1
|
Liu X, Zhang J, Wu Y, Yu Y, Sun J, Mao D, Zhang G. Intensified effect of nitrogen forms on dominant phytoplankton species succession by climate change. WATER RESEARCH 2024; 264:122214. [PMID: 39116610 DOI: 10.1016/j.watres.2024.122214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/04/2024] [Accepted: 08/03/2024] [Indexed: 08/10/2024]
Abstract
Nutrient proportion, light intensity, and temperature affect the succession of dominant phytoplankton species. Despite these insights, this transformation mechanism in highly turbid lakes remains a research gap, especially in response to climate change. To fill this gap, we investigated the mechanism by which multi-environmental factors influence the succession of dominant phytoplankton species in Lake Chagan. This investigation deployed the structural equation model (SEM) and the hydrodynamic-water quality-water ecology mechanism model. Results demonstrated that the dominant phytoplankton species in Lake Chagan transformed from diatom to cyanobacteria during 2012 and 2022. Notably, Microcystis was detected in 2022. SEM revealed the primary environment variables for this succession, including water temperature (Tw), nutrients (total nitrogen (TN), total phosphorus (TP), and ammonia nitrogen (NH4N)), and total suspended solids (TSS). Moreover, this event was not the consequence of zooplankton grazing. An integrated hydrodynamic-water quality-bloom mechanism model was built to explore the mechanism driving phytoplankton succession and its response to climate change. Nutrients determined the phytoplankton biomass and dominant species succession based on various proportions. High NH4N:NO3N ratios favored cyanobacteria and inhibited diatom under high TSS. Additionally, the biomass proportions of diatom (30.77 % vs. 22.28 %) and green (30.56 % vs. 23.30 %) decreased dramatically. In contrast, cyanobacteria abundance remarkably increased (35.78 % to 51.71 %) with the increasing NH4-N:NO3-N ratios. In addition, the proportion of non-nitrogen-fixing cyanobacteria was higher than that of the nitrogen-fixing cyanobacteria counterparts when TN:TP≥20 and NH4N:NO3N ≥ 10. Light-limitation phenotypes also experienced an increase with the rising NH4N:NO3N ratios. Notably, the cyanobacterial biomass reached 3-6 times that in the baseline scenario when the air temperature escalated by 3.0 °C until 2061 under the SSP585 scenario. We highlighted the effect of nitrogen forms on the succession of dominant phytoplankton species. Climate warming will increase nitrogen proportion, providing an insightful reference for controlling cyanobacterial blooms.
Collapse
Affiliation(s)
- Xuemei Liu
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
| | - Jingjie Zhang
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
| | - Yanfeng Wu
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
| | - Yexiang Yu
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Jingxuan Sun
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Dehua Mao
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
| | - Guangxin Zhang
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China.
| |
Collapse
|
2
|
Song JH, Her Y, Park YS, Yoon K, Kim H. Investigating the applicability and assumptions of the regression relationship between flow discharge and nitrogen concentrations for load estimation. Heliyon 2024; 10:e23603. [PMID: 38226232 PMCID: PMC10788450 DOI: 10.1016/j.heliyon.2023.e23603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 12/07/2023] [Accepted: 12/07/2023] [Indexed: 01/17/2024] Open
Abstract
The regression relationship between water discharge rates and nutrient concentrations can provide a quick and straightforward way to estimate nutrient loads. However, recent studies indicated that the relationship might produce large biases in load estimates and, therefore, may not be applicable in certain types of cases. The goal of this study is to explore the theoretical reasons behind the selective applicability of the regression relationship between flow rates and nitrate + nitrite concentrations. For this study, we examined daily flow and nitrate + nitrite concentration observations made at the outlets of 22 watersheds monitored by the Heidelberg Tributary Loading Program (HTLP). The statistical relationship between the flow rates and concentrations was explored using regression equations offered by the LOAD ESTimator (LOADEST). Results demonstrated that the use of the regression equations provided nitrate + nitrite load estimates at acceptable accuracy levels (N S E ≥ 0.35 and | P B I A S | ≤ 30.0 %) in 14 watersheds (64 % of 22 study watersheds). The regression relationships provided highly biased results at eight watersheds (36 %), implying their limited applicability. The heteroscedasticity of the residuals led to the high bias and resulting inaccurate regression, which was commonly found in watersheds where low flow had high nitrate + nitrite concentration variations. Conversely, the regression relationships provided acceptable accuracy for watersheds that had a relatively constant variance of the nitrate + nitrite concentrations. The results indicate that the homoscedasticity of residuals is the key assumption to be satisfied to estimate nitrate + nitrite loads from a statistical regression between flow discharge and nitrate + nitrite concentrations. The transport capacity (capacity-limited) concept implicitly assumed in the regression relationship between flow discharge and nitrate + nitrite concentrations is not always applicable, especially to agricultural areas in which nitrate + nitrite loads are highly variable depending on management practices (supply-limited). The findings suggest that the regression relationship should be carefully applied to areas in which intensive agricultural activities, including crop management and conservation practices, are implemented. Thus, the transport capacity concept is reasonably regarded to contribute to the homoscedasticity of residuals.
Collapse
Affiliation(s)
- Jung-Hun Song
- Institute of Green Bio Science and Technology, Seoul National University, Pyeongchang 25354, Republic of Korea
- Department of Integrated Major in Global Smart Farm, Seoul National University, Seoul 08826, Republic of Korea
- Department of Agricultural and Biological Engineering & Tropical Research and Education Center, University of Florida, Homestead, FL 33031, USA
| | - Younggu Her
- Department of Agricultural and Biological Engineering & Tropical Research and Education Center, University of Florida, Homestead, FL 33031, USA
| | - Youn Shik Park
- Department of Rural Construction Engineering, Kongju National University, Yesan 32439, Republic of Korea
| | - Kwangsik Yoon
- Department of Rural and Biosystems Engineering & Education and Research Unit for Climate-Smart Reclaimed Tideland Agriculture (BK21 four), Chonnam National University, Gwangju 61186, Republic of Korea
| | - Hakkwan Kim
- Graduate School of International Agricultural Technology and Institutes of Green Bio Science and Technology, Seoul National University, Pyeongchang 25354, Republic of Korea
| |
Collapse
|
3
|
Schramm MP. Linking watershed nutrient loading to estuary water quality with generalized additive models. PeerJ 2023; 11:e16073. [PMID: 37780377 PMCID: PMC10540774 DOI: 10.7717/peerj.16073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 08/20/2023] [Indexed: 10/03/2023] Open
Abstract
Evaluating estuary water quality responses to reductions (or increases) in nutrient loading attributed to on the ground management actions can be challenging due to the strong influence of environmental drivers on nutrient loads and non-linear relationships. This study applied generalized additive models to calculate watershed nutrient loads and assess responses in estuary water quality to seasonally-adjusted freshwater inflow and flow-adjusted nutrient loads in Lavaca Bay, Texas. Lavaca Bay is a secondary embayment on the Texas coast displaying early potential for eutrophication and water quality degradation. Use of flow-adjusted nutrient loads allowed the study to evaluate the response in water quality to changes in nutrient loads driven by anthropogenic sources. Cross-validation indicated that, despite data constraints, semiparametric models performed well at nutrient load prediction. Based on these models, delivered annual nutrient loads varied substantially from year to year. In contrast, minimal changes in flow-normalized loads indicate that nutrient loadings were driven by natural variation in precipitation and runoff as opposed to changes in management of nonpoint sources. Models indicated no evidence of long-term changes in dissolved oxygen or chlorophyll-a within Lavaca Bay. However, site specific long-term increases in both organic and inorganic nitrogen are concerning for their potential to fuel eutrophication. Further analysis found freshwater inflow had strong influences on nutrient and chlorophyll-a concentrations but there was no evidence that changes in watershed nutrient loading explained additional variation in dissolved oxygen and limited evidence that watershed nutrient loadings explained chlorophyll-a concentrations. In addition to providing a baseline assessment of watershed nutrient loading and water quality responses in the Lavaca Bay watershed, this study provides methodological support for the use of semiparametric models in load regression models and estuary assessments.
Collapse
Affiliation(s)
- Michael P. Schramm
- Texas A&M AgriLife Research, Texas Water Resources Institute, Texas A&M University, College Station, TX, United States of America
| |
Collapse
|
4
|
Yun D, Kang D, Cho KH, Baek SS, Jeon J. Characterization of micropollutants in urban stormwater using high-resolution monitoring and machine learning. WATER RESEARCH 2023; 235:119865. [PMID: 36934536 DOI: 10.1016/j.watres.2023.119865] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 03/08/2023] [Accepted: 03/09/2023] [Indexed: 06/18/2023]
Abstract
Urban rainfall events can lead to the runoff of pollutants, including industrial, pesticide, and pharmaceutical chemicals. Transporting micropollutants (MPs) into water systems can harm both human health and aquatic species. Therefore, it is necessary to investigate the dynamics of MPs during rainfall events. However, few studies have examined MPs during rainfall events due to the high analytical expenses and extensive spatiotemporal variability. Few studies have investigated the occurrence patterns of MPs and factors that influence their transport, such as rainfall duration, antecedent dry periods, and variations in streamflow. Moreover, while there have been many analyses of nutrients, suspended solids, and heavy metals during the first flush effect (FFE), studies on the transport of MPs during FFE are insufficient. This study aimed to identify the dynamics of MPs and FFE in an urban catchment, using high-resolution monitoring and machine learning methods. Hierarchical clustering analysis and partial least squares regression (PLSR) were implemented to estimate the similarity between each MP and identify the factors influencing their transport during rainfall events. Eleven dominant MPs comprised 75% of the total MP concentration and had a 100% detection frequency. During rainfall events, pesticides and pharmaceutical MPs showed a higher FFE than industrial MPs. Moreover, the initial 30% of the runoff volume contained 78.0% of pesticide and 50.1% of pharmaceutical substances for events W1 (July 5 to July 6, 2021) and W6 (August 31 to September 1, 2021), respectively. The PLSR model suggested that stormflow (m3/s) and the duration of antecedent dry hours (h) significantly influenced MP dynamics, yielding the variable importance on projection scores greater than 1.0. Hence, our findings indicate that MPs in urban waters should be managed by considering FFE.
Collapse
Affiliation(s)
- Daeun Yun
- School of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology, 50 UNIST-gil, Eonyang-eup, Ulju-gun, Ulsan 44919, Republic of Korea
| | - Daeho Kang
- Department of Environmental Engineering, Changwon National University, Changwondaehak-ro 20, Uichang-gu, Changwon-si, Gyeongsangnam-do 51140, Republic of Korea
| | - Kyung Hwa Cho
- School of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology, 50 UNIST-gil, Eonyang-eup, Ulju-gun, Ulsan 44919, Republic of Korea; Graduate School of Carbon Neutrality, Ulsan National Institute of Science and Technology, 50 UNIST-gil, Eonyang-eup, Ulju-gun, Ulsan 44919, Republic of Korea
| | - Sang-Soo Baek
- Department of Environmental Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan-Si, Gyeongbuk 38541, South Korea.
| | - Junho Jeon
- Department of Environmental Engineering, Changwon National University, Changwondaehak-ro 20, Uichang-gu, Changwon-si, Gyeongsangnam-do 51140, Republic of Korea; School of Smart and Green Engineering, Changwon National University, Changwon, Gyeongsangnamdo 51140, Korea.
| |
Collapse
|
5
|
Pearce NJT, Parsons CT, Pomfret SM, Yates AG. Periphyton Phosphorus Uptake in Response to Dynamic Concentrations in Streams: Assimilation and Changes to Intracellular Speciation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:4643-4655. [PMID: 36897624 PMCID: PMC10035032 DOI: 10.1021/acs.est.2c06285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 02/15/2023] [Accepted: 02/15/2023] [Indexed: 06/18/2023]
Abstract
Effective modeling and management of phosphorus (P) losses from landscapes to receiving waterbodies requires an adequate understanding of P retention and remobilization along the terrestrial-aquatic continuum. Within aquatic ecosystems, the stream periphyton can transiently store bioavailable P through uptake and incorporation into biomass during subscouring and baseflow conditions. However, the capacity of stream periphyton to respond to dynamic P concentrations, which are ubiquitous in streams, is largely unknown. Our study used artificial streams to impose short periods (48 h) of high SRP concentration on stream periphyton acclimated to P scarcity. We examined periphyton P content and speciation through nuclear magnetic resonance spectroscopy to elucidate the intracellular storage and transformation of P taken up across a gradient of transiently elevated SRP availabilities. Our study demonstrates that the stream periphyton not only takes up significant quantities of P following a 48-h high P pulse but also sustains supplemental growth over extended periods of time (10 days), following the reestablishment of P scarcity by efficiently assimilating P stored as polyphosphates into functional biomass (i.e., phospho-monoesters and phospho-diesters). Although P uptake and intracellular storage approached an upper limit across the experimentally imposed SRP pulse gradient, our findings demonstrate the previously underappreciated extent to which the periphyton can modulate the timing and magnitude of P delivery from streams. Further elucidating these intricacies in the transient storage potential of periphyton highlights opportunities to enhance the predictive capacity of watershed nutrient models and potentially improve watershed P management.
Collapse
Affiliation(s)
- Nolan J. T. Pearce
- University
of Western Ontario & Canadian Rivers Institute, 1156 Richmond Street, London, Ontario N6A 3K8, Canada
| | - Chris T. Parsons
- Ecohydrology
Research Group and The Water Institute, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
- Watershed
Hydrology and Ecology Research Division, Environment and Climate Change Canada, 867 Lakeshore Road, Burlington, Ontario L7S 1A1, Canada
| | - Sarah M. Pomfret
- University
of Western Ontario & Canadian Rivers Institute, 1156 Richmond Street, London, Ontario N6A 3K8, Canada
| | - Adam G. Yates
- University
of Western Ontario & Canadian Rivers Institute, 1156 Richmond Street, London, Ontario N6A 3K8, Canada
| |
Collapse
|
6
|
Ross CA, Moslenko LL, Biagi KM, Oswald CJ, Wellen CC, Thomas JL, Raby M, Sorichetti RJ. Total and dissolved phosphorus losses from agricultural headwater streams during extreme runoff events. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 848:157736. [PMID: 35926630 DOI: 10.1016/j.scitotenv.2022.157736] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 07/17/2022] [Accepted: 07/27/2022] [Indexed: 06/15/2023]
Abstract
Eutrophication continues to be a concerning global water quality issue. Managing and mitigating harmful algal blooms demands clear information on the conditions promoting large phosphorus losses from contributing watersheds. Of particular concern is the amount and form of phosphorus loading to receiving water bodies during extreme runoff events, which are expected to increase in frequency due to climate change. Five years (2015 to 2020) of water quantity and quality data from 11 agricultural watersheds in the lower Great Lakes basin were analyzed and used to model total and dissolved phosphorus losses. This study aimed to assess temporal dynamics in phosphorus concentrations and losses over runoff events covering a wide range of hydrologic conditions and to quantify their relative importance on annual phosphorus losses. Event concentration-discharge relationships for total and dissolved phosphorus were hysteretic and had contrasting dominant patterns across watersheds. The proportion of annual phosphorus losses during events was highly variable between watersheds, accounting for 47-94 %. Extreme events were particularly impactful: as few as three events per year were found to be responsible for nearly half of total phosphorus (20-50 %) and total dissolved phosphorus (14-44 %) losses. Variability in total and dissolved phosphorus losses and concentrations over a wide range of flow conditions suggests that event magnitude is an important control on the relative mobility of particulate and dissolved phosphorus fractions. This study showed that insights into nutrient dynamics and phosphorus budgets in the lower Great Lakes basin and agriculture dominated environments more broadly can be gained by assessing event nutrient losses with respect to flow conditions and patterns in concentration-discharge relationships.
Collapse
Affiliation(s)
- C A Ross
- Department of Geography and Environmental Studies, Toronto Metropolitan University, 350 Victoria St, Toronto M5B 2K3, Canada.
| | - L L Moslenko
- Department of Geography and Environmental Studies, Toronto Metropolitan University, 350 Victoria St, Toronto M5B 2K3, Canada
| | - K M Biagi
- Department of Geography and Environmental Studies, Toronto Metropolitan University, 350 Victoria St, Toronto M5B 2K3, Canada
| | - C J Oswald
- Department of Geography and Environmental Studies, Toronto Metropolitan University, 350 Victoria St, Toronto M5B 2K3, Canada
| | - C C Wellen
- Department of Geography and Environmental Studies, Toronto Metropolitan University, 350 Victoria St, Toronto M5B 2K3, Canada
| | - J L Thomas
- Ontario Ministry of the Environment, Conservation and Parks, 125 Resources Rd, Toronto M9P 3V6, Canada
| | - M Raby
- Ontario Ministry of the Environment, Conservation and Parks, 125 Resources Rd, Toronto M9P 3V6, Canada
| | - R J Sorichetti
- Ontario Ministry of the Environment, Conservation and Parks, 125 Resources Rd, Toronto M9P 3V6, Canada
| |
Collapse
|