|
3
|
Bermúdez LA, Mendoza VD, Díaz JCL, Pascual JM, Del Mar Muñio Martínez M, Capilla JMP. Investigation of the agricultural reuse potential of urban wastewater and other resources derived by using membrane bioreactor technology within the circular economy framework. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 955:177011. [PMID: 39427891 DOI: 10.1016/j.scitotenv.2024.177011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 09/19/2024] [Accepted: 10/15/2024] [Indexed: 10/22/2024]
Abstract
The European Union, as delineated in Regulation (EU) 2020/741, sets forth minimum criteria for the reuse of wastewater. Directive 86/278/CEE sets the regulations for the reuse of sewage sludge in agriculture. This study aimed to investigate the treated water derived from a pilot plant situated in Granada, Spain, that utilizes membrane bioreactor technology to process real urban wastewater with the quality standards necessary for agricultural reuse. Additionally, the study evaluated the utilization potential of other resources generated during wastewater treatment, including biogas and biostabilized sludge. The pilot plant incorporated a membrane bioreactor featuring four ultrafiltration membranes operating continuously alongside a sludge treatment line operating in batch mode. The pilot plant operated during four cycles, each with distinct hydraulic retention times (6 h and 12 h) and variable mixed liquor-suspended solids concentrations (ranging from 2688 mg L-1 to 7542 mg L-1). During these cycles, the plant was doped with increasing concentrations of emerging contamination compounds (diclofenac, ibuprofen, and erythromycin) to test their effect on the resources derived from the treatment. Subsequently, a tertiary treatment involving an advanced oxidation process was applied to the different water lines, which left the wastewater treatment plant for a period of 30 min and utilized varying concentrations of oxidant. The results indicate that the effluent obtained meets the required quality standards for agricultural use. Therefore, there is potential to use this waste as a resource, which is in line with the principles of the circular economy. Furthermore, the other resources generated during the treatment process, such as the biogas produced during the digestion process and the biostabilized sludge, have the potential to be used as resources according to the circular economy indicators.
Collapse
Affiliation(s)
- Laura Antiñolo Bermúdez
- Department of Civil Engineering and Institute of Water Research, University of Granada, Granada, Spain.
| | - Verónica Díaz Mendoza
- Department of Civil Engineering and Institute of Water Research, University of Granada, Granada, Spain.
| | - Juan Carlos Leyva Díaz
- Department of Civil Engineering and Institute of Water Research, University of Granada, Granada, Spain.
| | - Jaime Martín Pascual
- Department of Civil Engineering and Institute of Water Research, University of Granada, Granada, Spain.
| | | | | |
Collapse
|
4
|
Yang Y, Yuan Y, Xiong G, Yin Z, Guo Y, Song J, Zhu X, Wu J, Wang J, Wu J. Patterns of nitrate load variability under surface water-groundwater interactions in agriculturally intensive valley watersheds. WATER RESEARCH 2024; 267:122474. [PMID: 39316961 DOI: 10.1016/j.watres.2024.122474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 08/27/2024] [Accepted: 09/16/2024] [Indexed: 09/26/2024]
Abstract
Nitrate pollution is a significant environmental issue closely related to human activities, complicated hydrological interactions and nitrate fate in the valley watershed strongly affects nitrate load in hydrological systems. In this study, a nitrate reactive transport model by coupling SWAT-MODFLOW-RT3D between surface water and groundwater interactions at the watershed scale was developed, which was used to reproduce the interaction between surface water and groundwater in the basin from 2016 to 2019 and to reveal the nitrogen transformation process and the evolving trend of nitrate load within the hydrological system of the valley watershed. The results showed that the basin exhibited groundwater recharge to surface water in 2016-2019, particularly in the northwestern and northeastern mountainous regions of the valley watershed and the southern Beishan Reservoir vicinity. Groundwater recharge to surface water declined by 20.17 % from 2016 to 2019 due to precipitation. Nitrate loads in the hydrologic system of the watershed are primarily derived from human activities (including fertilizer application from agricultural activities and residential wastewater discharges) and the nitrogen cycle. Nitrate loads in surface water declined 16.05 % from 2016 to 2019. Nitrate levels are higher in agricultural farming and residential areas on the eastern and northern sides of the watershed. Additionally, hydrological interactions are usually accompanied by material accumulation and environmental changes. Nitrate levels tend to rise with converging water flows, a process that becomes more pronounced during precipitation events and cropping seasons in agriculturally intensive valley watersheds. However, environmental changes alter nitrogen transformation processes. Nitrogen fixation, nitrification, and ammonification intensify nitrogen inputs during river pooling, enhancing nitrogen cycling fluxes and elevating nitrate loads. These processes are further enhanced during groundwater recharge to surface water, leading to evaluated nitrate load. Enhanced denitrification, dissimilatory nitrate reduction to ammonium (DNRA), anaerobic ammonia oxidation, and assimilation promote the nitrogen export from the system and reduce the nitrate load during surface water recharge to groundwater.
Collapse
Affiliation(s)
- Yun Yang
- School of Earth Sciences and Engineering, Hohai University, Nanjing 210098, China.
| | - Yiliang Yuan
- School of Earth Sciences and Engineering, Hohai University, Nanjing 210098, China
| | - Guiyao Xiong
- Key Laboratory of Surficial Geochemistry of Ministry of Education, School of Earth Sciences and Engineering, Nanjing University, Nanjing 210023, China.
| | - Ziyue Yin
- Key Laboratory of Surficial Geochemistry of Ministry of Education, School of Earth Sciences and Engineering, Nanjing University, Nanjing 210023, China
| | - Yong Guo
- School of Earth Sciences and Engineering, Hohai University, Nanjing 210098, China
| | - Jian Song
- School of Earth Sciences and Engineering, Hohai University, Nanjing 210098, China
| | - Xiaobin Zhu
- Key Laboratory of Surficial Geochemistry of Ministry of Education, School of Earth Sciences and Engineering, Nanjing University, Nanjing 210023, China
| | - Jianfeng Wu
- Key Laboratory of Surficial Geochemistry of Ministry of Education, School of Earth Sciences and Engineering, Nanjing University, Nanjing 210023, China
| | - Jinguo Wang
- School of Earth Sciences and Engineering, Hohai University, Nanjing 210098, China
| | - Jichun Wu
- Key Laboratory of Surficial Geochemistry of Ministry of Education, School of Earth Sciences and Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
5
|
Wu Z, Wu Y, Yu Y, Wang L, Qi P, Sun Y, Fu Q, Zhang G. Assessment of groundwater quality variation characteristics and influencing factors in an intensified agricultural area: An integrated hydrochemical and machine learning approach. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 371:123233. [PMID: 39509978 DOI: 10.1016/j.jenvman.2024.123233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 10/29/2024] [Accepted: 11/01/2024] [Indexed: 11/15/2024]
Abstract
The decline in groundwater quality in intensive agricultural areas in recent years, driven by environmental change and intensified human activity, poses a significant threat to agricultural production and public health, requiring attention and effective management. However, distinguishing the specific impacts of various factors on groundwater quality remains challenging, which hinders the effective management and prevention of groundwater pollution. This research integrates a hydrochemical analysis with the Entropy-weighted Water Quality Index, Self-Organizing Map (SOM) approach, and Boruta algorithm to investigate groundwater chemical variations and their influencing factors in the Sanjiang Plain, an important grain-producing region in China. The findings reveal that, compared to 2012, the deep groundwater quality has improved, while the shallow groundwater quality has markedly deteriorated. This decline in shallow groundwater quality is primarily attributable to human activities and is characterized by elevated levels of chloride, sulfate, and nitrate and a shift in the groundwater hydrochemical facies from an HCO3-Ca·Mg type to a mixed HCO3-Ca·Mg and SO4·Cl-Ca·Mg type. The SOM results suggested that land use type significantly affects shallow groundwater quality. Further analysis with the Boruta algorithm identified increased sewage and manure emissions from expanding livestock operations as well as enhanced pollutant leakage from the expansion of paddy fields as the primary contributors to the decline in shallow groundwater quality. These findings offer new insights into the mechanisms of groundwater quality changes in agriculturally intensive regions and provide a foundation for improved groundwater pollution management in the Sanjiang Plain and similar areas.
Collapse
Affiliation(s)
- Zexin Wu
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China; School of Hydraulic and Electric-Power, Heilongjiang University, Harbin, 150080, China
| | - Yao Wu
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China.
| | - Yexiang Yu
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China
| | - Lei Wang
- British Geological Survey, Keyworth, Nottingham, NG12 5GG, UK
| | - Peng Qi
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China
| | - Yingna Sun
- School of Hydraulic and Electric-Power, Heilongjiang University, Harbin, 150080, China
| | - Qiannian Fu
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China; School of Hydraulic and Electric-Power, Heilongjiang University, Harbin, 150080, China
| | - Guangxin Zhang
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China.
| |
Collapse
|
6
|
Liu Y, Wang Y, Wei F, Chai L, Wang H. Gut microbiota-bile acid crosstalk contributes to intestinal damage after nitrate exposure in Bufo gargarizans tadpoles. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 943:173795. [PMID: 38851338 DOI: 10.1016/j.scitotenv.2024.173795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 05/24/2024] [Accepted: 06/03/2024] [Indexed: 06/10/2024]
Abstract
Bile acids (BAs) are amphipathic steroid acids whose production and diversity depend on both host and microbial metabolism. Nitrate (NO3-) is a widespread pollutant in aquatic ecosystems, which can cause rapid changes in microbial community structure and function. However, the effect of gut microbiota reshaped by nitrate‑nitrogen (NO3-N) on BAs profiles remains unclarified. To test this, intestinal targeted BAs metabolomics and fecal metagenomic sequencing were performed on Bufo gargarizans tadpoles treated with different concentrations of NO3-N. NO3-N exposure induced a reduction in the abundance of microbiota with bile acid-inducible enzymes (BAIs) and/or hydroxysteroid dehydrogenases (HSDHs), thus inhibiting the conversion of primary BAs to secondary BAs. Inhibition of BAs biotransformation decreased protective hydrophilic BAs (UDCA) and increased toxic hydrophobic BAs (CA and CDCA), which may contribute to intestinal histopathological damage. Moreover, we found that NO3-N treatment increased microbial virulence factors and decreased Glycoside hydrolases, further highlighting the deleterious risk of NO3-N. Overall, this study shed light on the complex interactions of NO3-N, gut microbiota, and BAs, and emphasized the hazardous effects of NO3-N pollution on the health of amphibians.
Collapse
Affiliation(s)
- Ying Liu
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
| | - Yaxi Wang
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
| | - Fei Wei
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
| | - Lihong Chai
- School of Water and Environment, Chang'an University, Xi'an 710054, China; Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region of Ministry of Education, Chang'an University, Xi'an 710054, China
| | - Hongyuan Wang
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, China.
| |
Collapse
|
7
|
Bi K, Wang Y, Li Z, Gao S, Zou H, Li L. Traceability of gushing water in the MiddleRoute of the South-to-North Water Diversion (Beijing section) through the river area. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 364:121450. [PMID: 38875987 DOI: 10.1016/j.jenvman.2024.121450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 05/28/2024] [Accepted: 06/08/2024] [Indexed: 06/16/2024]
Abstract
To trace the origin of the gushing water in the riverine area of the Beijing section of The Middle Route of South-to-North Water Diversion Project, a dataset was established comprising water chemistry, three-dimensional fluorescence spectra, and stable isotopes for different water bodies. Results indicated significant differences in Electrical Conductivity (EC), Total Dissolved Solids (TDS), and Ca2+ concentration among the gushing water, river water, and the water from the Middle Route of South-to-North Water Diversion Project (MRSD). Analysis using parallel factor analysis (PARAFAC) and fluorescence index revealed that dissolved organic matter (DOM) in the MRSD mainly originated from endogenous sources, while the river water and gushing water showed influences from both endogenous and exogenous sources. Nitrate sources varied among the water bodies, with distinct contributions from domestic sewage and fertilizer sources. The evaporation lines of river water and gushing water exhibited similar intercepts and slopes, but their intercepts and slopes are much smaller than those of the MRSD, suggesting stronger kinetic evaporative fractionation. In conclusion, the gushing water in the riverine area of the MRSD was determined to originate from the river, providing a fast and efficient method for gushing water source identification.
Collapse
Affiliation(s)
- Keyue Bi
- School of Environment and Ecology, Jiangnan University Wuxi, Jiangsu, 214122, China; Research institutes Beijing Key Laboratory of Water Environmental and Ecological Technology for River Basins,Beijing Water Science and Technology Institute, Beijing 100048, China; Beijing South-North Water Diversion main line management office, Beijing 100195, China
| | - Yongkang Wang
- Research institutes Beijing Key Laboratory of Water Environmental and Ecological Technology for River Basins,Beijing Water Science and Technology Institute, Beijing 100048, China
| | - Zhaoxin Li
- Research institutes Beijing Key Laboratory of Water Environmental and Ecological Technology for River Basins,Beijing Water Science and Technology Institute, Beijing 100048, China.
| | - Sai Gao
- Beijing South-North Water Diversion main line management office, Beijing 100195, China
| | - Hua Zou
- School of Environment and Ecology, Jiangnan University Wuxi, Jiangsu, 214122, China.
| | - Lei Li
- Research institutes Beijing Key Laboratory of Water Environmental and Ecological Technology for River Basins,Beijing Water Science and Technology Institute, Beijing 100048, China
| |
Collapse
|
8
|
Wang D, Wu J, Li P, Li L, Yang J, Zhang P, He S, Kou X, Wang Y. Seasonal nitrate variations, risks, and sources in groundwater under different land use types in a thousand-year-cultivated region, northwestern China. ENVIRONMENTAL RESEARCH 2024; 251:118699. [PMID: 38493861 DOI: 10.1016/j.envres.2024.118699] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 03/09/2024] [Accepted: 03/11/2024] [Indexed: 03/19/2024]
Abstract
The global public health concern of nitrate (NO3-) contamination in groundwater is particularly pronounced in irrigated agricultural regions. This paper aims to analyze the spatial distribution of groundwater NO3-, assess potential health risks for local residents, and quantitatively identify nitrate sources during different seasons and land use types in the Jinghuiqu Irrigation District, a region in northwestern China with a longstanding agricultural history. The investigation utilizes hydrochemical parameters, dual isotopic data, and the Bayesian stable isotope mixing model (MixSIAR). The findings underscore significant seasonal variations in the average concentrations of NO3-, with values of 87.72 mg/L and 101.87 mg/L during the wet and dry seasons, respectively. Furthermore, distinct fluctuations in nitrate concentration were observed across different land use types, whereby vegetable lands manifested the maximum concentration. Prolonged exposure to elevated nitrate concentrations may pose potential health risks to residents, especially in the dry season when the non-carcinogenic groundwater nitrate risk surges past its wet season counterpart. The MixSIAR analysis revealed that chemical fertilizers accounted for the majority of nitrate pollution in vegetable lands, both during the dry season (49.6%) and wet season (41.2%). In contrast, manure and sewage contributed significantly to NO3-concentrations in residential land during the wet (74.9%) and dry seasons (67.6%). For croplands, soil nitrogen emerged as a dominant source during the wet season (42.2%), while chemical fertilizers prevailed in the dry season (38.7%). In addition to source variations, the nitrate concentration of groundwater is further affected by hydrogeological conditions, with more permeable aquifers tending to display higher nitrate concentrations. Thus, targeted measures were proposed to modify or impede the nitrogen migration pathway, taking into consideration hydrogeological conditions and incorporating domestic sewage, organic fertilizer, and agricultural management practices.
Collapse
Affiliation(s)
- Dan Wang
- School of Water and Environment, Chang'an University, No. 126 Yanta Road, Xi'an, 710054, Shaanxi, China; Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region of the Ministry of Education, Chang'an University, No. 126 Yanta Road, Xi'an, 710054, Shaanxi, China; Key Laboratory of Eco-hydrology and Water Security in Arid and Semi-arid Regions of the Ministry of Water Resources, Chang'an University, No. 126 Yanta Road, Xi'an, 710054, Shaanxi, China
| | - Jianhua Wu
- School of Water and Environment, Chang'an University, No. 126 Yanta Road, Xi'an, 710054, Shaanxi, China; Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region of the Ministry of Education, Chang'an University, No. 126 Yanta Road, Xi'an, 710054, Shaanxi, China; Key Laboratory of Eco-hydrology and Water Security in Arid and Semi-arid Regions of the Ministry of Water Resources, Chang'an University, No. 126 Yanta Road, Xi'an, 710054, Shaanxi, China.
| | - Peiyue Li
- School of Water and Environment, Chang'an University, No. 126 Yanta Road, Xi'an, 710054, Shaanxi, China; Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region of the Ministry of Education, Chang'an University, No. 126 Yanta Road, Xi'an, 710054, Shaanxi, China; Key Laboratory of Eco-hydrology and Water Security in Arid and Semi-arid Regions of the Ministry of Water Resources, Chang'an University, No. 126 Yanta Road, Xi'an, 710054, Shaanxi, China.
| | - Lingxi Li
- School of Water and Environment, Chang'an University, No. 126 Yanta Road, Xi'an, 710054, Shaanxi, China; Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region of the Ministry of Education, Chang'an University, No. 126 Yanta Road, Xi'an, 710054, Shaanxi, China; Key Laboratory of Eco-hydrology and Water Security in Arid and Semi-arid Regions of the Ministry of Water Resources, Chang'an University, No. 126 Yanta Road, Xi'an, 710054, Shaanxi, China
| | - Junyan Yang
- School of Water and Environment, Chang'an University, No. 126 Yanta Road, Xi'an, 710054, Shaanxi, China; Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region of the Ministry of Education, Chang'an University, No. 126 Yanta Road, Xi'an, 710054, Shaanxi, China; Key Laboratory of Eco-hydrology and Water Security in Arid and Semi-arid Regions of the Ministry of Water Resources, Chang'an University, No. 126 Yanta Road, Xi'an, 710054, Shaanxi, China
| | - Pengbin Zhang
- School of Water and Environment, Chang'an University, No. 126 Yanta Road, Xi'an, 710054, Shaanxi, China; Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region of the Ministry of Education, Chang'an University, No. 126 Yanta Road, Xi'an, 710054, Shaanxi, China; Key Laboratory of Eco-hydrology and Water Security in Arid and Semi-arid Regions of the Ministry of Water Resources, Chang'an University, No. 126 Yanta Road, Xi'an, 710054, Shaanxi, China
| | - Song He
- PowerChina Northwest Engineering Corporation Limited, No. 18 Zhangbadong Road, Xi'an, 710065, Shaanxi, China
| | - Xiaomei Kou
- PowerChina Northwest Engineering Corporation Limited, No. 18 Zhangbadong Road, Xi'an, 710065, Shaanxi, China
| | - Yong Wang
- PowerChina Sinohydro Bureau 3 Co.,LTD., No. 4069 Expo Avenue, Chanba Ecological District, Xi'an, 710024, Shaanxi, China
| |
Collapse
|
9
|
Metem P, Toledo-Carrillo E, Ye F, Dutta J. Enhanced Electrocatalytic Conversion of Nitrates to Ammonia: Fuel from Waste. CHEMSUSCHEM 2024; 17:e202301570. [PMID: 38221316 DOI: 10.1002/cssc.202301570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/07/2024] [Accepted: 01/11/2024] [Indexed: 01/16/2024]
Abstract
Ammonia (NH3) is globally one of the most produced chemicals. Despite being known for its use as a fuel and as a precursor of multiple chemicals, during its production, it is responsible for more than 1.2 % of the total global CO2 emission and consumes a large amount of energy. In this work, we studied a flow-through membrane-free electrocatalytic device (CMED) to produce continuous stream of NH3 from a common water contaminant, nitrate (NO3 -). Indium-palladium (In-Pd) nanoparticles were impregnated in activated carbon cloth (ACC) and used as a cathode in the electrochemical device. It is found that in the counter electrode, adding oxygen evolution reaction (OER) active catalysts like platinum (Pt) for the regeneration of hydrogen ions enhances the rate of ammonia conversion to 7.28 μmol min-1 cm-2, eliminate the production of toxic nitrite by-products, as well as provide a platform for a stable energy consumption over long periods of time. This method for the conversion of NO3 - into NH3 promises a way forward for sustainable resource utilization while generating fuel from waste and contributing to future circular economies, and managing the nitrogen cycle in water that is a major challenge of the 21st century society.
Collapse
Affiliation(s)
- Prattakorn Metem
- Functional Nanomaterials, Department of Applied Physics, School of Engineering Sciences, KTH Royal Institute of Technology, Hannes Alfvéns väg 12, 11419, Stockholm, Sweden
| | - Esteban Toledo-Carrillo
- Functional Nanomaterials, Department of Applied Physics, School of Engineering Sciences, KTH Royal Institute of Technology, Hannes Alfvéns väg 12, 11419, Stockholm, Sweden
| | - Fei Ye
- Functional Nanomaterials, Department of Applied Physics, School of Engineering Sciences, KTH Royal Institute of Technology, Hannes Alfvéns väg 12, 11419, Stockholm, Sweden
| | - Joydeep Dutta
- Functional Nanomaterials, Department of Applied Physics, School of Engineering Sciences, KTH Royal Institute of Technology, Hannes Alfvéns väg 12, 11419, Stockholm, Sweden
| |
Collapse
|
10
|
Chen W, Zhang X, Wu N, Yuan C, Liu Y, Yang Y, Chen Z, Dahlgren RA, Zhang M, Ji X. Sources and transformations of riverine nitrogen across a coastal-plain river network of eastern China: New insights from multiple stable isotopes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 924:171671. [PMID: 38479520 DOI: 10.1016/j.scitotenv.2024.171671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 03/10/2024] [Accepted: 03/10/2024] [Indexed: 03/18/2024]
Abstract
Riverine nitrogen pollution is ubiquitous and attracts considerable global attention. Nitrate is commonly the dominant total nitrogen (TN) constituent in surface and ground waters; thus, stable isotopes of nitrate (δ15N/δ18O-NO3-) are widely used to differentiate nitrate sources. However, δ15N/δ18O-NO3- approach fails to present a holistic perspective of nitrogen pollution for many coastal-plain river networks because diverse nitrogen species contribute to high TN loads. In this study, multiple isotopes, namely, δ15N/δ18O-NO3-, δ18O-H2O, δ15N-NH4+, δ15N-PN, and δ15Nbulk/δ18O/SP-N2O in the Wen-Rui Tang River, a typical coastal-plain river network of Eastern China, were investigated to identify transformation processes and sources of nitrogen. Then, a stable isotope analysis in R (SIAR) model-TN source apportionment method was developed to quantify the contributions of different nitrogen sources to riverine TN loads. Results showed that nitrogen pollution in the river network was serious with TN concentrations ranging from 1.71 to 8.09 mg/L (mean ± SD: 3.77 ± 1.39 mg/L). Ammonium, nitrate, and suspended particulate nitrogen were the most prominent nitrogen components during the study period, constituting 45.4 %, 28.9 %, and 19.9 % of TN, respectively. Multiple hydrochemical and isotopic analysis identified nitrification as the dominant N cycling process. Biological assimilation and denitrification were minor N cycling processes, whereas ammonia volatilization was deemed negligible. Isotopic evidence and SIAR modeling revealed municipal sewage was the dominant contributor to nitrogen pollution. Based on quantitative estimates from the SIAR model, nitrogen source contributions to the Wen-Rui Tang River watershed followed: municipal sewage (40.6 %) ≈ soil nitrogen (39.5 %) > nitrogen fertilizer (9.7 %) > atmospheric deposition (2.8 %) during wet season; and municipal sewage (59.1 %) > soil nitrogen (30.4 %) > nitrogen fertilizer (4.1 %) > atmospheric deposition (1.0 %) during dry season. This study provides a deeper understanding of nitrogen dynamics in eutrophic coastal-plain river networks, which informs strategies for efficient control and remediation of riverine nitrogen pollution.
Collapse
Affiliation(s)
- Wenli Chen
- Key Laboratory of Watershed Science and Health of Zhejiang Province, School of Public Health and Management, Wenzhou Medical University, Wenzhou 325035, China
| | - Xiaohan Zhang
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Nianting Wu
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Can Yuan
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Yinli Liu
- Key Laboratory of Watershed Science and Health of Zhejiang Province, School of Public Health and Management, Wenzhou Medical University, Wenzhou 325035, China
| | - Yue Yang
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China; Southern Zhejiang Water Research Institute, Wenzhou 325035, China
| | - Zheng Chen
- Key Laboratory of Watershed Science and Health of Zhejiang Province, School of Public Health and Management, Wenzhou Medical University, Wenzhou 325035, China
| | - Randy A Dahlgren
- Department of Land, Air and Water Resources, University of California, Davis, California 95616, USA
| | - Minghua Zhang
- Key Laboratory of Watershed Science and Health of Zhejiang Province, School of Public Health and Management, Wenzhou Medical University, Wenzhou 325035, China; Southern Zhejiang Water Research Institute, Wenzhou 325035, China; Department of Land, Air and Water Resources, University of California, Davis, California 95616, USA
| | - Xiaoliang Ji
- Key Laboratory of Watershed Science and Health of Zhejiang Province, School of Public Health and Management, Wenzhou Medical University, Wenzhou 325035, China.
| |
Collapse
|
11
|
Lin C, Du R, Guo F. Implication of self-organizing map, stable isotopes combined with MixSIAR model for accurate nitrogen control in a well-protected reservoir. ENVIRONMENTAL RESEARCH 2024; 248:118335. [PMID: 38295982 DOI: 10.1016/j.envres.2024.118335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 01/25/2024] [Accepted: 01/27/2024] [Indexed: 02/03/2024]
Abstract
Nitrogen pollution and eutrophication in reservoirs is a global environmental geochemical concern. Occasional algal blooms still exist in reservoirs that have undergone pollution treatment. The lack of quantitative evidence of nitrogen sources and fate limits long-term stable ecological safety management. This work applied an approach integrated zonal mapping, stable isotopes (δ18OH2O, δ15Nnitrate, δ18Onitrate, and δ13C-DIC) and a Bayesian isotope model to analyze regional and seasonal differences in the contribution and sources of nitrogen to a well-protected reservoir. The values of δ18Onitrate and the positive relationship between NO3- and δ13C-DIC suggested that nitrification was the primary NO3- production in the rivers. While Denitrification was present at only a few sites. Results of the MixSIAR model coupled the NO3-/Cl- indicator revealed that the domestic sewage contributed high riverine NO3- loading (68.6 ± 10.6 %) in the dry season. In the wet season, the main nitrate sources of upper watershed were ammonia and carbamide fertilizers (47.5 % and 40.3 %). While the domestic sewage was still the major contributor of downstream region (a dense residential area), indicating possible problems with rainwater and sewage drainage networks. The results implied that the colleting and treatment of sewages were the priority in downstream region, and non-point source pollution control and wastewater treatment plant upgrading were essential to control nitrate pollution in the two upstream regions. These findings provide new insights into precise nitrogen pollution traceability and identification of treatment priorities in the sub-region, and promote the management other well-protected watershed in similar need of further nitrogen contamination control.
Collapse
Affiliation(s)
- Changkun Lin
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Ronghua Du
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Fei Guo
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China.
| |
Collapse
|
12
|
Gad M, Cao M, Qin D, Sun Q, Yu CP, Hu A. Development, validation, and application of a microbial community-based index of biotic integrity for assessing the ecological status of a peri-urban watershed in China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 910:168659. [PMID: 37979863 DOI: 10.1016/j.scitotenv.2023.168659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/09/2023] [Accepted: 11/15/2023] [Indexed: 11/20/2023]
Abstract
This study represents the pioneering effort in employing 16S rRNA-bacteria and 18S rRNA-microeukaryotes to construct the microbial community-based index of biotic integrity (MC-IBI) for assessing the ecological health of riverine ecosystems. The MC-IBI was developed, validated, and implemented using water samples from the Changle River watershed, encompassing both wet and dry seasons. A total of 205 metrics, containing microbial diversity, composition, pollution tolerance/sensitivity, and functional categories, were selected as candidates for evaluation. Following a rigorous screening process, five core metrics were identified as key indicators, namely Pielou's evenness of microeukaryotes, %Cryptophyceae, %Proteobacteria, %Oxyphotobacteria, and % 16S rRNA gene-human pathogens. Moreover, redundancy analysis revealed three metrics (i.e., Pielou's evenness, % 16S rRNA gene-human pathogens, and % Proteobacteria) were positively correlated with impairment conditions. In contrast, two metrics (i.e., %Oxyphotobacteria and %Cryptophyceae) were associated positively with reference conditions. Notably, the developed MC-IBI demonstrates clear discrimination between reference and impaired sites and significantly correlates with environmental parameters and land use patterns. A path model analysis revealed that land use patterns (i.e., build-up land, cropland) negatively impacted the MC-IBI scores. The application of the MC-IBI method yielded an assessment of the ecological conditions at the 73 sampling locations within the Changle River watershed, assigning them into categories of "Very good" (4.1 %), "Good" (4.1 %), "Moderate" (5.5 %), "Poor" (21.9 %), and "Very poor" (64.4 %). This bioassessment framework presents an innovative approach toward the preservation, maintenance, and management of riverine ecosystems.
Collapse
Affiliation(s)
- Mahmoud Gad
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Water Pollution Research Department, National Research Centre, Giza 12622, Egypt
| | - Meixian Cao
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dan Qin
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Qian Sun
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Chang-Ping Yu
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Anyi Hu
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
13
|
Rathore C, Yadav VK, Amari A, Meena A, Chinedu Egbosiuba T, Verma RK, Mahdhi N, Choudhary N, Sahoo DK, Chundawat RS, Patel A. Synthesis and characterization of titanium dioxide nanoparticles from Bacillus subtilis MTCC 8322 and its application for the removal of methylene blue and orange G dyes under UV light and visible light. Front Bioeng Biotechnol 2024; 11:1323249. [PMID: 38260746 PMCID: PMC10800539 DOI: 10.3389/fbioe.2023.1323249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 12/18/2023] [Indexed: 01/24/2024] Open
Abstract
Over the last decade there has been a huge increase in the green synthesis of nanoparticles. Moreover, there is a continuous increase in harnessing the potential of microorganisms for the development of efficient and biocompatible nanoparticles around the globe. In the present research work, investigators have synthesized TiO2 NPs by harnessing the potential of Bacillus subtilis MTCC 8322 (Gram-positive) bacteria. The formation and confirmation of the TiO2 NPs synthesized by bacteria were carried out by using UV-Vis spectroscopy, Fourier transforms infrared (FT-IR), X-ray diffraction (XRD), scanning electron microscope (SEM), and energy dispersive X-ray spectroscopy (EDX/EDS). The size of the synthesized TiO2 NPs was 80-120 nm which was spherical to irregular in shape as revealed by SEM. FTIR showed the characteristic bands of Ti-O in the range of 400-550 cm-1 and 924 cm-1 while the band at 2930 cm-1 confirmed the association of bacterial biomolecules with the synthesized TiO2 NPs. XRD showed two major peaks; 27.5° (rutile phase) and 45.6° (anatase phase) for the synthesized TiO2 NPs. Finally, the potential of the synthesized TiO2 NPs was assessed as an antibacterial agent and photocatalyst. The remediation of Methylene blue (MB) and Orange G (OG) dyes was carried out under UV- light and visible light for a contact time of 150-240 min respectively. The removal efficiency for 100 ppm MB dye was 25.75% and for OG dye was 72.24% under UV light, while in visible light, the maximum removal percentage for MB and OG dye was 98.85% and 80.43% respectively at 90 min. Moreover, a kinetic study and adsorption isotherm study were carried out for the removal of both dyes, where the pseudo-first-order for MB dye is 263.269 and 475554.176 mg/g for OG dye. The pseudo-second-order kinetics for MB and OG dye were 188.679 and 1666.667 mg/g respectively. In addition to this, the antibacterial activity of TiO2 NPs was assessed against Bacillus subtilis MTCC 8322 (Gram-positive) and Escherichia coli MTCC 8933 (Gram-negative) where the maximum zone of inhibition in Bacillus subtilis MTCC 8322 was about 12 mm, and for E. coli 16 mm.
Collapse
Affiliation(s)
- Chandani Rathore
- Department of Biosciences, School of Liberal Arts and Sciences, Mody University of Science and Technology, Sikar, Rajasthan, India
| | - Virendra Kumar Yadav
- Department of Life Sciences, Hemchandracharya North Gujarat University, Patan, Gujarat, India
| | - Abdelfattah Amari
- Department of Chemical Engineering, College of Engineering, King Khalid University, Abha, Saudi Arabia
| | - Abhishek Meena
- Department of Physics and Semiconductor Science, Dongguk University, Seoul, Republic of Korea
| | - Titus Chinedu Egbosiuba
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX, United States
| | - Rakesh Kumar Verma
- Department of Biosciences, School of Liberal Arts and Sciences, Mody University of Science and Technology, Sikar, Rajasthan, India
| | - Noureddine Mahdhi
- Laboratory Materials Organizations and Properties, Tunis El Manar University, Tunis, Tunisia
| | - Nisha Choudhary
- Department of Life Sciences, Hemchandracharya North Gujarat University, Patan, Gujarat, India
| | - Dipak Kumar Sahoo
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA, United States
| | - Rajendra Singh Chundawat
- Department of Biosciences, School of Liberal Arts and Sciences, Mody University of Science and Technology, Sikar, Rajasthan, India
| | - Ashish Patel
- Department of Life Sciences, Hemchandracharya North Gujarat University, Patan, Gujarat, India
| |
Collapse
|
14
|
Wang D, Li P, Mu D, Liu W, Chen Y, Fida M. Unveiling the biogeochemical mechanism of nitrate in the vadose zone-groundwater system: Insights from integrated microbiology, isotope techniques, and hydrogeochemistry. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167481. [PMID: 37788773 DOI: 10.1016/j.scitotenv.2023.167481] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/09/2023] [Accepted: 09/28/2023] [Indexed: 10/05/2023]
Abstract
Clarifying the biogeochemical mechanism of nitrate (NO3-) in the vadose zone-groundwater system, particularly in agricultural contexts, is crucial for mitigating groundwater NO3- pollution. However, comprehensive studies on the impacts of changes in chemical indicators and microbial communities on NO3- are still lacking. This paper aims to address this gap by employing hydrogeochemistry, stable isotopes, and microbial techniques to assess the NO3- biogeochemical processes in the vadose zone-groundwater system. The findings suggested that NO3- in upper soil layers was primarily influenced by plant root absorption, assimilation, and nitrification processes. The oxygen contents gradually decreased with the nitrification process, resulting in the occurrence of the denitrification. However, denitrification predominantly occurred in the 60-80 cm soil layer in the study area. The limited thickness of the denitrification layer results in less NO3- consumption, leading to increased NO3- leaching into groundwater. Hydrochemical and isotopic characteristics further indicated that groundwater NO3- concentrations were mainly controlled by nitrification, followed by denitrification and mixing processes. The 16S rRNA sequencing analysis revealed great influences of soil sampling depths and groundwater NO3- concentrations on the microbial community structure. Additionally, the PICRUSt2-based prediction results demonstrated a stronger potential for dissimilatory reduction of NO3- to ammonium (DNRA) in both soil and groundwater compared to the other processes, potentially due to the widespread presence of the nrfH functional genes. However, the chemical indicators and isotopes used in this study did not support the occurrence of DNRA process in the vadose zone-groundwater system. This finding highlights the importance of an integrated approach combining microbiological, isotopic, and hydrogeochemical data to comprehensive understanding biogeochemical processes. The study developed a conceptual model elucidating the NO3- biogeochemical processes in the vadose zone-groundwater system within an agricultural area, contributing to enhanced comprehension and advancement of sustainable management practices for groundwater nitrogen.
Collapse
Affiliation(s)
- Dan Wang
- School of Water and Environment, Chang'an University, No. 126 Yanta Road, Xi'an 710054, Shaanxi, China; Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region of the Ministry of Education, Chang'an University, No. 126 Yanta Road, Xi'an 710054, Shaanxi, China; Key Laboratory of Eco-hydrology and Water Security in Arid and Semi-arid Regions of the Ministry of Water Resources, Chang'an University, No. 126 Yanta Road, Xi'an 710054, Shaanxi, China
| | - Peiyue Li
- School of Water and Environment, Chang'an University, No. 126 Yanta Road, Xi'an 710054, Shaanxi, China; Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region of the Ministry of Education, Chang'an University, No. 126 Yanta Road, Xi'an 710054, Shaanxi, China; Key Laboratory of Eco-hydrology and Water Security in Arid and Semi-arid Regions of the Ministry of Water Resources, Chang'an University, No. 126 Yanta Road, Xi'an 710054, Shaanxi, China.
| | - Dawei Mu
- School of Water and Environment, Chang'an University, No. 126 Yanta Road, Xi'an 710054, Shaanxi, China; Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region of the Ministry of Education, Chang'an University, No. 126 Yanta Road, Xi'an 710054, Shaanxi, China; Key Laboratory of Eco-hydrology and Water Security in Arid and Semi-arid Regions of the Ministry of Water Resources, Chang'an University, No. 126 Yanta Road, Xi'an 710054, Shaanxi, China
| | - Weichao Liu
- School of Water and Environment, Chang'an University, No. 126 Yanta Road, Xi'an 710054, Shaanxi, China; Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region of the Ministry of Education, Chang'an University, No. 126 Yanta Road, Xi'an 710054, Shaanxi, China; Key Laboratory of Eco-hydrology and Water Security in Arid and Semi-arid Regions of the Ministry of Water Resources, Chang'an University, No. 126 Yanta Road, Xi'an 710054, Shaanxi, China
| | - Yinfu Chen
- School of Water and Environment, Chang'an University, No. 126 Yanta Road, Xi'an 710054, Shaanxi, China; Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region of the Ministry of Education, Chang'an University, No. 126 Yanta Road, Xi'an 710054, Shaanxi, China; Key Laboratory of Eco-hydrology and Water Security in Arid and Semi-arid Regions of the Ministry of Water Resources, Chang'an University, No. 126 Yanta Road, Xi'an 710054, Shaanxi, China
| | - Misbah Fida
- School of Water and Environment, Chang'an University, No. 126 Yanta Road, Xi'an 710054, Shaanxi, China; Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region of the Ministry of Education, Chang'an University, No. 126 Yanta Road, Xi'an 710054, Shaanxi, China; Key Laboratory of Eco-hydrology and Water Security in Arid and Semi-arid Regions of the Ministry of Water Resources, Chang'an University, No. 126 Yanta Road, Xi'an 710054, Shaanxi, China
| |
Collapse
|
15
|
Zhang Z, Han J, Zhang Y, Sun Y, Sun Z, Liu Z. Connotation, status, and governance of land ecological security in China's new urbanization: recent advances and future prospects. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:119654-119670. [PMID: 37966642 DOI: 10.1007/s11356-023-30888-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 11/01/2023] [Indexed: 11/16/2023]
Abstract
The rapid development of China's new urbanization has created favorable conditions for economic growth and social development. Urbanization includes population urbanization and land urbanization, among which land urbanization leads to land ecological security problems. At present, there is a lack of comprehensive understanding of land ecological security in China's new urbanization construction. This paper aims to fill the gap by systematically combing relevant literature on the connotation, status, and governance of land ecological security in China's new urbanization. Literature review shows that China's land ecological security is still at a low level, and the new urbanization construction has significant impacts on land ecological security. Land contamination is the most critical factor threatening land ecological security, and there are differences in the levels of land contamination and types of pollutants in different new urbanization construction forms. According to an example of land ecological security governance with enterprises as the main body and multiple subjects cooperating, the governance of land ecological security needs to integrate a variety of different subjects to coordinate governance. Future research directions should focus on the construction of land ecological security assessment index system, development of land contamination multi-level control technology, and construction of multi-subject collaborative governance model with "government-enterprise-social organization-residents."
Collapse
Affiliation(s)
- Zhaoxin Zhang
- Shaanxi Provincial Land Engineering Construction Group Co., Ltd., Xi'an, 710075, China
- Institute of Land Engineering and Technology, Shaanxi Provincial Land Engineering Construction Group Co., Ltd., Xi'an, 710075, China
- Key Laboratory of Degraded and Unused Land Consolidation Engineering, Ministry of Natural Resources, Xi'an, 710075, China
| | - Jichang Han
- Shaanxi Provincial Land Engineering Construction Group Co., Ltd., Xi'an, 710075, China.
- Institute of Land Engineering and Technology, Shaanxi Provincial Land Engineering Construction Group Co., Ltd., Xi'an, 710075, China.
- Key Laboratory of Degraded and Unused Land Consolidation Engineering, Ministry of Natural Resources, Xi'an, 710075, China.
| | - Yang Zhang
- Shaanxi Provincial Land Engineering Construction Group Co., Ltd., Xi'an, 710075, China
- Institute of Land Engineering and Technology, Shaanxi Provincial Land Engineering Construction Group Co., Ltd., Xi'an, 710075, China
- Key Laboratory of Degraded and Unused Land Consolidation Engineering, Ministry of Natural Resources, Xi'an, 710075, China
| | - Yingying Sun
- Shaanxi Provincial Land Engineering Construction Group Co., Ltd., Xi'an, 710075, China
- Institute of Land Engineering and Technology, Shaanxi Provincial Land Engineering Construction Group Co., Ltd., Xi'an, 710075, China
- Key Laboratory of Degraded and Unused Land Consolidation Engineering, Ministry of Natural Resources, Xi'an, 710075, China
| | - Zenghui Sun
- Shaanxi Provincial Land Engineering Construction Group Co., Ltd., Xi'an, 710075, China
- Institute of Land Engineering and Technology, Shaanxi Provincial Land Engineering Construction Group Co., Ltd., Xi'an, 710075, China
- Key Laboratory of Degraded and Unused Land Consolidation Engineering, Ministry of Natural Resources, Xi'an, 710075, China
| | - Zhe Liu
- Shaanxi Provincial Land Engineering Construction Group Co., Ltd., Xi'an, 710075, China
- Institute of Land Engineering and Technology, Shaanxi Provincial Land Engineering Construction Group Co., Ltd., Xi'an, 710075, China
- Key Laboratory of Degraded and Unused Land Consolidation Engineering, Ministry of Natural Resources, Xi'an, 710075, China
| |
Collapse
|
16
|
Zaryab A, Farahmand A, Mack TJ. Identification and apportionment of groundwater nitrate sources in Chakari Plain (Afghanistan). ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 45:7813-7827. [PMID: 37462844 DOI: 10.1007/s10653-023-01684-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 07/06/2023] [Indexed: 10/29/2023]
Abstract
The Chakari alluvial aquifer is the primary source of water for human, animal, and irrigation applications. In this study, the geochemistry of major ions and stable isotope ratios (δ2H-H2O, δ18O-H2O, δ15N-NO3̄, and δ18O-NO3̄) of groundwater and river water samples from the Chakari Plain were analyzed to better understand characteristics of nitrate. Herein, we employed nitrate isotopic ratios and BSIMM modeling to quantify the proportional contributions of major sources of nitrate pollution in the Chakari Plain. The cross-plot diagram of δ15N-NO3̄ against δ18O-NO3̄ suggests that manure and sewage are the main source of nitrate in the plain. Nitrification is the primary biogeochemical process, whereas denitrification did not have a significant influence on biogeochemical nitrogen dynamics in the plain. The results of this study revealed that the natural attenuation of nitrate in groundwater of Chakari aquifer is negligible. The BSIMM results indicate that nitrate originated mainly from sewage and manure (S&M, 75‰), followed by soil nitrogen (SN, 13‰), and chemical fertilizers (CF, 9.5‰). Large uncertainties were shown in the UI90 values for S&M (0.6) and SN (0.47), whereas moderate uncertainty was exhibited in the UI90 value for CF (0.29). The findings provide useful insights for decision makers to verify groundwater pollution and develop a sustainable groundwater management strategy.
Collapse
Affiliation(s)
- Abdulhalim Zaryab
- Engineering Geology and Hydrogeology, Faculty of Geology and Mines, Kabul Polytechnic University, Kabul, Afghanistan.
- Highland Groundwater Research Group, Kabul, Afghanistan.
| | - Asadullah Farahmand
- Department of Hydrogeology, Ministry of Energy and Water, Kabul, Afghanistan
| | | |
Collapse
|
17
|
Yang C, Zhang H, Feng Y, Hu Y, Chen S, Guo S, Zeng Z. Effect of microbial communities on nitrogen and phosphorus metabolism in rivers with different heavy metal pollution. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:87398-87411. [PMID: 37421527 DOI: 10.1007/s11356-023-28688-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Accepted: 07/04/2023] [Indexed: 07/10/2023]
Abstract
Small urban and rural rivers usually face heavy metal pollution as a result of urbanization and industrial and agricultural activities. To elucidate the metabolic capacity of microbial communities on nitrogen and phosphorus cycle in river sediments under different heavy metal pollution backgrounds, this study collected samples in situ from two typical rivers, Tiquan River and Mianyuan River, with different heavy metal pollution levels. The microbial community structure and metabolic capacity of nitrogen and phosphorus cycles of sediment microorganisms were analyzed by high-throughput sequencing. The results showed that the major heavy metals in the sediments of the Tiquan River were Zn, Cu, Pb, and Cd with the contents of 103.80, 30.65, 25.95, and 0.44 mg/kg, respectively, while the major heavy metals in the sediments of the Mianyuan River were Cd and Cu with the contents of 0.60 and 27.81 mg/kg, respectively. The dominant bacteria Steroidobacter, Marmoricola, and Bacillus in the sediments of the Tiquan River had positive correlations with Cu, Zn, and Pb while are negatively correlated with Cd. Cd had a positive correlation with Rubrivivax, and Cu had a positive correlation with Gaiella in the sediments of the Mianyuan River. The dominant bacteria in the sediments of the Tiquan River showed strong phosphorus metabolic ability, and the dominant bacteria in the sediments of the Mianyuan River showed strong nitrogen metabolic ability, corresponding to the lower total phosphorus content in the Tiquan River and the higher total nitrogen content in the Mianyuan River. The results of this study showed that resistant bacteria became dominant bacteria due to the stress of heavy metals, and these bacteria showed strong nitrogen and phosphorus metabolic ability. It can provide theoretical support for the pollution prevention and control of small urban and rural rivers and have positive significance for maintaining the healthy development of rivers.
Collapse
Affiliation(s)
- Cheng Yang
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - Han Zhang
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - Yuanyuan Feng
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - Yuansi Hu
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - Sikai Chen
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - Shanshan Guo
- China 19th Metallurgical Corporation, Chengdu, 610031, China
| | - Zhuo Zeng
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu, 610031, China.
| |
Collapse
|
18
|
Biddau R, Dore E, Da Pelo S, Lorrai M, Botti P, Testa M, Cidu R. Geochemistry, stable isotopes and statistic tools to estimate threshold and source of nitrate in groundwater (Sardinia, Italy). WATER RESEARCH 2023; 232:119663. [PMID: 36796152 DOI: 10.1016/j.watres.2023.119663] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 12/15/2022] [Accepted: 01/22/2023] [Indexed: 06/18/2023]
Abstract
In the European Union, nitrate vulnerable zone (NVZ) should be designed for the mitigation of nitrate (NO3-) contamination caused by agricultural practices. Before establishing new NVZ, the sources of NO3- must be recognized. A geochemical and multiple stable isotopes approach (hydrogen, oxygen, nitrogen, sulfur and boron) and statistical tools were applied to define the geochemical characteristics of groundwater (60 samples), calculate the local NO3- threshold and assess potential sources of NO3- contamination in two study areas (hereafter Northern and Southern), located in a Mediterranean environment (Sardinia, Italy). Results of the integrated approach applied to two case study, permits to highlight the strengths of integrating geochemical and statistical methods to provide nitrate source identification as a reference by decision makers to remediate and mitigate nitrate contamination in groundwater. Hydrogeochemical features in the two study areas were similar: near neutral to slightly alkaline pH, electrical conductivity in the range of 0.3 to 3.9 mS/cm, and chemical composition ranging from Ca-HCO3- at low salinity to Na-Cl- at high salinity. Concentrations of NO3- in groundwater were in the range of 1 to 165 mg/L, whereas the nitrogen reduced species were negligible, except few samples having NH4+ up to 2 mg/L. Threshold values in the studied groundwater samples were between 4.3 and 6.6 mg/L NO3-, which was in agreement with previous estimates in Sardinian groundwater. Values of δ34S and δ18OSO4 of SO42- in groundwater samples indicated different sources of SO42-. Sulfur isotopic features attributed to marine SO42- were consistent with groundwater circulation in marine-derived sediments. Other source of SO42- were recognize due to the oxidation of sulfide minerals, to fertilizers, manure, sewage fields, and SO42- derived from a mix of different sources. Values of δ15N and δ18ONO3 of NO3- in groundwater samples indicated different biogeochemical processes and NO3- sources. Nitrification and volatilization processes might have occurred at very few sites, and denitrification was likely to occur at specific sites. Mixing among various NO3- sources in different proportions might account for the observed NO3- concentrations and the nitrogen isotopic compositions. The SIAR modeling results showed a prevalent NO3- source from sewage/manure. The δ11B signatures in groundwater indicated the manure to be the predominant NO3- source, whereas NO3- from sewage was recognized at few sites. Geographic areas showing either a predominant process or a defined NO3- source where not recognize in the studied groundwater. Results indicate widespread contamination of NO3- in the cultivated plain of both areas. Point sources of contamination, due to agricultural practices and/or inadequate management of livestock and urban wastes, were likely to occur at specific sites.
Collapse
Affiliation(s)
- Riccardo Biddau
- Department of Chemical and Geological Sciences, University of Cagliari, Blocco A - Monserrato, Italy
| | - Elisabetta Dore
- Department of Chemical and Geological Sciences, University of Cagliari, Blocco A - Monserrato, Italy.
| | - Stefania Da Pelo
- Department of Chemical and Geological Sciences, University of Cagliari, Blocco A - Monserrato, Italy
| | - Mario Lorrai
- Regione Autonoma della Sardegna-ADIS-Servizio tutela e gestione delle risorse idriche, via Mameli 88, 09100, Cagliari, Italy
| | - Paolo Botti
- Regione Autonoma della Sardegna-ADIS-Servizio tutela e gestione delle risorse idriche, via Mameli 88, 09100, Cagliari, Italy
| | - Maurizio Testa
- Agenzia Regionale per la Protezione dell'Ambiente della Sardegna - Servizio Controlli, Monitoraggi e Valutazione Ambientale della Direzione Tecnico Scientifica, via Carloforte, 09100, Cagliari, Italy
| | - Rosa Cidu
- Department of Chemical and Geological Sciences, University of Cagliari, Blocco A - Monserrato, Italy
| |
Collapse
|
19
|
Liao X, Zhao P, Hou L, Adyari B, Xu EG, Huang Q, Hu A. Network analysis reveals significant joint effects of microplastics and tetracycline on the gut than the gill microbiome of marine medaka. JOURNAL OF HAZARDOUS MATERIALS 2023; 442:129996. [PMID: 36152547 DOI: 10.1016/j.jhazmat.2022.129996] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/22/2022] [Accepted: 09/13/2022] [Indexed: 06/16/2023]
Abstract
Microplastics could accumulate and enrich antibiotics in the aquatic environment. Despite this, the joint effects of microplastics and antibiotics on aquatic organisms are not clear. Here, we investigated the changes of microbial interactions in both gill and gut of marine medaka exposed to polystyrene microbeads (PS) and/or tetracycline for 30 days by using co-occurrence network analysis based on 16S rRNA gene amplicon sequences. We found that the single and combined effects of PS and tetracycline were more profound on the gut than on the gill microbiome. SourceTracker analysis showed that the relative contributions from the gill microbiome to the gut microbiome increased under combined exposure. Moreover, the combined exposure reduced the complexity and stability of the gut microbial network more than those induced by any single exposure, suggesting the synergistic effects of PS and tetracycline on the gut microbiome. The PS and tetracycline combined exposure also caused a shift in the keystone taxa of the gut microbial network. However, no similar pattern was found for gill microbial networks. Furthermore, single and combined exposure to PS and/or tetracycline altered the associations between the gut network taxa and indicator liver metabolites. Altogether, these findings enhanced our understanding of the hazards of the co-occurring environmental microplastics and antibiotics to the fish commensal microbiome.
Collapse
Affiliation(s)
- Xin Liao
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Peiqiang Zhao
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, Fujian 361021, China; School of Public Utilities, Jiangsu Urban and Rural Construction College, Changzhou 213147, China
| | - Liyuan Hou
- Department of Civil and Environmental Engineering, Utah state university, Utah UT 84322, USA
| | - Bob Adyari
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China; Department of Environmental Engineering, Universitas Pertamina, Jakarta 12220, Indonesia
| | - Elvis Genbo Xu
- Department of Biology, University of Southern Denmark, Odense 5230, Denmark
| | - Qiansheng Huang
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, Fujian 361021, China; National Basic Science Data Center, Beijing 100190, China.
| | - Anyi Hu
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
20
|
Shu W, Wang P, Zhao J, Ding M, Zhang H, Nie M, Huang G. Sources and migration similarly determine nitrate concentrations: Integrating isotopic, landscape, and biological approaches. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 852:158216. [PMID: 36028031 DOI: 10.1016/j.scitotenv.2022.158216] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 08/04/2022] [Accepted: 08/18/2022] [Indexed: 06/15/2023]
Abstract
Rapid land use change has significantly increased nitrate (NO3-) loading to rivers, leading to eutrophication, and posing water security problems. Determining the sources of NO3- to waters and the underlying influential factors is critical for effectively reducing pollution and better managing water resources. Here, we identified the sources and influencing mechanisms of NO3- in a mixed land-use watershed by integrating stable isotopes (δ15N-NO3- and δ18O-NO3-), molecular biology, water chemistry, and landscape metrics measurements. Weak transformation processes of NO3- were identified in the river, as evinced by water chemistry, isotopes, species compositions, and predicted microbial genes related to nitrogen metabolism. NO3- concentrations were primarily influenced by exogenous inputs (i.e., from soil nitrogen (NS), nitrogen fertilizer (NF), and manure & sewage (MS)). The proportions of NO3- sources seasonally varied. In the wet season, the source contributions followed the order of NS (38.6 %) > NF (31.4 %) > atmospheric deposition (ND, 16.2 %) > MS (13.8 %). In the dry season, the contributions were in the order of MS (39.2 %) > NS (29.2 %) > NF (29 %) > ND (2.6 %). Farmland and construction land were the original factors influencing the spatial distribution of NO3- in the wet and dry seasons, respectively, while slope, basin relief (HD), hypsometric integral (HI), and COHESION, HD were the primary indicators associated with NO3- transport in the wet and dry seasons, respectively. Additionally, spatial scale differences were observed for the effects of landscape structure on NO3- concentrations, with the greatest effect at the 1000-m buffer zone scale in the wet season and at the sub-basin scale in the dry season. This study overcomes the limitation of isotopes in identifying nitrate sources by combining multiple approaches and provides new research perspectives for the determination of nitrate sources and migration in other watersheds.
Collapse
Affiliation(s)
- Wang Shu
- School of Geography and Environment, Jiangxi Normal University, Nanchang 330022, Jiangxi, China; Sino-Danish College of University of Chinese Academy of Sciences, Beijing 101408, China; Sino-Danish Centre for Education and Research, Beijing 101408, China
| | - Peng Wang
- School of Geography and Environment, Jiangxi Normal University, Nanchang 330022, Jiangxi, China.
| | - Jun Zhao
- School of Geography and Ocean Science, Nanjing University, Nanjing 210023, China
| | - Minjun Ding
- School of Geography and Environment, Jiangxi Normal University, Nanchang 330022, Jiangxi, China
| | - Hua Zhang
- School of Geography and Environment, Jiangxi Normal University, Nanchang 330022, Jiangxi, China
| | - Minghua Nie
- School of Geography and Environment, Jiangxi Normal University, Nanchang 330022, Jiangxi, China
| | - Gaoxiang Huang
- School of Geography and Environment, Jiangxi Normal University, Nanchang 330022, Jiangxi, China
| |
Collapse
|
21
|
Brice RP, Anastasia S, Somar K, Corinne LGL, Karine W, Vincent G, Gaël P. Continuous degradation of micropollutants in real world treated wastewaters by photooxidation in dynamic conditions. WATER RESEARCH 2022; 221:118777. [PMID: 35753265 DOI: 10.1016/j.watres.2022.118777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 06/14/2022] [Accepted: 06/17/2022] [Indexed: 06/15/2023]
Abstract
Wastewater is a major issue for the ecosystem because of its considerable quantities, the treatment methods adopted in the large majority of WWTPs, and its level of contamination by various types of pollutants, especially emerging ones. One of the solutions considered to reduce this pressure on water is the reuse of wastewater after treatment for watering green areas, road cleaning, industry, groundwater recharge but also for crop irrigation. This paper proposes to study the capabilities of a photoreactor for the removal of micropollutants contained in wastewater from wastewater treatment plants. The experiments are carried out under dynamic artificial irradiation conditions which can be controlled in order to apply irradiation representative of the sunshine conditions. The experiments aim at treating a real effluent from urban wastewater. On the basis of these data, the photo-oxidation mass capacities expressed per unit of irradiated surface and per day were evaluated. Our results show that the oxidation process acts in a selective and differentiated manner according to the categories of substances and within each category. Some molecules are not or only partially oxidized. Note that the photo-reactor fed continuously with wastewater from wastewater treatment plants containing about 80 substances, is subjected to a typical irradiation setpoint of a sunny day in April. This allows to define the instantaneous and daily capacities of the system with respect to the target molecules.
Collapse
Affiliation(s)
- Reoyo-Prats Brice
- PROMES-CNRS UPR 8521, Process Material and Solar Energy, Rambla de la Thermodynamique, Perpignan 66100, France
| | - Sellier Anastasia
- Research Unit of Chrome, Université de Nîmes, Nîmes 30021 Cedex 1, France
| | - Khaska Somar
- Research Unit of Chrome, Université de Nîmes, Nîmes 30021 Cedex 1, France
| | | | - Weiss Karine
- Research Unit of Chrome, Université de Nîmes, Nîmes 30021 Cedex 1, France
| | - Goetz Vincent
- PROMES-CNRS UPR 8521, Process Material and Solar Energy, Rambla de la Thermodynamique, Perpignan 66100, France
| | - Plantard Gaël
- PROMES-CNRS UPR 8521, Process Material and Solar Energy, Rambla de la Thermodynamique, Perpignan 66100, France.
| |
Collapse
|