1
|
Ye S, Xu S, Ren M, Chang C, Hu E, Li M. Land use types, basin characteristics and water quality together shape riverine phytoplankton community composition and diversity. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 376:124496. [PMID: 39933371 DOI: 10.1016/j.jenvman.2025.124496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 02/03/2025] [Accepted: 02/05/2025] [Indexed: 02/13/2025]
Abstract
Exploring the combined effects of basin characteristics, land use types, and human activities on phytoplankton biomass, community composition and diversity is important for developing effective river protection strategies. In the present study, 182 phytoplankton samples were collected in the Hanjian and Danjiang River basins and the explanation rate of the above factors was analyzed. Water quality was the primary factor affecting riverine phytoplankton biomass, with an explanation rate to Chl a reaching 59.8%. Water quality was also the primary factor affecting phytoplankton diversity but the contribution of land use types and basin characteristics was also high. In addition to affecting phytoplankton communities and diversity by affecting water quality, diverse land use can increase the taxa of algae discharged through soil erosion processes. Elevation and slope were the main basin characteristics regulating phytoplankton community and diversity because they can determine the retention time of phytoplankton in rivers. The results also showed that land use types were the primary factor affecting the critical relative abundance of extinction (a), competition coefficient (k), environmental taxa capacity (N), but water quality was the primary factor affecting Shannon index, Simpson index, and Pielou index. This difference indicated that index a, k, and N could reflect specific characteristics of phytoplankton diversity that were not reflected by the latter indices. Our results implied that land use types and basin characteristics affected the discharge of exotic algal taxa, retention time, and other factors, thereby influencing the composition and diversity of riverine phytoplankton communities.
Collapse
Affiliation(s)
- Sisi Ye
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Sha Xu
- Shaanxi Provincial Academy of Environmental Science, Xi'an, Shaanxi, 710061, China
| | - Mi Ren
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Chao Chang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - En Hu
- Shaanxi Provincial Academy of Environmental Science, Xi'an, Shaanxi, 710061, China
| | - Ming Li
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| |
Collapse
|
2
|
Lin YJ, Chen TC, Chen CTA, Wong SL, Meng PJ, Chen MH. Decreases in pH from effluent had a devastating but reversible impact on the coastal plankton communities. MARINE POLLUTION BULLETIN 2025; 211:117359. [PMID: 39647274 DOI: 10.1016/j.marpolbul.2024.117359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 11/23/2024] [Accepted: 11/27/2024] [Indexed: 12/10/2024]
Abstract
An event of releasing untreated effluent caused serious decreases in surface seawater pH from 8.1 to lower than 7.5 in seven years and increased back to prior levels after 15 years. It gives us a rare natural experiment to examine the impacts of decreases in pH on the marine plankton communities (phytoplanktons, zooplanktons, shrimp larvae, crab larvae, fish eggs, and larvae) in the natural environment. Observed decreases in pH had a nonlinear effect ubiquitous on all plankton groups, leading to a reduction of approximately 50 % in their density and abundance compared to the level at pH 8.1. Non-linear responses of planktons implied the existence of specific groups more robust to decreases in pH. As pH bounced back to normal levels, the density and abundance of the plankton communities also recovered, further indicating that the negative impacts of decreases in pH on the marine plankton communities were reversible.
Collapse
Affiliation(s)
- Yu-Jia Lin
- Institute of Marine Ecology and Conservation, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
| | - Tzu-Chun Chen
- Department of Oceanography, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
| | - Chen-Tung Arthur Chen
- Department of Oceanography, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
| | - Saou-Lien Wong
- Department of Aquaculture, National Pingtung University of Science and Technology, Pingtung 912301, Taiwan
| | - Pei-Jie Meng
- National Applied Research Laboratories, Taiwan Ocean Research Institute, Kaohsiung 85243, Taiwan; National Dong Hwa University, Graduate Institute of Marine Biology, Hualien, 97401, Taiwan
| | - Meng-Hsien Chen
- Institute of Marine Ecology and Conservation, National Sun Yat-sen University, Kaohsiung 80424, Taiwan; Department of Oceanography, National Sun Yat-sen University, Kaohsiung 80424, Taiwan; Water Resources Research Center, National Sun Yat-sen University, Kaohsiung 80424, Taiwan; Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung 80708, Taiwan.
| |
Collapse
|
3
|
Cai G, Ge Y, Dong Z, Liao Y, Chen Y, Wu A, Li Y, Liu H, Yuan G, Deng J, Fu H, Jeppesen E. Temporal shifts in the phytoplankton network in a large eutrophic shallow freshwater lake subjected to major environmental changes due to human interventions. WATER RESEARCH 2024; 261:122054. [PMID: 38986279 DOI: 10.1016/j.watres.2024.122054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 07/02/2024] [Accepted: 07/04/2024] [Indexed: 07/12/2024]
Abstract
Phytoplankton communities are crucial components of aquatic ecosystems, and since they are highly interactive, they always form complex networks. Yet, our understanding of how interactive phytoplankton networks vary through time under changing environmental conditions is limited. Using a 29-year (339 months) long-term dataset on Lake Taihu, China, we constructed a temporal network comprising monthly sub-networks using "extended Local Similarity Analysis" and assessed how eutrophication, climate change, and restoration efforts influenced the temporal dynamics of network complexity and stability. The network architecture of phytoplankton showed strong dynamic changes with varying environments. Our results revealed cascading effects of eutrophication and climate change on phytoplankton network stability via changes in network complexity. The network stability of phytoplankton increased with average degree, modularity, and nestedness and decreased with connectance. Eutrophication (increasing nitrogen) stabilized the phytoplankton network, mainly by increasing its average degree, while climate change, i.e., warming and decreasing wind speed enhanced its stability by increasing the cohesion of phytoplankton communities directly and by decreasing the connectance of network indirectly. A remarkable shift and a major decrease in the temporal dynamics of phytoplankton network complexity (average degree, nestedness) and stability (robustness, persistence) were detected after 2007 when numerous eutrophication mitigation efforts (not all successful) were implemented, leading to simplified phytoplankton networks and reduced stability. Our findings provide new insights into the organization of phytoplankton networks under eutrophication (or re-oligotrophication) and climate change in subtropical shallow lakes.
Collapse
Affiliation(s)
- Guojun Cai
- Ecology Department, College of Environments & Ecology, Hunan Provincial Key Laboratory of Rural Ecosystem Health in Dongting Lake Area, Hunan Agricultural University, Changsha 410128, China; Institute of Mountain Resources, Guizhou Academy of Science, Guiyang 550001, China
| | - Yili Ge
- Ecology Department, College of Environments & Ecology, Hunan Provincial Key Laboratory of Rural Ecosystem Health in Dongting Lake Area, Hunan Agricultural University, Changsha 410128, China
| | - Zheng Dong
- Ecology Department, College of Environments & Ecology, Hunan Provincial Key Laboratory of Rural Ecosystem Health in Dongting Lake Area, Hunan Agricultural University, Changsha 410128, China
| | - Yu Liao
- Ecology Department, College of Environments & Ecology, Hunan Provincial Key Laboratory of Rural Ecosystem Health in Dongting Lake Area, Hunan Agricultural University, Changsha 410128, China
| | - Yaoqi Chen
- Ecology Department, College of Environments & Ecology, Hunan Provincial Key Laboratory of Rural Ecosystem Health in Dongting Lake Area, Hunan Agricultural University, Changsha 410128, China
| | - Aiping Wu
- Ecology Department, College of Environments & Ecology, Hunan Provincial Key Laboratory of Rural Ecosystem Health in Dongting Lake Area, Hunan Agricultural University, Changsha 410128, China
| | - Youzhi Li
- Ecology Department, College of Environments & Ecology, Hunan Provincial Key Laboratory of Rural Ecosystem Health in Dongting Lake Area, Hunan Agricultural University, Changsha 410128, China
| | - Huanyao Liu
- Ecology Department, College of Environments & Ecology, Hunan Provincial Key Laboratory of Rural Ecosystem Health in Dongting Lake Area, Hunan Agricultural University, Changsha 410128, China
| | - Guixiang Yuan
- Ecology Department, College of Environments & Ecology, Hunan Provincial Key Laboratory of Rural Ecosystem Health in Dongting Lake Area, Hunan Agricultural University, Changsha 410128, China
| | - Jianming Deng
- Taihu Laboratory for Lake Ecosystem Research, State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China.
| | - Hui Fu
- Ecology Department, College of Environments & Ecology, Hunan Provincial Key Laboratory of Rural Ecosystem Health in Dongting Lake Area, Hunan Agricultural University, Changsha 410128, China.
| | - Erik Jeppesen
- Department of Ecoscience and Centre for Water Technology (WATEC), Aarhus University, Vejlsøvej 25, Silkeborg 8600, Denmark; Sino-Danish Centre for Education and Research (SDC), University of Chinese Academy of Sciences, Beijing, China; imnology Laboratory, Department of Biological Sciences and Centre for Ecosystem Research and Implementation, Middle East Technical University, Ankara, Turkey; Institute of Marine Sciences, Middle East Technical University, Erdemli-Mersin 33731, Turkey; Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming, China
| |
Collapse
|
4
|
Martiny HM, Munk P, Brinch C, Aarestrup FM, Calle ML, Petersen TN. Utilizing co-abundances of antimicrobial resistance genes to identify potential co-selection in the resistome. Microbiol Spectr 2024; 12:e0410823. [PMID: 38832899 PMCID: PMC11218503 DOI: 10.1128/spectrum.04108-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 04/19/2024] [Indexed: 06/06/2024] Open
Abstract
The rapid spread of antimicrobial resistance (AMR) is a threat to global health, and the nature of co-occurring antimicrobial resistance genes (ARGs) may cause collateral AMR effects once antimicrobial agents are used. Therefore, it is essential to identify which pairs of ARGs co-occur. Given the wealth of next-generation sequencing data available in public repositories, we have investigated the correlation between ARG abundances in a collection of 214,095 metagenomic data sets. Using more than 6.76∙108 read fragments aligned to acquired ARGs to infer pairwise correlation coefficients, we found that more ARGs correlated with each other in human and animal sampling origins than in soil and water environments. Furthermore, we argued that the correlations could serve as risk profiles of resistance co-occurring to critically important antimicrobials (CIAs). Using these profiles, we found evidence of several ARGs conferring resistance for CIAs being co-abundant, such as tetracycline ARGs correlating with most other forms of resistance. In conclusion, this study highlights the important ARG players indirectly involved in shaping the resistomes of various environments that can serve as monitoring targets in AMR surveillance programs. IMPORTANCE Understanding the collateral effects happening in a resistome can reveal previously unknown links between antimicrobial resistance genes (ARGs). Through the analysis of pairwise ARG abundances in 214K metagenomic samples, we observed that the co-abundance is highly dependent on the environmental context and argue that these correlations can be used to show the risk of co-selection occurring in different settings.
Collapse
Affiliation(s)
- Hannah-Marie Martiny
- Research Group for Genomic Epidemiology, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Patrick Munk
- Research Group for Genomic Epidemiology, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Christian Brinch
- Research Group for Genomic Epidemiology, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Frank M. Aarestrup
- Research Group for Genomic Epidemiology, Technical University of Denmark, Kongens Lyngby, Denmark
| | - M. Luz Calle
- Biosciences Department, Faculty of Sciences and Technology, University of Vic - Central University of Catalonia, Vic, Spain
| | - Thomas N. Petersen
- Research Group for Genomic Epidemiology, Technical University of Denmark, Kongens Lyngby, Denmark
| |
Collapse
|
5
|
Wang Z, Liu X, Wang X, Wang H, Sun Y, Zhang J, Li H. Contrasting benthic bacterial and fungal communities in two temperate coastal areas affected by different levels of anthropogenic pressure. MARINE ENVIRONMENTAL RESEARCH 2024; 198:106501. [PMID: 38615486 DOI: 10.1016/j.marenvres.2024.106501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 03/19/2024] [Accepted: 04/08/2024] [Indexed: 04/16/2024]
Abstract
Benthic microbial communities play a crucial role in maintaining the stability and function of estuarine ecosystems. However, their organization and response to multiple stresses in severely disturbed coastal areas remains to be elucidated. In this study, we revealed the presence of contrasting benthic bacterial and fungal communities in the Liaohe (LH) and Yalujiang (YLJ) estuaries, which are located at similar latitudes and are characterized by similar climates but are subjected to different levels of anthropogenic pressure. The results showed that Firmicutes and Chloroflexi were more abundant in LH, which reflected the influence of anthropogenic pressure in this area. Functional analyses indicated that the functional genes involved in the generation of precursor metabolites and energy pathways were more enriched in the LH community, while genes regulating degradation/utilization/assimilation processes were more enriched in the YLJ community. Distance-dependent similarity analysis showed that the bacterial community in LH was more affected by environmental changes, while that in YLJ was more influenced by geographic dispersion. In contrast, no significant distance-dependent similarity was found for the fungal communities in the two areas. In addition, the network analysis showed that the bacterial-fungal network in YLJ was more complex and stable than that in the LH. Our results highlight the important roles of environmental heterogeneity in controlling microbial community composition, biogeographic patterns, and co-occurrence networks. These findings fill knowledge gaps in the understanding of the different response patterns of benthic communities under varying anthropogenic pressures.
Collapse
Affiliation(s)
- Zhen Wang
- College of Marine Technology and Environment, Dalian Ocean University, Dalian, 116023, China; State Environmental Protection Key Laboratory of Coastal Ecosystem, National Marine Environmental Monitoring Center, Dalian, 116023, China
| | - Xiaohan Liu
- State Environmental Protection Key Laboratory of Coastal Ecosystem, National Marine Environmental Monitoring Center, Dalian, 116023, China
| | - Xiaocheng Wang
- State Environmental Protection Key Laboratory of Coastal Ecosystem, National Marine Environmental Monitoring Center, Dalian, 116023, China
| | - Haining Wang
- State Environmental Protection Key Laboratory of Coastal Ecosystem, National Marine Environmental Monitoring Center, Dalian, 116023, China
| | - Yi Sun
- State Environmental Protection Key Laboratory of Coastal Ecosystem, National Marine Environmental Monitoring Center, Dalian, 116023, China
| | - Jinyong Zhang
- State Environmental Protection Key Laboratory of Coastal Ecosystem, National Marine Environmental Monitoring Center, Dalian, 116023, China
| | - Hongjun Li
- State Environmental Protection Key Laboratory of Coastal Ecosystem, National Marine Environmental Monitoring Center, Dalian, 116023, China.
| |
Collapse
|
6
|
Zhang Y, Qu Z, Zhang K, Li J, Lin X. Different Microeukaryotic Trophic Groups Show Different Latitudinal Spatial Scale Dependences in Assembly Processes across the Continental Shelves of China. Microorganisms 2024; 12:124. [PMID: 38257952 PMCID: PMC10821338 DOI: 10.3390/microorganisms12010124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/02/2024] [Accepted: 01/04/2024] [Indexed: 01/24/2024] Open
Abstract
The relative role of stochasticity versus determinism is critically dependent on the spatial scale over which communities are studied. However, only a few studies have attempted to reveal how spatial scales influence the balance of different assembly processes. In this study, we investigated the latitudinal spatial scale dependences in assembly processes of microeukaryotic communities in surface water and sediment along the continental shelves of China. It was hypothesized that different microeukaryotic trophic groups (i.e., autotroph, heterotroph, mixotroph, and parasite) showed different latitudinal scale dependences in their assembly processes. Our results disclosed that the relative importance of different assembly processes depended on a latitudinal space scale for planktonic microeukaryotes. In surface water, as latitudinal difference increased, the relative contributions of homogenous selection and homogenizing dispersal decreased for the entire community, while those of heterogeneous selection and drift increased. The planktonic autotrophic and heterotrophic groups shifted from stochasticity-dominated processes to heterogeneous selection as latitudinal differences surpassed thresholds of 8° and 16°, respectively. For mixotrophic and parasitic groups, however, the assembly processes were always dominated by drift across different spatial scales. The balance of different assembly processes for the autotrophic group was mainly driven by temperature, whereas that of the heterotrophic group was driven by salinity and geographical distance. In sediment, neither the entire microeukaryotic community nor the four trophic groups showed remarkable spatial scale dependences in assembly processes; they were always overwhelmingly dominated by the drift. This work provides a deeper understanding of the distribution mechanisms of microeukaryotes along the continental shelves of China from the perspective of trophic groups.
Collapse
Affiliation(s)
- Yong Zhang
- Key Laboratory of Ministry of Education for Coastal and Wetland Ecosystems, Fujian Province Key Laboratory for Coastal Ecology and Environmental Studies, College of the Environment and Ecology, Xiamen University, Xiamen 361102, China; (Y.Z.); (Z.Q.); (K.Z.); (J.L.)
- School of Health and Life Sciences, University of Health and Rehabilitation Sciences, Qingdao 266071, China
| | - Zhishuai Qu
- Key Laboratory of Ministry of Education for Coastal and Wetland Ecosystems, Fujian Province Key Laboratory for Coastal Ecology and Environmental Studies, College of the Environment and Ecology, Xiamen University, Xiamen 361102, China; (Y.Z.); (Z.Q.); (K.Z.); (J.L.)
| | - Kexin Zhang
- Key Laboratory of Ministry of Education for Coastal and Wetland Ecosystems, Fujian Province Key Laboratory for Coastal Ecology and Environmental Studies, College of the Environment and Ecology, Xiamen University, Xiamen 361102, China; (Y.Z.); (Z.Q.); (K.Z.); (J.L.)
| | - Jiqiu Li
- Key Laboratory of Ministry of Education for Coastal and Wetland Ecosystems, Fujian Province Key Laboratory for Coastal Ecology and Environmental Studies, College of the Environment and Ecology, Xiamen University, Xiamen 361102, China; (Y.Z.); (Z.Q.); (K.Z.); (J.L.)
| | - Xiaofeng Lin
- Key Laboratory of Ministry of Education for Coastal and Wetland Ecosystems, Fujian Province Key Laboratory for Coastal Ecology and Environmental Studies, College of the Environment and Ecology, Xiamen University, Xiamen 361102, China; (Y.Z.); (Z.Q.); (K.Z.); (J.L.)
| |
Collapse
|
7
|
Tang K, Liang Y, Yuan B, Meng J, Feng F. Spatial distribution and core community of diazotrophs in Biological soil crusts and subsoils in temperate semi-arid and arid deserts of China. Front Microbiol 2023; 14:1074855. [PMID: 37608942 PMCID: PMC10440438 DOI: 10.3389/fmicb.2023.1074855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 07/25/2023] [Indexed: 08/24/2023] Open
Abstract
Introduction Biological soil crusts (BSCs) are distributed in arid and semiarid regions, and they function as important microhabitats for nitrogen fixation. The diazotroph community is critical for nitrogen fixation in BSCs and their subsoils. However, little is known about the key groups in different types of BSCs and subsoils in temperate semi-arid or arid deserts. Methods Here, we sampled three types of BSCs and their subsoils from the Inner Mongolian plateau, investigated the distribution characteristics of the diazotroph community by high-throughput sequencing, predicted keystone species using the molecular ecological network analyses pipeline (MENAP), and verified their close relationship with the available nitrogen (AN) content. Results The results showed that available nitrogen content in BSCs was higher than that in subsoils in three different types of BSCs, and there were differences among seasons and according to the mean annual precipitation. The abundance of diazotrophs was higher in Cyano-BSCs, while diversity had no significant difference among BSCs and subsoils. Cyanobacteria and Proteobacteria, Nostocaceae and Scytonemataceae, Skermanella, Scytonema, Azohydromonas, Nostoc and Trichormus were the dominant phyla, families, and genera, respectively. The dominant groups belong to Skermanella, Scytonema, and Nostoc formed the core diazotroph community in the three types of BSCs and subsoils, and each had a close relationship with AN. Discussion These results indicate that diazotrophs in BSCs and subsoils had high diversity, and the core diazotroph communities have a close relationship with nitrogen fixation and that they may be the main contributor to nitrogen fixing in BSCs and subsoils in temperate deserts.
Collapse
Affiliation(s)
- Kai Tang
- Laboratory for Environmental Microbiology and Biotechnology in Arid and Cold Regions, College of Life Sciences, Inner Mongolia Agricultural University, Hohhot, China
| | - Yungang Liang
- Laboratory for Environmental Microbiology and Biotechnology in Arid and Cold Regions, College of Life Sciences, Inner Mongolia Agricultural University, Hohhot, China
| | - Bo Yuan
- Laboratory for Environmental Microbiology and Biotechnology in Arid and Cold Regions, College of Life Sciences, Inner Mongolia Agricultural University, Hohhot, China
- College of Life Science, Inner Mongolia Normal University, Hohhot, China
| | - Jianyu Meng
- Laboratory for Environmental Microbiology and Biotechnology in Arid and Cold Regions, College of Life Sciences, Inner Mongolia Agricultural University, Hohhot, China
| | - Fuying Feng
- Laboratory for Environmental Microbiology and Biotechnology in Arid and Cold Regions, College of Life Sciences, Inner Mongolia Agricultural University, Hohhot, China
| |
Collapse
|
8
|
Pan Q, Huang J, Zhang S, Qin H, Dong Y, Wang X, Mu Y, Tang H, Zhou R. Synergistic effect of biotic and abiotic factors drives microbiota succession and assembly in medium-temperature Daqu. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:4392-4400. [PMID: 36891660 DOI: 10.1002/jsfa.12543] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 02/08/2023] [Accepted: 03/09/2023] [Indexed: 06/06/2023]
Abstract
BACKGROUND The feasibility of fortification techniques to improve the quality of medium-temperature Daqu (MTD) by inoculation functional isolates has been demonstrated. However, it is unclear what is the effect of inoculation on the controllability during the MTD fermentation process. Here, inoculated a single strain of Bacillus licheniformis, and the microbiota composed of Bacillus velezensis and Bacillus subtilis, were used to investigate the synergistic effect of biotic and abiotic factors on the succession and assembly of the MTD microbiota during the process. RESULTS The biotic factors promoted the proliferation of microorganisms that arrived early at the MTD. Subsequently, this alteration might inhibit microorganisms that colonized later in the MTD microecosystem, thereby assembling a different but more stable microbial community. Moreover, the biotic factors making bacterial community assembly were dominated by variable selection earlier, whereas the fungal community assembly was dominated mainly by extreme abiotic factors rather than biotic factors. Interestingly, fermentation temperature and moisture were significantly associated with the succession and assembly of the fortified MTD community. Meanwhile, the effect of the environmental variables on endogenous variables was also significant. Thus, changes in endogenous variables could be mitigated by adjusting environmental variables to regulate the process of MTD fermentation. CONCLUSION Biotic factors cause rapid changes of the microbiota during the MTD fermentation process, which could be controlled indirectly by regulating environmental variables. Meanwhile, a more stable MTD ecological network might be beneficial for enhancing the stability of MTD quality. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Qianglin Pan
- College of Biomass Science and Engineering, Sichuan University, Chengdu, China
| | - Jun Huang
- College of Biomass Science and Engineering, Sichuan University, Chengdu, China
| | | | - Hui Qin
- Luzhou Lao Jiao Co., Ltd, Luzhou, China
| | - Yi Dong
- Luzhou Lao Jiao Co., Ltd, Luzhou, China
| | | | - Yu Mu
- College of Biomass Science and Engineering, Sichuan University, Chengdu, China
| | - Huifang Tang
- College of Biomass Science and Engineering, Sichuan University, Chengdu, China
| | - Rongqing Zhou
- College of Biomass Science and Engineering, Sichuan University, Chengdu, China
| |
Collapse
|
9
|
Zhang Z, Li J, Li H, Wang L, Zhou Y, Li S, Zhang Z, Feng K, Deng Y. Environmental DNA metabarcoding reveals the influence of human activities on microeukaryotic plankton along the Chinese coastline. WATER RESEARCH 2023; 233:119730. [PMID: 36801577 DOI: 10.1016/j.watres.2023.119730] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 02/04/2023] [Accepted: 02/10/2023] [Indexed: 06/18/2023]
Abstract
Microeukaryotic plankton, with its extremely diverse taxa, is a key component in both the marine food web and biogeochemical cycling. Coastal seas, which are home to the numerous microeukaryotic plankton that underpin the functions of these aquatic ecosystems, are often impacted by human activities. However, understanding the biogeographical patterns of diversity and community structure of microeukaryotic plankton and the role that major shaping factors play at the continent scale is still a challenge in coastal ecology. Here, the biogeographic patterns of biodiversity, community structure, and co-occurrence patterns were investigated by environmental DNA (eDNA) based approaches. Unlike most eDNA studies, we combined several methods (in silico PCR, mock and environmental communities) to systematically evaluate the specificity and coverage of primers to overcome the limitation of marker selection on biodiversity recovery. The 1380F/1510R primer set showed the best performance for the amplification of coastal plankton with the highest coverage, sensitivity, and resolution. We showed a unimodal pattern for planktonic alpha diversity with latitude (P < 0.001), and nutrient-related factors (NO3N, NO2N, and NH4N) were the leading predictors for spatial patterning. Significant regional biogeographic patterns and potential drivers for planktonic communities were found across coastal regions. All communities generally fitted the regional distance-decay relationship (DDR) model with the strongest spatial turnover rate was found in the Yalujiang (YLJ) estuary (P < 0.001). The environmental factors, especially inorganic nitrogen and heavy metals (HMs), had the greatest impact on planktonic community similarity in the Beibu Bay (BB) and East China Sea (ECS). Furthermore, we observed spatial plankton co-occurrence patterns, and the networked topology and structure were strongly driven by potential anthropogenic activity factors (nutrients and HMs). Overall, our study provided a systematic approach for metabarcode primer selection in eDNA-based biodiversity monitoring and revealed that the spatial pattern of the microeukaryotic plankton community was mainly controlled by regional human activity-related factors.
Collapse
Affiliation(s)
- Zheng Zhang
- CAS Key Laboratory for Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Institute of Marine Science and Technology, Shandong University, Qingdao 266237, China
| | - Jiang Li
- Marine Bioresource and Environment Research Center, First Institute of Oceanography, Ministry of Natural Resources; Key Laboratory of Ecological Environment Science and Technology, Ministry of Natural Resources, Qingdao, China, 266061.
| | - Hongjun Li
- State Environmental Protection Key Laboratory of Coastal Ecosystem, National Marine Environmental Monitoring Center, Dalian, 116023, China
| | - Linlin Wang
- CAS Key Laboratory for Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Institute of Marine Science and Technology, Shandong University, Qingdao 266237, China
| | - Yuqi Zhou
- Institute of Soil and Water Resources and Environmental Science College of Environmental and Natural Resource Sciences, Zhejiang University, China
| | - Shuzhen Li
- Aquatic EcoHealth Group, Fujian Key Laboratory of Watershed Ecology, Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Zhaojing Zhang
- Institute of Marine Science and Technology, Shandong University, Qingdao 266237, China
| | - Kai Feng
- CAS Key Laboratory for Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100190, China
| | - Ye Deng
- CAS Key Laboratory for Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100190, China; Institute of Marine Science and Technology, Shandong University, Qingdao 266237, China.
| |
Collapse
|
10
|
Wang Y, Dang N, Feng K, Wang J, Jin X, Yao S, Wang L, Gu S, Zheng H, Lu G, Deng Y. Grass-microbial inter-domain ecological networks associated with alpine grassland productivity. Front Microbiol 2023; 14:1109128. [PMID: 36760496 PMCID: PMC9905801 DOI: 10.3389/fmicb.2023.1109128] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Accepted: 01/09/2023] [Indexed: 01/26/2023] Open
Abstract
Associations between grasses and soil microorganisms can strongly influence plant community structures. However, the associations between grass productivity and diversity and soil microbes, as well as the patterns of co-occurrence between grass and microbes remain unclear. Here, we surveyed grass productivity and diversity, determined soil physicochemical, and sequenced soil archaea, bacteria and fungi by metabarcoding technology at 16 alpine grasslands. Using the Distance-decay relationship, Inter-Domain Ecological Network (IDEN), and Mantel tests, we investigated the relationship between grass productivity, diversity and microbial diversity, and the patterns of co-occurrence between grass and microbial inter-domain network in alpine grassland. We found the archaea richness, bacteria richness and Shannon, and fungi α-diversity were significantly negatively correlation with grass diversity, but archaea and bacteria diversity were positively correlation with grass productivity. Moreover, an increase in microbial β-diversity was observed along with increased discrepancy in grass diversity and productivity and soil variables. Variance partitioning analysis suggested that the contribution of grass productivity on microbial community was higher than that of soil variables and grass diversity, which implies that microbial community was more related to grass productivity. Inter-Domain Ecological Network showed that the grass species formed complex and stable ecological networks with some bacterial, archaeal, and fungal species, and the grass-fungal ecological networks showed the highest robustness, which indicated that soil fungi could better co-coexist with aboveground grass in alpine grasslands. Besides, the connectivity degrees of the grass-microbial network were significantly positively correlated with grass productivity, suggesting that the coexistence pattern of grasses and microbes had a positive feedback effect on the grass productivity. The results are important for establishing the regulatory mechanisms between plants and microorganisms in alpine grassland ecosystems.
Collapse
Affiliation(s)
- Yingcheng Wang
- Collage of Agriculture and Animal Husbandry, Qinghai University, Xining, China
- CAS Key Laboratory for Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences (CAS), Beijing, China
| | - Ning Dang
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Kai Feng
- CAS Key Laboratory for Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences (CAS), Beijing, China
| | - Junbang Wang
- National Ecosystem Science Data Center, Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China
| | - Xin Jin
- Collage of Agriculture and Animal Husbandry, Qinghai University, Xining, China
| | - Shiting Yao
- Collage of Agriculture and Animal Husbandry, Qinghai University, Xining, China
| | - Linlin Wang
- CAS Key Laboratory for Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences (CAS), Beijing, China
- Institute of Marine Science and Technology, Shandong University, Qingdao, China
| | - Songsong Gu
- CAS Key Laboratory for Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences (CAS), Beijing, China
| | - Hua Zheng
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
| | - Guangxin Lu
- Collage of Agriculture and Animal Husbandry, Qinghai University, Xining, China
| | - Ye Deng
- CAS Key Laboratory for Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences (CAS), Beijing, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|