1
|
Sinha S, Hackl LS, Huey SL, Lambertini E, Nordhagen S, Bennett AM, Shrestha N, Cole NL, Finkelstein JL, Mehta S. Overview of foodborne hazards associated with inflammation and metabolic health. BMC GLOBAL AND PUBLIC HEALTH 2025; 3:31. [PMID: 40200316 PMCID: PMC11980346 DOI: 10.1186/s44263-025-00150-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 03/20/2025] [Indexed: 04/10/2025]
Abstract
Access to safe and nutritious food is key to ensuring health and well-being and is critical to meeting the United Nations' Sustainable Development Goals. However, a synthesis of the associations between foodborne illness and malnutrition, such as metabolic health, remains a gap in the literature base. In this review, we summarized existing evidence on the impacts of biological and chemical hazards on nutrition-related health outcomes, specifically overweight and obesity, inflammation, metabolic disease, thyroid function, cancer development, and adverse birth outcomes, examining physiological mechanisms, epidemiological associations, and animal studies. Mechanisms between some foodborne hazards, such as H. pylori, and adverse pregnancy outcomes, e.g., gestational diabetes mellitus, or between nitrates and impaired thyroid function, are relatively well-studied. However, evidence on the effects of many other chemical hazards on metabolic and human health remains limited: for example, while arsenic exposure is associated with adverse birth outcomes, the limited availability of dose-response studies and other challenges limit ascertaining its causal role. Untangling these associations and physiological mechanisms is of high relevance for both high- as well as low- and middle-income countries. Emerging technologies and novel assessment techniques are needed to improve the detection and understanding of understudied and complex foodborne diseases, particularly those arising from chemical hazards. These evidence gaps are highlighted in this review, as well as the need for establishing surveillance systems for monitoring foodborne diseases and metabolic health outcomes across populations.
Collapse
Affiliation(s)
- Srishti Sinha
- Cornell Joan Klein Jacobs Center for Precision Nutrition and Health, Cornell University, 3101 Martha van Rensselaer Hall, Ithaca, NY, 14853, USA
- Division of Nutritional Sciences, Cornell University, Ithaca, NY, 14853, USA
| | - Laura S Hackl
- Division of Nutritional Sciences, Cornell University, Ithaca, NY, 14853, USA
| | - Samantha L Huey
- Cornell Joan Klein Jacobs Center for Precision Nutrition and Health, Cornell University, 3101 Martha van Rensselaer Hall, Ithaca, NY, 14853, USA
- Division of Nutritional Sciences, Cornell University, Ithaca, NY, 14853, USA
| | | | | | - Anna M Bennett
- Cornell Joan Klein Jacobs Center for Precision Nutrition and Health, Cornell University, 3101 Martha van Rensselaer Hall, Ithaca, NY, 14853, USA
- Division of Nutritional Sciences, Cornell University, Ithaca, NY, 14853, USA
| | - Nidhi Shrestha
- Cornell Joan Klein Jacobs Center for Precision Nutrition and Health, Cornell University, 3101 Martha van Rensselaer Hall, Ithaca, NY, 14853, USA
- Division of Nutritional Sciences, Cornell University, Ithaca, NY, 14853, USA
| | - Nathaniel L Cole
- Cornell Joan Klein Jacobs Center for Precision Nutrition and Health, Cornell University, 3101 Martha van Rensselaer Hall, Ithaca, NY, 14853, USA
- Division of Nutritional Sciences, Cornell University, Ithaca, NY, 14853, USA
| | - Julia L Finkelstein
- Cornell Joan Klein Jacobs Center for Precision Nutrition and Health, Cornell University, 3101 Martha van Rensselaer Hall, Ithaca, NY, 14853, USA
- Division of Nutritional Sciences, Cornell University, Ithaca, NY, 14853, USA
| | - Saurabh Mehta
- Cornell Joan Klein Jacobs Center for Precision Nutrition and Health, Cornell University, 3101 Martha van Rensselaer Hall, Ithaca, NY, 14853, USA.
- Division of Nutritional Sciences, Cornell University, Ithaca, NY, 14853, USA.
| |
Collapse
|
2
|
Zhang J, Fan Y, Liang H, Liu J, Wang M, Luo G, Zhang Y. Global, regional, and national temporal trends in metabolism-related ischemic stroke mortality and disability from 1990 to 2021. J Stroke Cerebrovasc Dis 2024; 33:108071. [PMID: 39395551 DOI: 10.1016/j.jstrokecerebrovasdis.2024.108071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 09/20/2024] [Accepted: 10/08/2024] [Indexed: 10/14/2024] Open
Abstract
BACKGROUND Stroke ranks as the second leading cause of mortality and the third leading cause of disability worldwide. Nonetheless, the evolving burden of ischemic stroke attributable to various metabolic risk factors remains inadequately elucidated. A thorough grasp of these trends is crucial for a nuanced comprehension of stroke epidemiology and the formulation of effective preventive and interventional measures. METHOD Based on the Global Burden of Disease, Injury, and Risk Factors Study 2021 (GBD), we analyzed national temporal trends in the burden of metabolism-associated ischemic stroke in 204 countries and territories globally from 1990-2021, as measured by the average annual percentage change (AAPC), using join-point regression models. The burden of disease was assessed using age-standardized (ASR) mortality rates and disability-adjusted life years (DALY) per 100 000 population. Cross-country inequalities in ischemic stroke burden were quantified using standard health equity methods and changes in ischemic stroke burden were projected to 2045. RESULTS Globally, the ASR for ischemic stroke mortality linked to overall dietary metabolic risk declined by an average of 1.6% annually, while the ASR for disability-adjusted life years saw an average annual decrease of 1.3%. High systolic blood pressure remained a primary contributor to metabolism-related ischemic stroke, accounting for 57.9% of deaths and 58.0% of disability in 2021. Disparities associated with the sociodemographic index (SDI) diminished, with the gap in DALYs between countries with the highest and lowest SDIs narrowing from 592.2 (95% CI: 440.2-744.4) to 480.4 (95% CI: 309.7-651.2) in 2021. Projections indicate a continued decline in overall metabolism-related ischemic stroke deaths, mortality rates, and ASRs through 2045, although an increase in DALYs and ASRs is anticipated within the male population. CONCLUSION The global burden of metabolic risk-associated ischemic stroke has generally been decreasing from 2019 to 2021. This study highlights significant challenges in controlling and managing metabolic risk-associated ischemic stroke, including an increase in the number of cases in certain countries and regions, as well as an uneven distribution worldwide. These findings may provide valuable insights for the development of improved public health policies and the rational allocation of healthcare resources.
Collapse
Affiliation(s)
- Jian Zhang
- Department of Neurosurgery, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou 510317, China
| | - Yue Fan
- Department of Obstetrics and Gynecology, Fuyang Hospital of Anhui Medical University, Fuyang 236000, China
| | - Hao Liang
- Department of Neurosurgery, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou 510317, China
| | - Jiawen Liu
- Department of Neurosurgery, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou 510317, China
| | - Mo Wang
- Department of Neurosurgery, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou 510317, China
| | - Guoxuan Luo
- Department of Neurosurgery, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou 510317, China
| | - Yong Zhang
- Department of Neurosurgery, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou 510317, China.
| |
Collapse
|
3
|
Danesh Yazdi M, Sonntag A, Kosheleva A, Nassan FL, Wang C, Xu Z, Wu H, Laurent LC, DeHoff P, Comfort NT, Vokonas P, Wright R, Weisskopf M, Baccarelli AA, Schwartz JD. The association between toenail metals and extracellular MicroRNAs (ex-miRNAs) among the participants of the Normative Aging study (NAS). ENVIRONMENTAL RESEARCH 2024; 261:119761. [PMID: 39122161 PMCID: PMC11578093 DOI: 10.1016/j.envres.2024.119761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/22/2024] [Accepted: 08/06/2024] [Indexed: 08/12/2024]
Abstract
BACKGROUND Mechanistic studies of the effects of environmental risk factors have been exploring the potential role of microRNA(miRNAs) as a possible pathway to clinical disease. In this study we examine whether levels of toenail metals are associated with changes in extracellular miRNA(ex-miRNA) expression. METHODS We used data derived from the Normative Aging Study from 1996 to 2014 to conduct our analyses. We looked at associations between measured toenail metals: arsenic, cadmium, lead, manganese, and mercury and 282 ex-miRNAs in this population using canonical correlation analyses (CCAs) and longitudinal median regression. We adjusted for covariates such as age, education, body mass index, drinking and smoking behaviors, diabetes, and where available, seafood consumption. The p-values obtained from regression analyses were corrected for multiple comparisons. Ex-miRNAs identified to be associated with toenail metal levels were further examined using pathway analyses. RESULTS Our dataset included 937 observations from 589 men with an average age of 72.9 years at baseline. Both our correlation and regression analyses identified lead and cadmium as exposures most strongly associated with ex-miRNA expression. Numerous ex-miRNAs were identified as being associated with toenail metal levels. miR-27b-3p, in particular, was found to have high correlation with the first canonical dimension in the CCA and was significantly associated with cadmium in the regression analysis. Pathway analyses revealed messenger RNA (mRNA) targets for the ex-miRNAs that were associated with a number of clinical disorders including cancer, cardiovascular disease, and neurological disorders, etc. CONCLUSION: Toenail metals were associated with changes in ex-miRNA levels in both correlational and regression analyses. The ex-miRNAs identified can be linked to a variety of clinical disorders. Further studies are required to validate these findings.
Collapse
Affiliation(s)
- Mahdieh Danesh Yazdi
- Program in Public Health, Department of Family, Population, and Preventive Medicine, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY, USA.
| | - Allison Sonntag
- Program in Public Health, Department of Family, Population, and Preventive Medicine, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY, USA
| | - Anna Kosheleva
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Feiby L Nassan
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Cuicui Wang
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Zongli Xu
- Biostatistics and Computational Biology Branch, National Institute of Environmental Health Sciences, Durham, NC, USA
| | - Haotian Wu
- Department of Environmental Health Sciences, Columbia Mailman School of Public Health, New York, NY, USA
| | - Louise C Laurent
- Department of Obstetrics, Gynecology, & Reproductive Sciences, University of California San Diego, La Jolla, CA, USA
| | - Peter DeHoff
- Department of Obstetrics, Gynecology, & Reproductive Sciences, University of California San Diego, La Jolla, CA, USA
| | - Nicole T Comfort
- Department of Environmental Health Sciences, Columbia Mailman School of Public Health, New York, NY, USA
| | - Pantel Vokonas
- VA Normative Aging Study, Department of Veterans Affairs, Boston, MA, USA; Department of Medicine, Chobanian and Avidisian School of Medicine, Boston University, Boston, MA, USA
| | - Robert Wright
- Institute for Exposomic Research, Mount Sinai School of Medicine, New York, NY, USA
| | - Marc Weisskopf
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA; Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | | | - Joel D Schwartz
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA; Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| |
Collapse
|
4
|
Chen C, Chen Y, Zhai H, Xiao Y, Xu J, Gu Y, Han X, Wang C, Chen Q, Lu H. Cadmium exposure induces skeletal muscle insulin resistance through the reactive oxygen species-mediated PINK1/Parkin pathway. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 284:116954. [PMID: 39208572 DOI: 10.1016/j.ecoenv.2024.116954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 08/24/2024] [Accepted: 08/25/2024] [Indexed: 09/04/2024]
Abstract
Epidemiological studies have suggested a positive association between environmental cadmium (Cd) exposure and type 2 diabetes mellitus (T2DM). Skeletal muscle insulin resistance (IR) plays a critical role in the pathogenesis of T2DM. This study aimed to investigate the effects of chronic low-level Cd exposure on skeletal muscle IR and its potential mechanism. Rats were exposed to drinking water containing 2 or 10 mg/L Cd for 24 weeks. Differentiated L6 myotubes were treated with Cd for 72 h. Immunofluorescence, flow cytometry assay, RNA-sequencing, and Seahorse analysis were conducted to determine the effects of Cd and its underlying mechanism on relevant parameters, including insulin sensitivity, glucose uptake, oxidative stress, mitophagy, and mitochondrial function in skeletal muscle and L6 myotubes. N-acetyl-cysteine (NAC), a scavenger of reactive oxygen species (ROS), and mitophagy inhibitor Cyclosporin A (CsA) were used to confirm the role of oxidative stress in mitophagy and mitochondrial dysfunction caused by Cd. We found that rats exposed to 10 mg/L Cd exhibited hyperglycemia and skeletal muscle IR. Cd markedly increased IRS-1 phosphorylation at Ser612, while decreased levels of phosphorylated PI3K, Akt, AS160, inhibited GLUT4 translocation and glucose uptake. Mechanistically, Cd increased the intracellular ROS, hydrogen peroxide, and malondialdehyde levels and decreased antioxidase activity in L6 myotubes. Furthermore, Cd upregulated the mRNA and protein levels of LC3II/I, PINK1, and Parkin. In addition, Cd induced the formation of mitophagosomes, reduced the mitochondrial membrane potential, decreased the adenosine triphosphate content, and impaired the mitochondrial respiratory capacity. Strikingly, NAC ameliorated oxidative stress, excessive mitophagy, and the associated reduction in myotube insulin sensitivity, while inhibition of mitophagy by CsA alleviated skeletal muscle IR. In conclusion, this study reveals a previously unrecognized mechanism that chronic low-level Cd exposure may induce mitophagy by activating the PINK1/Parkin signal pathway by increasing ROS, thus causing skeletal muscle IR and elevated blood glucose.
Collapse
Affiliation(s)
- Chi Chen
- Department of Endocrinology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China; Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yuan Chen
- Department of Endocrinology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China; Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hualing Zhai
- Institute and Department of Endocrinology and Metabolism, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Yanyan Xiao
- Department of Endocrinology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China; Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Junfei Xu
- Department of Endocrinology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China; Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yimeng Gu
- Department of Endocrinology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China; Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xu Han
- Department of Endocrinology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China; Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Chao Wang
- Department of Endocrinology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China; Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Qi Chen
- Department of Endocrinology and Metabolism, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China.
| | - Hao Lu
- Department of Endocrinology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China; Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| |
Collapse
|
5
|
Wei Y, Wang X, Sun Q, Shi W, Zhang W, Gao X, Li Y, Hao R, Dong X, Chen C, Cao K, Jiang W, Yang Z, Zhu Y, Lv Y, Xv D, Li J, Shi X. Associations of environmental cadmium exposure with kidney damage: Exploring mediating DNA methylation sites in Chinese adults. ENVIRONMENTAL RESEARCH 2024; 251:118667. [PMID: 38462081 DOI: 10.1016/j.envres.2024.118667] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 03/06/2024] [Accepted: 03/07/2024] [Indexed: 03/12/2024]
Abstract
Environmental exposure is widely recognized as the primary sources of Cadmium (Cd) in the human body, and exposure to Cd is associated with kidney damage in adults. Nevertheless, the role of DNA methylation in Cd-induced kidney damage remains unclear. This study aimed to investigate the epigenome-wide association of environmental Cd-related DNA methylation changes with kidney damage. We included 300 non-smoking adults from the China in 2019. DNA methylation profiles were measured with Illumina Infinium MethylationEPIC BeadChip array. Linear mixed-effect model was employed to estimate the effects of urinary Cd with DNA methylation. Differentially methylated positions (DMPs) associated with urinary Cd were then tested for the association with kidney damage indicators. The mediation analysis was further applied to explore the potential DNA methylation based mediators. The prediction model was developed using a logistic regression model, and used 1000 bootstrap resampling for the internal validation. We identified 27 Cd-related DMPs mapped to 20 genes after the adjustment of false-discovery-rate for multiple testing among non-smoking adults. 17 DMPs were found to be associated with both urinary Cd and kidney damage, and 14 of these DMPs were newly identified within the Chinese. Mediation analysis revealed that DNA methylation of cg26907612 and cg16848624 mediated the Cd-related reduced kidney damage. In addition, ten variables were selected using the LASSO regression analysis and were utilized to develop the prediction model. It found that the nomogram model predicted the risk of kidney damage caused by environmental Cd with a corrected C-index of 0.779. Our findings revealed novel DMPs associated with both environmental Cd exposure and kidney damage among non-smoking adults, and developed an easy-to-use nomogram-illustrated model using these novel DMPs. These findings could provide a theoretical basis for formulating prevention and control strategies for kidney damage from the perspective of environmental pollution and epigenetic regulation.
Collapse
Affiliation(s)
- Yuan Wei
- Department of Hygienic Inspection, School of Public Health, Jilin University, Changchun, Jilin, 130021, China; China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, 100021, China
| | - Xiaochen Wang
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, 100021, China
| | - Qi Sun
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, 100021, China
| | - Wanying Shi
- Department of Epidemiology and Health Statistics, and Beijing Municipal Key Laboratory of Clinical Epidemiology, School of Public Health, Capital Medical University, Beijing 100069, China
| | - Wenli Zhang
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, 100021, China
| | - Xu Gao
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, 100083, China
| | - Yawei Li
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, 100021, China
| | - Ruiting Hao
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, 100021, China
| | - Xiaojie Dong
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, 100021, China
| | - Chen Chen
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, 100021, China
| | - Kangning Cao
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, 100021, China
| | - Weilong Jiang
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, 100021, China
| | - Zhengxiong Yang
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, 100021, China
| | - Ying Zhu
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, 100021, China
| | - Yuebin Lv
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, 100021, China
| | - Dongqun Xv
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, 100021, China
| | - Juan Li
- Department of Hygienic Inspection, School of Public Health, Jilin University, Changchun, Jilin, 130021, China.
| | - Xiaoming Shi
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, 100021, China; Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, 211166, China.
| |
Collapse
|
6
|
Verzelloni P, Urbano T, Wise LA, Vinceti M, Filippini T. Cadmium exposure and cardiovascular disease risk: A systematic review and dose-response meta-analysis. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 345:123462. [PMID: 38295933 DOI: 10.1016/j.envpol.2024.123462] [Citation(s) in RCA: 31] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 12/30/2023] [Accepted: 01/27/2024] [Indexed: 02/05/2024]
Abstract
Exposure to toxic metals is a global public health threat. Among other adverse effects, exposure to the heavy metal cadmium has been associated with greater risk of cardiovascular disease (CVD). Nonetheless, the shape of the association between cadmium exposure and CVD risk is not clear. This systematic review summarizes data on the association between cadmium exposure and risk of CVD using a dose-response approach. We carried out a literature search in PubMed, Web of Science, and Embase from inception to December 30, 2023. Inclusion criteria were: studies on adult populations, assessment of cadmium exposure, risk of overall CVD and main CVD subgroups as endpoints, and observational study design (cohort, cross-sectional, or case-control). We retrieved 26 eligible studies published during 2005-2023, measuring cadmium exposure mainly in urine and whole blood. In a dose-response meta-analysis using the one-stage method within a random-effects model, we observed a positive association between cadmium exposure and risk of overall CVD. When using whole blood cadmium as a biomarker, the association with overall CVD risk was linear, yielding a risk ratio (RR) of 2.58 (95 % confidence interval-CI 1.78-3.74) at 1 μg/L. When using urinary cadmium as a biomarker, the association was linear until 0.5 μg/g creatinine (RR = 2.79, 95 % CI 1.26-6.16), after which risk plateaued. We found similar patterns of association of cadmium exposure with overall CVD mortality and risks of heart failure, coronary heart disease, and overall stroke, whereas for ischemic stroke there was a positive association with mortality only. Overall, our results suggest that cadmium exposure, whether measured in urine or whole blood, is associated with increased CVD risk, further highlighting the importance of reducing environmental pollution from this heavy metal.
Collapse
Affiliation(s)
- Pietro Verzelloni
- CREAGEN, Environmental, Genetic and Nutritional Epidemiology Research Center, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Teresa Urbano
- CREAGEN, Environmental, Genetic and Nutritional Epidemiology Research Center, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Lauren A Wise
- Department of Epidemiology, Boston University School of Public Health, Boston, MA, USA
| | - Marco Vinceti
- CREAGEN, Environmental, Genetic and Nutritional Epidemiology Research Center, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy; Department of Epidemiology, Boston University School of Public Health, Boston, MA, USA
| | - Tommaso Filippini
- CREAGEN, Environmental, Genetic and Nutritional Epidemiology Research Center, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy; School of Public Health, University of California Berkeley, Berkeley, CA, USA.
| |
Collapse
|
7
|
Li A, Kong L, Peng C, Feng W, Zhang Y, Guo Z. Predicting Cd accumulation in rice and identifying nonlinear effects of soil nutrient elements based on machine learning methods. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:168721. [PMID: 38008332 DOI: 10.1016/j.scitotenv.2023.168721] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 11/13/2023] [Accepted: 11/18/2023] [Indexed: 11/28/2023]
Abstract
The spatial mismatch of Cd content in soil and rice causes difficulties in environmental management for paddy soil. To investigate the influence of soil environment on the accumulation of Cd in rice grain, we conducted a paired field sampling in the middle of the Xiangjiang River basin, examining the relationships between soil properties, soil nutrient elements, Cd content, plant uptake factor (PUFCd), and translocation factors in different rice organs (root, shoot, and grain). The total soil Cd (CdT) and available Cd (CdA) contents and PUFCd showed large spatial variability with ranges of 0.31-6.19 mg/kg, 0.03-3.07 mg/kg, and 0.02-3.51, respectively. Soil pH, CdT, CdA, and the contents of soil nutrient elements (Mg, Mn, Ca, P, Si, and B) were linearly correlated with grain Cd content (Cdg) and PUFCd. The decision tree analysis identified nonlinear effects of Si, Zn and Fe on rice Cd accumulation, which suggested that low Si and high Zn led to high Cdg, and low Si and Fe caused high PUFCd. Using the soil nutrient elements as predictor variables, random forest models successfully predicted the Cdg and PUFCd and performed better than multiple linear regressions. It suggested the impacts of soil nutrient elements on rice Cd accumulation should receive more attention.
Collapse
Affiliation(s)
- Aoxue Li
- Institute of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha 410083, China
| | - Linglan Kong
- Institute of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha 410083, China
| | - Chi Peng
- Institute of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha 410083, China.
| | - Wenli Feng
- Institute of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha 410083, China
| | - Yan Zhang
- Institute of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha 410083, China
| | - Zhaohui Guo
- Institute of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha 410083, China
| |
Collapse
|
8
|
Deng X, Liu D, Li M, He J, Fu Y. Physical activity can reduce the risk of blood cadmium and blood lead on stroke: Evidence from NHANES. Toxicol Appl Pharmacol 2024; 483:116831. [PMID: 38266873 DOI: 10.1016/j.taap.2024.116831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 01/14/2024] [Accepted: 01/19/2024] [Indexed: 01/26/2024]
Abstract
The detrimental impact of heavy metals on cardiovascular well-being is a global concern, and engaging in suitable physical activity has been shown to confer cardiovascular advantage. Nevertheless, the potential of exercise to mitigate the deleterious effects of heavy metals on stroke remains uncertain. We conducted a cross-sectional survey to assess the influence of blood cadmium and blood lead on stroke occurrence, while also examining the role of physical activity. Weighted multivariate regression analysis was employed to examine the potential correlation, while subgroup and interaction analyses were used to investigate the sensitivity and robustness of the results. After controlling risk factors, it revealed a positive correlation between blood cadmium and lead levels and the occurrence of stroke. Specifically, a 50% increase in blood cadmium was associated with a 28% increase in stroke incidence, while a 50% increase in blood lead was associated with a 47% increase in stroke incidence. To estimate the non-linear relationship, we employed restricted cubic models. The results demonstrate a gradual decrease in the slope of the model curve as the intensity of physical activity increases, implying that engaging in physical activity may contribute to a reduction in the occurrence of stroke caused by blood cadmium and lead. Our findings suggest that blood cadmium and lead could be considered an autonomous risk factor for stroke within the general population of the United States. Moreover, engaging in physical activity has the potential to mitigate the potential detrimental consequences associated with exposure to heavy metals.
Collapse
Affiliation(s)
- Xiaoqi Deng
- The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Dichuan Liu
- The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China.
| | - Miao Li
- Beijing Tiantan Hospital, Capital Medical University, 100070, China
| | - Jie He
- The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Yufan Fu
- The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| |
Collapse
|
9
|
Liang D, Liu C, Yang M. Blood Cadmium and Abdominal Aortic Calcification in Population with Different Weight Statuses: a Population-Based Study. J Cardiovasc Transl Res 2023; 16:1425-1438. [PMID: 37468727 DOI: 10.1007/s12265-023-10414-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 07/05/2023] [Indexed: 07/21/2023]
Abstract
The aim of our study was to assess the effect of blood cadmium levels (B-Cd) on abdominal aortic calcification (AAC). We used the data from the 2013-2014 NHANES database. A total of 1530 participants were included in our study, with a mean AAC score of 1.40 ± 0.10, and a prevalence of severe AAC of 7.98%. Participants with higher B-Cd quartiles showed a higher prevalence of severe AAC. B-Cd was positively associated with higher AAC scores and increased risk of severe AAC. In the obese population, blood cadmium levels showed a positive association with the risk of severe AAC. There may be a positive correlation between B-Cd levels and AAC scores and risk of severe AAC, and this correlation is more pronounced in the obese population. Therefore, the cadmium load in AAC patients in the obese population should be considered in clinical work.
Collapse
Affiliation(s)
- Dan Liang
- Department of Endocrine, The First People's Hospital of Chongqing Liangjiang New Area, Chongqing, China
| | - Chang Liu
- School of Medicine, Nankai University, Tianjin, China
| | - Mei Yang
- Department of Endocrine, The First People's Hospital of Chongqing Liangjiang New Area, Chongqing, China.
| |
Collapse
|
10
|
Radfard M, Hashemi H, Baghapour MA, Samaei MR, Yunesian M, Soleimani H, Azhdarpoor A. Prediction of human health risk and disability-adjusted life years induced by heavy metals exposure through drinking water in Fars Province, Iran. Sci Rep 2023; 13:19080. [PMID: 37925586 PMCID: PMC10625539 DOI: 10.1038/s41598-023-46262-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 10/30/2023] [Indexed: 11/06/2023] Open
Abstract
Exposure to heavy metals in contaminated drinking water is strongly correlated with various cancers, highlighting the burden of disease. This study aimed to assess the non-carcinogenic and carcinogenic risks associated with exposure to heavy metals (As, Pb, Cd, and Cr) in drinking water of Fars province and evaluate the attributed burden of disease. Non-carcinogenic risk assessment was performed using the hazard quotient (HQ) method, while the carcinogenic risk assessment utilized the excess lifetime cancer risk approach. The burden of disease was evaluated in terms of years of life lost, years lived with disability, and disability-adjusted life years (DALY) for three specific cancers: skin, lung, and kidney cancer. The average drinking water concentrations of arsenic (As), cadmium (Cd), chromium (Cr) and lead (Pb) were determined to be 0.72, 0.4, 1.10 and 0.72 μg/L, respectively. The total average HQ of heavy metals in drinking water in the study area were 0.127, 0.0047, 0.0009 and 0.0069, respectively. The average ILCRs of heavy metal in the entire country were in the following order: 1.15 × 10-5 for As, 2.22 × 10-7 for Cd and 3.41 × 10-7 for Cr. The results also indicated that among the various counties analyzed, Fasa experiences the greatest burden of disease in terms of DALYs, with a value of 87.56, specifically attributed to cancers caused by exposure to arsenic. Generally, it can be said that the burden of disease is a critical aspect of public health that requires comprehensive understanding and effective intervention.
Collapse
Affiliation(s)
- Majid Radfard
- Department of Environmental Health Engineering, School of Public Health, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hassan Hashemi
- Department of Environmental Health Engineering, School of Public Health, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Ali Baghapour
- Department of Environmental Health Engineering, School of Public Health, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Reza Samaei
- Department of Environmental Health Engineering, School of Public Health, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Masud Yunesian
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamed Soleimani
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
- Student's Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Abooalfazl Azhdarpoor
- Department of Environmental Health Engineering, School of Public Health, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
11
|
Huang J, Luo L, Wang Y, Yan S, Li X, Li B, Huang Q, Wang Y, Zhang Y, Wei S, Wang Y, Zeng X. The burden of chronic kidney disease associated with dietary exposure to cadmium in China, 2020. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 336:122434. [PMID: 37619696 DOI: 10.1016/j.envpol.2023.122434] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 08/01/2023] [Accepted: 08/21/2023] [Indexed: 08/26/2023]
Abstract
Cadmium (Cd) exposure increases the risk of chronic kidney disease (CKD). But the contribution of dietary Cd intake, the primary exposure route of Cd in humans, to the CKD burden remains to be evaluated in China. Concentrations of Cd in foods and population glomerular filtration rate (GFR) were retrieved from studies published between January 2000 and February 2023 in China. Daily food consumption in adults aged ≥35 years old was obtained from two nationwide Chinese surveys. Dietary Cd intake and its contribution rate among total Cd exposure from diet, inhalation, smoking and water were evaluated. Urinary Cd (UCd) was estimated using the toxicokinetic (TK) model based on dietary Cd intake. The effect of Cd on kidney function has been quantified with the previously published dose-response relationship between UCd and GFR. The incidence and disability-adjusted life years (DALYs) of CKD attributable to dietary Cd intake were derived considering the contribution rate of dietary Cd intake at the national and provincial levels. The national average dietary Cd intake was 0.6891 μg/kg bw/day, contributing 63.69% of total Cd exposure. The Cd exposure through foods resulted in 2.34 (95% uncertainty interval, UI: 1.54-3.40) stage 4 CKD and 0.37 (95% UI: 0.20-0.59) stage 5 CKD cases per 100,000 persons/year in mainland China, 2020. The corresponding DALYs loss associated with stage 4 and stage 5 CKD due to dietary Cd intake were 5.14 (95% UI: 3.24-7.67) and 4.78 (95% UI: 2.32-8.30) per 100,000 persons/year, together accounting for 2% of total DALYs of CKD. Greater dietary Cd intake and corresponding burden of late-stage CKD were observed in Southern areas than in Northern areas. Diet remains the primary exposure to Cd in Chinese adults. Efforts to reduce dietary Cd exposure would positively impact public health, especially in Southern provinces with high Cd exposure.
Collapse
Affiliation(s)
- Jiao Huang
- Center for Evidence-Based and Translational Medicine, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China; Center for Evidence-Based and Translational Medicine, Wuhan University, Wuhan, 430071, China
| | - Lisha Luo
- Center for Evidence-Based and Translational Medicine, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China; Center for Evidence-Based and Translational Medicine, Wuhan University, Wuhan, 430071, China
| | - Yongbo Wang
- Center for Evidence-Based and Translational Medicine, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China; Center for Evidence-Based and Translational Medicine, Wuhan University, Wuhan, 430071, China
| | - Siyu Yan
- Center for Evidence-Based and Translational Medicine, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China; Center for Evidence-Based and Translational Medicine, Wuhan University, Wuhan, 430071, China
| | - Xuhui Li
- Center for Evidence-Based and Translational Medicine, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China; Center for Evidence-Based and Translational Medicine, Wuhan University, Wuhan, 430071, China
| | - Binghui Li
- Center for Evidence-Based and Translational Medicine, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China; Center for Evidence-Based and Translational Medicine, Wuhan University, Wuhan, 430071, China
| | - Qiao Huang
- Center for Evidence-Based and Translational Medicine, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China; Center for Evidence-Based and Translational Medicine, Wuhan University, Wuhan, 430071, China
| | - Yunyun Wang
- Center for Evidence-Based and Translational Medicine, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China; Center for Evidence-Based and Translational Medicine, Wuhan University, Wuhan, 430071, China
| | - Yuanyuan Zhang
- Center for Evidence-Based and Translational Medicine, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China; Center for Evidence-Based and Translational Medicine, Wuhan University, Wuhan, 430071, China
| | - Sheng Wei
- School of Public Health and Emergency Management, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Yibaina Wang
- China National Center for Food Safety Risk Assessment, Key Laboratory of Food Safety Risk Assessment, Ministry of Health, Beijing, 100022, China
| | - Xiantao Zeng
- Center for Evidence-Based and Translational Medicine, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China; Center for Evidence-Based and Translational Medicine, Wuhan University, Wuhan, 430071, China; Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China.
| |
Collapse
|
12
|
Li S, Tuerxunyiming M, Sun Z, Zheng SY, Liu QB, Zhao Q. Burden of diabetes attributable to dietary cadmium exposure in adolescents and adults in China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:102353-102362. [PMID: 37667123 PMCID: PMC10567932 DOI: 10.1007/s11356-023-29424-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 08/17/2023] [Indexed: 09/06/2023]
Abstract
At present, the health risk assessment of cadmium exposure has become a major focus of environmental health research. However, there is still a lack of systematic research on the burden of diabetes (DM) attributable to dietary cadmium exposure in adolescents and adults in China. Using the top-down method, the blood cadmium level (B-Cd) of Chinese adolescents and adults from 2001 to 2023 was combined with the relative risk (RR) of cadmium-induced diabetes to calculate the population attribution score (PAF). Subsequently, PAF was used to assess the disease burden (DB) of diabetes caused by cadmium exposure, expressed in disability adjusted life years (DALYs), and attribution analysis was carried out for cadmium exposure from different sources. The average blood cadmium concentration in Chinese adolescents and adults was 1.54 ± 1.13 µg/L, and the burden of DM attributable to cadmium exposure was 56.52 (44.81, 70.33) × 105 DALYs. The contribution rate of dietary cadmium exposure was 59.78%, and the burden of DM attributable to dietary cadmium exposure was 337.86 (267.85, 420.42) × 108 DALYs. In addition, the highest blood cadmium concentrations were found in Henan, Shanxi, and Jiangxi provinces, while the highest burden of DM attributable to cadmium exposure was found in Jiangsu, Henan, and Guangdong provinces. Cadmium exposure is a risk factor for DM, and we need to take comprehensive action to reduce the burden of DM attributable to dietary cadmium from health, economic, and social perspectives.
Collapse
Affiliation(s)
- Shan Li
- Department of Preventive Medicine, Medical College, Shihezi University, Shihezi, 832002, China
| | - Muhadasi Tuerxunyiming
- School of Medicine, Hangzhou City University, Hangzhou, 310015, Zhejiang Province, China
| | - Zhe Sun
- Department of Endocrinology, The First Hospital of Qiqihar, The Affiliated Qiqihar Hospital of Southern Medical University, Qiqihar, 161005, Heilongjiang, China
| | - Su-Yang Zheng
- Department of Orthopaedics, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, China
| | - Qing-Bai Liu
- Department of Orthopaedics, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, China
| | - Qing Zhao
- Department of Endocrinology, Lianshui People's Hospital of Kangda College Affiliated to Nanjing Medical University, Huai'an, 223400, Jiangsu Province, China.
| |
Collapse
|
13
|
Fitch ML, Kabir R, Ebenebe OV, Taube N, Garbus H, Sinha P, Wang N, Mishra S, Lin BL, Muller GK, Kohr MJ. Cadmium exposure induces a sex-dependent decline in left ventricular cardiac function. Life Sci 2023; 324:121712. [PMID: 37100378 PMCID: PMC10246466 DOI: 10.1016/j.lfs.2023.121712] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/11/2023] [Accepted: 04/12/2023] [Indexed: 04/28/2023]
Abstract
AIMS Cadmium exposure is a worldwide problem that has been linked to the development of cardiovascular disease. This study aimed to elucidate mechanistic details of chronic cadmium exposure on the structure and function of the heart. MAIN METHODS Male and female mice were exposed to cadmium chloride (CdCl2) via drinking water for eight weeks. Serial echocardiography and blood pressure measurements were performed. Markers of hypertrophy and fibrosis were assessed, along with molecular targets of Ca2+-handling. KEY FINDINGS Males exhibited a significant reduction in left ventricular ejection fraction and fractional shortening with CdCl2 exposure, along with increased ventricular volume at end-systole, and decreased interventricular septal thickness at end-systole. Interestingly, no changes were detected in females. Experiments in isolated cardiomyocytes revealed that CdCl2-induced contractile dysfunction was also present at the cellular level, showing decreased Ca2+ transient and sarcomere shortening amplitude with CdCl2 exposure. Further mechanistic investigation uncovered a decrease in sarco/endoplasmic reticulum Ca2+-ATPase 2a (SERCA2a) protein expression and phosphorylated phospholamban levels in male hearts with CdCl2 exposure. SIGNIFICANCE The findings of our novel study provide important insight into how cadmium exposure may act as a sex-specific driver of cardiovascular disease, and further underscore the importance of reducing human exposure to cadmium.
Collapse
Affiliation(s)
- Michael L Fitch
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States of America.
| | - Raihan Kabir
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States of America.
| | - Obialunanma V Ebenebe
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States of America.
| | - Nicole Taube
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States of America.
| | - Haley Garbus
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States of America.
| | - Prithvi Sinha
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States of America.
| | - Nadan Wang
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America.
| | - Sumita Mishra
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America.
| | - Brian L Lin
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America.
| | - Grace K Muller
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America; Department of Cell and Molecular Physiology, Loyola University Stritch School of Medicine, Maywood, IL, United States of America.
| | - Mark J Kohr
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States of America.
| |
Collapse
|
14
|
Chen T, Li Y, Liu J, Wang Y, Wei S. The burden of mild intellectual disability attributed to prenatal exposure to methylmercury in China, 2017. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 254:114748. [PMID: 36921496 DOI: 10.1016/j.ecoenv.2023.114748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 03/05/2023] [Accepted: 03/06/2023] [Indexed: 06/18/2023]
Abstract
Methylmercury (MeHg) is a neurodevelopmental toxicant that is widespread in the environment and food. Considering the presence of multiple sources of MeHg exposure in the environment, the burden attributable to different exposure sources needs to be determined. This study aimed to estimate the burden of mild intellectual disability (MID) caused by in-utero exposure to MeHg and identify the attributable burden related to MeHg exposure from different sources in China. We applied the hair mercury concentrations from studies to evaluate the burden of MID associated with maternal MeHg exposure and quantify it by disability-adjusted life years (DALYs). The DALYs attributable to MeHg exposure sources were calculated by combining the total DALYs and the contribution rates of various sources of MeHg exposure. The maternal MeHg exposure resulted in 6504 MID cases and a loss of 63,354 DALYs in China in 2017. The contribution rates of aquatic products and rice were 52.2% and 27.1%, respectively, leading to health losses of 28,115 and 18,011 DALYs. The burden of MeHg-induced MID associated with aquatic products was high in coastal areas. Several sites such as Zhejiang, Hunan, and Guangxi had high DALYs caused by rice MeHg exposure. Regions with high DALYs of MID related to MeHg exposure require more attention. Local governments should establish targeted measures to reduce MeHg exposure, thus preventing health loss.
Collapse
Affiliation(s)
- Tingting Chen
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yiling Li
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Jialin Liu
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yibaina Wang
- Risk Assessment Division I, China National Center for Food Safety Risk Assessment, Building 2, 37 Guangqu Road, Beijing 100020, China.
| | - Sheng Wei
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; School of Public Health and Emergency Management, Southern University of Science and Technology, Shenzhen, 518000, China.
| |
Collapse
|
15
|
Jin J, Zhao X, Zhang L, Hu Y, Zhao J, Tian J, Ren J, Lin K, Cui C. Heavy metals in daily meals and food ingredients in the Yangtze River Delta and their probabilistic health risk assessment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 854:158713. [PMID: 36113791 DOI: 10.1016/j.scitotenv.2022.158713] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 09/07/2022] [Accepted: 09/08/2022] [Indexed: 06/15/2023]
Abstract
Heavy metal exposure via food consumption is inadequately investigated and deserves considerable attention. We collected hundreds of food ingredients and daily meals and assessed their probabilistic health risk using a Monte Carlo simulation based on an ingestion rate investigation. The detected concentrations of four heavy metals (Cr, Cd, Pb, and Hg) in all daily meal samples were within the limits stipulated in the National Food Safety Standard (GB 2762-2017), while that for As level was excessive in 0.3 % of daily meal samples. The same results were also observed in most food ingredient samples, and a standard-exceeding ratio of 23 % of As was observed in aquatic food or products, especially seafood, which was with the highest concentration reaching 1.24 mg/kg. Combining the detected heavy metal amounts with the ingestion rate investigation, the hazard quotients (HQs) of As, Cr, Cd, Pb, and Hg in daily meals and food ingredients were all calculated as lower than 1 (no obvious harm), while the incremental lifetime cancer risk (ILCR) of As and Cr (>1 × 10-4), indicating that the residual As posed potential health effects to human health. It was noteworthy that the proportion of aquatic foods only accounted for 6.3 % of daily meals, but they occupied 41.1 % of the heavy metal exposure, which could be attributed to the high amounts of heavy metals in aquatic foods. This study not only provided basic data of heavy metal exposure and potential health risks through daily oral dietary intake, but also illuminated the contribution of different kinds of food ingredients. Specifically, the study highlighted the contamination of aquatic foods with As, especially seafood such as shellfish and bivalves.
Collapse
Affiliation(s)
- Jialu Jin
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Xiuge Zhao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Lei Zhang
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Yaru Hu
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Jianfeng Zhao
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Junjie Tian
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Jing Ren
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Kuangfei Lin
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Changzheng Cui
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| |
Collapse
|
16
|
Sripada K, Lager AM. Interventions to reduce cadmium exposure in low- and middle-income countries during pregnancy and childhood: A systematic review. J Glob Health 2022; 12:04089. [DOI: 10.7189/jogh.12.04089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Kam Sripada
- Centre for Digital Life Norway, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
- Centre for Global Health Inequalities Research (CHAIN), Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Adrian Madsen Lager
- Department of Chemical Engineering, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| |
Collapse
|