1
|
Frankowski R, Płatkiewicz J, Kowalska M, Grześkowiak T, Pruss A, Zgoła-Grześkowiak A. The efficiency of biodegradation processes for removal of tetracycline antibacterial drugs using activated sludge and river water inocula. JOURNAL OF ENVIRONMENTAL HEALTH SCIENCE & ENGINEERING 2025; 23:13. [PMID: 40226514 PMCID: PMC11992300 DOI: 10.1007/s40201-025-00940-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Accepted: 03/26/2025] [Indexed: 04/15/2025]
Abstract
Purpose Tetracycline, chlortetracycline, and oxytetracycline are commonly prescribed antibiotics. Their extensive use results in a large stream of tetracyclines entering wastewater treatment plants (WWTPs). However, they can still be found in surface waters, which may suggest their incomplete removal in the WWTPs. The study was designed to show (i) how much of tetracyclines may be removed before they enter the environment, (ii) how tetracyclines may be removed after they enter surface water, (iii) how the presence of tetracyclines influence the metabolic activity of bacteria. Method Degradation of tetracyclines was studied using two types of inoculum, simulating degradation in WWTPs and rivers. Cell metabolic activity was assessed to show potential risks arising from their appearance in water. Results Complete primary degradation in the test with wastewater sludge inoculum was achieved within not more than 14 days. In the test with river water inoculum removal of both tetracycline and oxytetracycline did not exceed 20% in 28 days. Chlortetracycline was transformed rapidly but without considerable structural change. Although no considerable removal was achieved, bacterial activity in the river water test after 28 days was 10 times greater than while starting the test. Conclusions The study shows that appropriate retention of sewage in WWTPs must be provided. Otherwise, tetracyclines will accumulate in the environment, where their removal is limited, even though bacterial activity is still relatively high.
Collapse
Affiliation(s)
- Robert Frankowski
- Institute of Chemistry and Technical Electrochemistry, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, Poznań, 60-965 Poland
| | - Julia Płatkiewicz
- Institute of Chemistry and Technical Electrochemistry, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, Poznań, 60-965 Poland
| | - Marta Kowalska
- Institute of Chemistry and Technical Electrochemistry, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, Poznań, 60-965 Poland
| | - Tomasz Grześkowiak
- Institute of Chemistry and Technical Electrochemistry, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, Poznań, 60-965 Poland
| | - Alina Pruss
- Institute of Environmental Engineering and Building Installations, Faculty of Environmental and Power Engineering, Poznan University of Technology, Berdychowo 4, Poznań, 60-965 Poland
| | - Agnieszka Zgoła-Grześkowiak
- Institute of Chemistry and Technical Electrochemistry, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, Poznań, 60-965 Poland
| |
Collapse
|
2
|
Kanakaraju D, Glass BD, Goh PS. Advanced oxidation process-mediated removal of pharmaceuticals from water: a review of recent advances. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2025:10.1007/s11356-025-36547-5. [PMID: 40434594 DOI: 10.1007/s11356-025-36547-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Accepted: 05/15/2025] [Indexed: 05/29/2025]
Abstract
Pharmaceutical compounds have raised significant environmental concerns, due to their persistent and non-biodegradable nature. Addressing their presence in the environment has become a priority, leading to the application of various removal treatment techniques. Advanced oxidation processes (AOPs) undoubtedly have emerged as highly effective removal techniques, as evidenced by the growing body of work in this area. This review offers an overview of the recent advances in the development of AOPs for treating pharmaceuticals and their by-products. Current trends and discoveries reported in diverse AOP studies have been scrutinized and are presented. Furthermore, emphasis is placed on the use of TiO2-mediated photocatalysis, which stands out as one of the most explored AOPs for pharmaceutical remediation. Performance aspects of TiO2 photocatalytic treatment are explored and discussed encompassing both commercially available and synthesized TiO2, as well as engineered TiO2-based materials (e.g. activated carbon, polymers, metals and non-metals), all aimed at removal of pharmaceutical compounds from the environment. The review concludes by summarizing key findings and offers insights into directions for future research.
Collapse
Affiliation(s)
- Devagi Kanakaraju
- Faculty of Resource Science and Technology, Universiti Malaysia Sarawak, 94300, Kota Samarahan, Sarawak, Malaysia.
| | - Beverley D Glass
- Pharmacy, College of Medicine and Dentistry, James Cook University, Townsville, Qld, 4811, Australia
| | - Pei Sean Goh
- Advanced Membrane Technology Research Centre, Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, Skudai, 81310, Johor Bahru, Malaysia
| |
Collapse
|
3
|
Kang H, Ren H, Labidi A, Liao Y, Wang Y, Zheng H, Bahnemann D, Wang C. Fe 3O 4 loaded biochar to enhance persulfate activation for tetracycline degradation: Performance and mechanism. CHEMOSPHERE 2025; 376:144267. [PMID: 40054287 DOI: 10.1016/j.chemosphere.2025.144267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 01/19/2025] [Accepted: 02/26/2025] [Indexed: 03/23/2025]
Abstract
Waste sodium lignosulfonate (LS) is widely converted into biochar-based catalysts due to its rich functional groups and high carbon content. However, inefficient peroxydisulfate (PDS) activation by original sodium lignosulfonate biochar (LB) limits its ability to remove organic pollutants from water bodies. Here, LS was employed as a precursor to synthesize Fe3O4-loaded biochar (Fe3O4@LB) through a one-step pyrolysis process for activating PDS to remove tetracycline (TC). Compared with the original LB, Fe3O4@LB exhibited a larger specific surface area (459.78 m2/g), which is advantageous in providing more adsorption and reaction active sites. Quenching experiment and electron paramagnetic resonance (EPR) analysis revealed that 1O2 and O2•- are the primary active species involved in TC degradation. Characterization results showed that Fe3O4 is uniformly distributed on the biochar, providing abundant Fe(II) to activate the PDS to generate reactive species (ROS). The Fe(III) generated after the reaction was reduced by electron-rich biochar to promote Fe(III)/Fe(II) cycling. The Fe3O4@LB-3/PDS system displayed excellent performance, degrading 90% of TC within 20 min, with a rate constant k of 0.092 min-1, which is about three times that of the LB (0.036 min-1). Based on the liquid chromatography-mass spectrometry (LC-MS) analysis, three possible degradation pathways were proposed. Besides, mung bean growth experiments confirmed the detoxification of TC by the Fe3O4@LB-3/PDS system. This work highlights the feasibility of waste LS usage to produce highly efficient biochar catalysts, providing a sustainable and green alternative to address water contamination by antibiotics.
Collapse
Affiliation(s)
- Hong Kang
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, PR China
| | - Haitao Ren
- Technological Institute of Materials & Energy Science (TIMES), Xijing University, Xi'an, 710123, PR China.
| | - Abdelkader Labidi
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, PR China
| | - Yanqing Liao
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, PR China
| | - Yu Wang
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, PR China
| | - Huiqi Zheng
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, PR China
| | - Detlef Bahnemann
- Institute for Technical Chemistry, Leibniz University Hannover, 30167, Hannover, Germany; Laboratory of Photoactive Nanocomposite Materials, Saint Petersburg State University, Saint-Petersburg, 198504, Russia
| | - Chuanyi Wang
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, PR China.
| |
Collapse
|
4
|
Zhao Y, Song Y, Zhang L, Cui J, Tang W. Hydrological connectivity and dissolved organic matter impacts nitrogen and antibiotics fate in river-lake system before and after extreme wet season. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 378:124743. [PMID: 40031423 DOI: 10.1016/j.jenvman.2025.124743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 01/27/2025] [Accepted: 02/25/2025] [Indexed: 03/05/2025]
Abstract
The impact and mechanism of hydrological connectivity and dissolved organic matter on the fate of nitrogen and antibiotics are still lack off in a river-lake connected system under climate extreme events. This study examined the fate of NO3--N, 38 antibiotics, and dissolved organic matter (DOM) in Baiyangdian Basin, through dry and wet seasonal (after extreme rainfall) samplings at 2023. In the system, NO3--N and ∑antibiotics average concentrations were higher in the dry season, while the relative abundance of humic-like components was higher in the wet season. Spatial autocorrelation analysis showed that the high-high clusters of pollutants and DOM components were mainly distributed in rivers, and the temporal difference was significant. MixSIAR and PMF model were respectively applied to nitrogen and antibiotics sources apportionment. The results showed that non-point sources (NPS) of nitrogen and antibiotics exhibited an upward trend, while the point sources decreased from dry to wet seasons. Hydrological connectivity was characterized by using δ18O-H2O, which was higher in the wet season. Partial least squares path model revealed that hydrological connectivity directly impacted humic-like components, which were the direct influencing factor of the concentration and NPS for antibiotics and nitrogen in the connected system. Extreme rainfall weaken the impact of hydrological connectivity on the concentration and NPS of pollutants, while enhanced the impact of humic-like components on pollutants NPS. These findings clarified the impact mechanism of hydrological connectivity and DOM on nitrogen and antibiotics fate in the connected system, which plays an important role in future water quality management under extreme events.
Collapse
Affiliation(s)
- Yu Zhao
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Science, Beijing, 100085, China
| | - Yuanmeng Song
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Science, Beijing, 100085, China; College of Environment Science and Engineering, Hebei University of Science and Technology, Shijiazhuang, Hebei Province, 050000, China
| | - Lulu Zhang
- College of Environment Science and Engineering, Hebei University of Science and Technology, Shijiazhuang, Hebei Province, 050000, China.
| | - Jiansheng Cui
- College of Environment Science and Engineering, Hebei University of Science and Technology, Shijiazhuang, Hebei Province, 050000, China
| | - Wenzhong Tang
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Science, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
5
|
Hu J, Lyu Y, Liu Y, You X, Helbling DE, Sun W. Incorporating Transformation Products for an Integrated Assessment of Antibiotic Pollution and Risks in Surface Water. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:2815-2826. [PMID: 39884857 DOI: 10.1021/acs.est.4c12926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2025]
Abstract
The widespread presence of antibiotics in aquatic ecosystems is a global challenge, yet the occurrence and risks associated with their transformation products (TPs) remain poorly understood. This study investigated the occurrence and potential risks of antibiotics and their TPs in water along the Chaobai River in Beijing. We used high-resolution mass spectrometry and an integrated target, suspect, and nontarget screening approach to identify 21 parent antibiotics and 78 TPs among 90 water samples, with the majority from macrolides and sulfonamides. Notably, target quantification and machine-learning-assisted semiquantification revealed that the cumulative concentrations of TPs were higher than the cumulative concentrations of parent compounds, with average contributions of TPs ranging between 50.7 and 63.7%. Most downstream water samples were largely influenced by domestic sewage, as indicated by the significantly higher concentrations and proportions of TPs, as well as the greater diversity in their composition profiles compared to upstream and reservoir samples. Moreover, of the 78 TPs, 26.9, 67.9, and 6.4% exhibited greater persistence, mobility, or toxicity than their parent antibiotics, respectively. Sixteen macrolide TPs presented both greater ecological risks to aquatic organisms and higher resistance selection risks than their parent antibiotics. TPs contributed substantially to the overall antibiotic-related risks by an average of between 31.2 and 54.1%. This study highlights the occurrence of antibiotic TPs in river water, underscoring the need to consider TPs in comprehensive risk assessments of antibiotics.
Collapse
Affiliation(s)
- Jingrun Hu
- Key Laboratory of Water and Sediment Sciences, Ministry of Education, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
- State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, Beijing 100871, China
| | - Yitao Lyu
- Key Laboratory of Water and Sediment Sciences, Ministry of Education, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
- State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, Beijing 100871, China
| | - Yi Liu
- Key Laboratory of Water and Sediment Sciences, Ministry of Education, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
- State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, Beijing 100871, China
| | - Xiuqi You
- Key Laboratory of Water and Sediment Sciences, Ministry of Education, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
- State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, Beijing 100871, China
| | - Damian E Helbling
- School of Civil and Environmental Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Weiling Sun
- Key Laboratory of Water and Sediment Sciences, Ministry of Education, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
- State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, Beijing 100871, China
| |
Collapse
|
6
|
Tang H, Bian Z, Zhang L, Ma B, Wang H. Controlled electrocatalysis of the dechlorination and detoxification of chlorinated ethylenes to avoid production of highly toxic intermediates. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 952:175959. [PMID: 39222814 DOI: 10.1016/j.scitotenv.2024.175959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 08/21/2024] [Accepted: 08/30/2024] [Indexed: 09/04/2024]
Abstract
In this study, electrochemical dechlorination and detoxification of a mixture of chlorinated ethylenes was investigated under various conditions using a double monoatomic synergistic metal catalytic cathode. Electrocatalytic degradation of mixed chlorinated with stepwise voltage and alternating current exhibited excellent dechlorination efficiency. The removal ratios of 1,2-dichloroethylene (1,2-DCE), trichloroethylene (TCE), and tetrachloroethylene (PCE) reached 78.79 %, 79.27 %, and 93.44 % in 10 min, and 98.14 %, 97.56 %, and 98.70 % in 30 min, respectively. The toxicity was evaluated using a quantitative structure-activity relationship model. The cumulative toxicity was reduced to 8.00 % of the initial cumulative toxicity in 30 min. An electrochemical dechlorination strategy for selective degradation and detoxification of mixtures of chlorinated pollutants is proposed. Controlled dechlorination and detoxification under low-voltage control avoided the accumulation of toxic intermediates. Cumulative toxicity was reduced by strategies of selective dechlorination, and segmented and alternating current decreased the energy consumption. The strategy provides a basis for alternating current electrocatalytic dechlorination associated with mixed chlorinated pollutants treatment.
Collapse
Affiliation(s)
- Hanyu Tang
- College of Water Sciences, Beijing Normal University, Beijing 100875, PR China; State Environmental Protection Key Laboratory of Dioxin Pollution Control, National Research Center for Environmental Analysis and Measurement, Beijing 100029, PR China; Engineering Research Center of Groundwater Pollution Control and Remediation, Ministry of Education of China, Beijing Normal University, Beijing 100875, PR China
| | - Zhaoyong Bian
- College of Water Sciences, Beijing Normal University, Beijing 100875, PR China.
| | - Lifei Zhang
- State Environmental Protection Key Laboratory of Dioxin Pollution Control, National Research Center for Environmental Analysis and Measurement, Beijing 100029, PR China
| | - Bei Ma
- College of Water Sciences, Beijing Normal University, Beijing 100875, PR China
| | - Hui Wang
- College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, PR China.
| |
Collapse
|
7
|
Jiang T, Wu W, Ma M, Hu Y, Li R. Occurrence and distribution of emerging contaminants in wastewater treatment plants: A globally review over the past two decades. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175664. [PMID: 39173760 DOI: 10.1016/j.scitotenv.2024.175664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/20/2024] [Accepted: 08/18/2024] [Indexed: 08/24/2024]
Abstract
Emerging contaminants are pervasive in aquatic environments globally, encompassing pharmaceuticals, personal care products, steroid hormones, phenols, biocides, disinfectants and various other compounds. Concentrations of these contaminants are detected ranging from ng/L to μg/L. Even at trace levels, these contaminants can pose significant risks to ecosystems and human health. This article systematically summarises and categorizes data on the concentrations of 54 common emerging contaminants found in the influent and effluent of wastewater treatment plants across various geographical regions: North America, Europe, Oceania, Africa, and Asia. It reviews the occurrence and distribution of these contaminants, providing spatial and causal analyses based on data from these regions. Notably, the maximum concentrations of the pollutants observed vary significantly across different regions. The data from Africa, in particular, show more frequent detection of pharmaceutical maxima in wastewater treatment plants.
Collapse
Affiliation(s)
- Tingting Jiang
- State Key Laboratory of Simulation and Regulation of Water Cycles in River Basins, China Institute of Water Resources and Hydropower Research, Beijing 100048, China; College of Water Conservancy and Architectural Engineering, Shihezi University, Shihezi, Xinjiang 832000, China
| | - Wenyong Wu
- State Key Laboratory of Simulation and Regulation of Water Cycles in River Basins, China Institute of Water Resources and Hydropower Research, Beijing 100048, China; College of Water Conservancy and Architectural Engineering, Shihezi University, Shihezi, Xinjiang 832000, China.
| | - Meng Ma
- State Key Laboratory of Simulation and Regulation of Water Cycles in River Basins, China Institute of Water Resources and Hydropower Research, Beijing 100048, China
| | - Yaqi Hu
- State Key Laboratory of Simulation and Regulation of Water Cycles in River Basins, China Institute of Water Resources and Hydropower Research, Beijing 100048, China
| | - Ruoxi Li
- State Key Laboratory of Simulation and Regulation of Water Cycles in River Basins, China Institute of Water Resources and Hydropower Research, Beijing 100048, China
| |
Collapse
|
8
|
Ariani IK, Aydin S, Yangin-Gomec C. Assessment of antibiotics removal and transformation products by Eichhornia crassipes-assisted biomass in a UASB reactor treating pharmaceutical effluents. BIOFOULING 2024; 40:915-931. [PMID: 39564881 DOI: 10.1080/08927014.2024.2429554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 10/28/2024] [Accepted: 11/06/2024] [Indexed: 11/21/2024]
Abstract
The dried roots of an aquatic plant (Eichhornia crassipes commonly known as water hyacinth) were included in the biomass of an upflow anaerobic sludge bed (UASB) reactor to evaluate the improvement effect on treating antibiotic-containing synthetic pharmaceutical effluent. The removals of three different antibiotics, namely erythromycin (ERY), tetracycline (TET) and sulfamethoxazole (SMX), were investigated using the unacclimatized inoculum during the startup period. Then, about 2.5% E. crassipes (w/w of volatile solids) was added to biomass during the last month of operation. Almost complete removal of each antibiotic was achieved, with efficiencies up to 99% (with initial ERY, TET and SMX of 200, 75 and 230 mg L-1, respectively) regardless of E. crassipes addition. The presence of transformation products (TPs) of selected antibiotics was also investigated and ERY showed a higher potential to transform into its metabolites than SMX and TET. With the studied amount of E. crassipes, no positive impact against TPs formation was observed.
Collapse
Affiliation(s)
| | - Sevcan Aydin
- Division of Biotechnology, Biology Department, Faculty of Science, Istanbul University, Istanbul, Turkey
| | - Cigdem Yangin-Gomec
- Department of Environmental Engineering, Istanbul Technical University, Istanbul, Turkey
| |
Collapse
|
9
|
Rahman NAAA, Khasri A, Salleh NHM, Jamir MRM. Enhanced adsorption-photodegradation of tetracycline using Ce-N-co-doped AC/TiO 2 photocatalyst: isotherms, kinetics, mechanism, and thermodynamic insight. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:59398-59415. [PMID: 39354260 DOI: 10.1007/s11356-024-34948-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 09/05/2024] [Indexed: 10/04/2024]
Abstract
Excessive use of tetracycline (TC) is alarming owing to its increased detection in water systems. In this study, a photocatalyst was developed to degrade TC using a Ce-N-co-doped AC/TiO2 photocatalyst, denoted as Ce/N-AC/TiO2, prepared using the sol-gel method assisted by microwave radiation, speeding up the synthesis process. Ce/N-AC/TiO2 achieved maximum TC degradation of 93.1% under UV light with optimum sorption system conditions of an initial concentration of 10 mg L-1, pH 7, and 30 ℃, under 120 min. Scavenger experiments revealed that holes and superoxide radicals were the active species influencing the photodegradation process. The TC degradation was appropriately fitted with Langmuir isotherms and a pseudo-second-order (PSO) kinetic model. The change in enthalpy (ΔH) (2.43 kJ mol-1), entropy (ΔS) (0.024 kJ mol-1), and Gibbs free energy (ΔG) (- 4.941 to - 5.802 kJ mol-1) suggested that the adsorption process was spontaneous, favourable, and endothermic. Electrostatic interaction, hydrogen bonding, pore-filling, cationic-π, n-π, and π-π interaction were among the interactions involved between TC and Ce/N-AC/TiO2. Furthermore, Ce/N-AC/TiO2 stability was confirmed through 80% removal efficiency even after the fifth reuse cycle. Notably, this work provides new insight into the production of efficient, reusable, and enhanced photocatalysts using a rapid and cost-effective microwave-assisted synthesis process for pollutant remediation.
Collapse
Affiliation(s)
| | - Azduwin Khasri
- Faculty of Chemical Engineering & Technology, Universiti Malaysia Perlis (UniMAP), 02600, Arau, Perlis, Malaysia.
| | - Noor Hasyierah Mohd Salleh
- Faculty of Chemical Engineering & Technology, Universiti Malaysia Perlis (UniMAP), 02600, Arau, Perlis, Malaysia
| | - Mohd Ridzuan Mohd Jamir
- Faculty of Mechanical Engineering & Technology, Universiti Malaysia Perlis (UniMAP), 02600, Arau , Perlis, Malaysia
| |
Collapse
|
10
|
Kong Y, Zhou Q, Wang R, Chen Q, Xu X, Zhu L, Wang Y. Alleviating effects of microplastics together with tetracycline hydrochloride on the physiological stress of Closterium sp. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2024; 26:1588-1600. [PMID: 39099448 DOI: 10.1039/d4em00286e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/06/2024]
Abstract
Microplastics have significant influence on both freshwater cyanobacteria and marine microalgae, especially under co-exposure with other pollutants such as heavy metals, antibiotics, and pharmaceuticals. In the present study, combined effects of microplastics (polyethylene terephthalate (PET) or polybutylene terephthalate (PBT)) and tetracycline hydrochloride (TCH) on the microalgae Closterium sp. were studied to evaluate their acute toxicity, and the cell density, total chlorophyll concentration, photosynthetic activity, antioxidant system, and subcellular structure of Closterium sp. under different treatments were used to explain the physiological stress mechanism of the combined effects. The results indicate that both the single and combined treatments have inhibition effects on the cell growth and photosynthetic activity, with inhibition efficiencies (in terms of cell density) of 5.0%, 9.2%, 66.7%, 55.1%, and 59.8% for PET (100 mg L-1), PBT (100 mg L-1), TCH (10 mg L-1), PET/TCH (PET 100 mg L-1 and TCH 10 mg L-1), and PBT/TCH (PBT 100 mg L-1 and TCH 10 mg L-1), respectively, and relative electron-transport rates (rETRs) of 7.3%, 12.7%, 66.8%, 54.0%, and 59.9%, respectively, for each treatment compared with the control on the 7th day. Moreover, both PET and PBT have positive effects in alleviating TCH toxicity toward Closterium sp., and at the same time, the malondialdehyde level (MDA), superoxide dismutase (SOD) activity, and catalase (CAT) activity induced by the combined treatments were much higher than those from the single microplastic treatments but lower than those from TCH treatment after 7 days. It was demonstrated that TCH causes a much more serious oxidative stress than PET/TCH and PBT/TCH, and the lower oxidative stress of the PET/TCH and PBT/TCH groups could be attributed to the adsorption of TCH to PET or PBT. This work improves the understanding of the combined toxicity effects of microplastics and TCH on Closterium sp.
Collapse
Affiliation(s)
- Yun Kong
- College of Resources and Environment, Yangtze University, Wuhan 430100, Hubei, China.
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region, Xi'an University of Technology, Xi'an, Shaanxi, 710048, China
- Department of Environmental Engineering, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Qingyun Zhou
- College of Resources and Environment, Yangtze University, Wuhan 430100, Hubei, China.
| | - Renjuan Wang
- College of Resources and Environment, Yangtze University, Wuhan 430100, Hubei, China.
| | - Qi Chen
- College of Resources and Environment, Yangtze University, Wuhan 430100, Hubei, China.
| | - Xiangyang Xu
- Department of Environmental Engineering, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Liang Zhu
- Department of Environmental Engineering, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Yue Wang
- College of Resources and Environment, Yangtze University, Wuhan 430100, Hubei, China.
| |
Collapse
|
11
|
Liu M, Wang C, Qi XE, Du S, Ni H. Reducing residual chlortetracycline in wastewater using a whole-cell biocatalyst. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 282:116717. [PMID: 39002381 DOI: 10.1016/j.ecoenv.2024.116717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 07/08/2024] [Accepted: 07/09/2024] [Indexed: 07/15/2024]
Abstract
Antibiotic contamination has become an increasingly important environmental problem as a potentially hazardous emergent and recalcitrant pollutant that poses threats to human health. In this study, manganese peroxidase displayed on the outer membrane of Escherichia coli as a whole-cell biocatalyst (E. coli MnP) was expected to degrade antibiotics. The manganese peroxidase activity of the whole-cell biocatalyst was 13.88 ± 0.25 U/L. The typical tetracycline antibiotic chlortetracycline was used to analyze the degradation process. Chlortetracycline at 50 mg/L was effectively transformed via the whole-cell biocatalyst within 18 h. After six repeated batch reactions, the whole-cell biocatalyst retained 87.2 % of the initial activity and retained over 87.46 % of the initial enzyme activity after storage at 25°C for 40 days. Chlortetracycline could be effectively removed from pharmaceutical and livestock wastewater by the whole-cell biocatalyst. Thus, efficient whole-cell biocatalysts are effective alternatives for degrading recalcitrant antibiotics and have potential applications in treating environmental antibiotic contamination.
Collapse
Affiliation(s)
- Minrui Liu
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou Gansu730070, China.
| | - Chuangxin Wang
- College of Life Sciences, Northwest Normal University, Lanzhou, Gansu 730070, China
| | - Xing-E Qi
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou Gansu730070, China
| | - Shaobo Du
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou Gansu730070, China
| | - Hongyuhang Ni
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong
| |
Collapse
|
12
|
Lu C, Qin C, Zhao L, Ye H, Bai M, Sun Y, Li X, Weng L, Li Y. Overlooked interconversion between tetracyclines and their 4-epimers in soil and effects on soil resistome and bacterial community. ENVIRONMENT INTERNATIONAL 2024; 190:108941. [PMID: 39128374 DOI: 10.1016/j.envint.2024.108941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 07/15/2024] [Accepted: 08/05/2024] [Indexed: 08/13/2024]
Abstract
With the widespread use of tetracycline antibiotics (TCs) and the application of manure fertilizer in farmland, TCs and their metabolites especially 4-epimers have been heavily detected in agricultural soil. However, existing studies have focused on the residual and environmental behavior of maternal TCs, and few studies have looked at the ecotoxicity of their 4-epimers in soil. In this study, the degradation and interconversion of tetracycline (TC), oxytetracycline (OTC) and their 4-epimers (4-epitetracycline, ETC; 4-epioxytetracycline, OTC) were revealed. Their effects on antibiotic resistance genes (ARGs), mobile genetic elements (MGEs) and bacterial community in soil were also investigated in comparison. The results showed that the 4-epimers could be substantially transformed to their parents and degraded as a whole. The degradation rates of four selected pollutants are followed: TC > OTC > ETC > EOTC. This indicated that when TCs entered the soil, part of TCs transformed into slower-degraded 4-epimers, and these 4-epimers could also be converted back to their antibiotic parents, causing the long-term residue of TCs in soil. When added to the soil alone, TC and OTC significantly promoted the proliferation of most ARGs and MGEs, among them, trb-C, IS1247 and IS1111 were the top three genes in abundance. ETC and EOTC had little effect at the beginning. However, as the 4-epimers continuously converted into their parents after one month of cultivation, ETC and EOTC treatments showed similar promoting effect on ARGs and MGEs, indicating that the effect of ETC and EOTC on soil resistome was lagged and mainly caused by their transformed parents. Nocardioides, unclassified_Rhizobiaceae, norank_Sericytochromatia, Microlunatus, Solirubrobacter and norank_67-14 were the most frequent hosts of ARGs, Most of which belong to the phylum Actinobacteria. Due to their large transformation to TCs, slow degradation rate and potential effects on soil microbes and ARGs, the harm of TCs' 4-epimers on soil ecosystem cannot be ignored.
Collapse
Affiliation(s)
- Chenxi Lu
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China; Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, MARA, Tianjin 300191, China; Tianjin Key Laboratory of Agro-Environment and Agro-Product Safety, Tianjin 300191, China
| | - Cheng Qin
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China; Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, MARA, Tianjin 300191, China; Tianjin Key Laboratory of Agro-Environment and Agro-Product Safety, Tianjin 300191, China
| | - Lixia Zhao
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China; Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, MARA, Tianjin 300191, China; Tianjin Key Laboratory of Agro-Environment and Agro-Product Safety, Tianjin 300191, China.
| | - Huike Ye
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China; Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, MARA, Tianjin 300191, China; Tianjin Key Laboratory of Agro-Environment and Agro-Product Safety, Tianjin 300191, China
| | - Mohan Bai
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China; Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, MARA, Tianjin 300191, China; Tianjin Key Laboratory of Agro-Environment and Agro-Product Safety, Tianjin 300191, China
| | - Yang Sun
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China; Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, MARA, Tianjin 300191, China; Tianjin Key Laboratory of Agro-Environment and Agro-Product Safety, Tianjin 300191, China
| | - Xiaojing Li
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China; Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, MARA, Tianjin 300191, China; Tianjin Key Laboratory of Agro-Environment and Agro-Product Safety, Tianjin 300191, China
| | - Liping Weng
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China; Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, MARA, Tianjin 300191, China; Tianjin Key Laboratory of Agro-Environment and Agro-Product Safety, Tianjin 300191, China; Department of Soil Quality, Wageningen University, Wageningen 6700 HB, The Netherlands
| | - Yongtao Li
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
13
|
Zhang T, Yan R, Gui Q, Gao Y, Wang Q, Xu S. Fine particulate matter as a key factor promoting the spread of antibiotics in river network. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 935:173323. [PMID: 38777058 DOI: 10.1016/j.scitotenv.2024.173323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 05/15/2024] [Accepted: 05/15/2024] [Indexed: 05/25/2024]
Abstract
The extensive utilization of antibiotics has resulted in their frequent detection, contributing to an increased abundance of antibiotic resistance genes in rivers and posing a significant threat to environmental health. Particulate matter plays a crucial role as the primary carrier of various pollutants in river ecosystem. Its physicochemical properties and processes of sedimentation and re-suspension can influence the migration and transformation of antibiotics, yet the mechanisms of this impact remain unclear. In this study, we investigated the distribution characteristics at the micro-scale of particles in the upstream plain river network of the Taihu basin and the adsorption behaviors of antibiotics in particulate matter. The results revealed that particles were predominantly in the size range of 30 to 150 μm in the river network and highest total antibiotic concentrations in 0 to 10 μm particle size fractions. Adsorption experiments also confirmed that the smaller the suspended particle size, the stronger the adsorption capacity for antibiotics. Spatially, both the average particle size and total antibiotic concentrations were lower downstream than upstream. The distribution mechanism of antibiotic in river network sediments was significantly influenced by frequent resuspension and settling of fine particles with a stronger capacity to adsorb antibiotics under hydrodynamic conditions. This ultimately facilitated the release of antibiotics from sediment into the water, resulting in lower antibiotic concentrations in downstream sediments relative to upstream These findings suggest that fine particles serve as the primary carriers of antibiotics, and their sorting and transport processes can significantly influence the distribution of antibiotics in water-sediment systems. This study enhances our understanding of the migration mechanisms of antibiotics in river networks and will prove beneficial for the development of management strategies aimed at controlling antibiotic dissemination.
Collapse
Affiliation(s)
- Tao Zhang
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China
| | - Ruomeng Yan
- Yangtze Three Gorges Oasis Technology Development Co.,Ltd, Wuhan 430010, China
| | - Qiyao Gui
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China; College of Environment, Hohai University, Nanjing 210024, China
| | - Yuexiang Gao
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China; College of Environment, Hohai University, Nanjing 210024, China.
| | - Qiuyue Wang
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China; College of Environment, Hohai University, Nanjing 210024, China
| | - Sai Xu
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
| |
Collapse
|
14
|
Han Y, Hu LX, Liu T, Dong LL, Liu YS, Zhao JL, Ying GG. Discovering transformation products of pharmaceuticals in domestic wastewaters and receiving rivers by using non-target screening and machine learning approaches. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 948:174715. [PMID: 39002592 DOI: 10.1016/j.scitotenv.2024.174715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 07/07/2024] [Accepted: 07/09/2024] [Indexed: 07/15/2024]
Abstract
Wastewater treatment plants (WWTPs) are an important source of pharmaceuticals in surface water, but information about their transformation products (TPs) is very limited. Here, we investigated occurrence and transformation of pharmaceuticals and TPs in WWTPs and receiving rivers by using suspect and non-target analysis as well as target analysis. Results showed identification of 113 pharmaceuticals and 399 TPs, including mammalian metabolites (n = 100), environmental microbial degradation products (n = 250), photodegradation products (n = 44) and hydrolysis products (n = 5). The predominant parent pharmaceuticals (n = 37) and transformation products (n = 68) were mainly derived from antimicrobials, accounting for 32.7 % and 17.0 %, respectively. The identified compounds were found in the influent (387-428) and effluent (227-400) of WWTPs, as well as upstream (290-451) and downstream (322-416) of receiving rivers, most predominantly from antimicrobials, followed by analgesic and antipyretic drugs. A total of 399 identified TPs were transformed by 110 pathways, of which the oxidation reaction was predominant (27.0 %), followed by photodegradation reaction (10.7 %). Of the 399 TPs, 49 (with lower PNECs) were predicted to be more toxic than their parents. Compounds with potential high risks (hazard quotient >1 and risk index (RI) > 0.1) were found in the WWTP influent (126), effluent (53) and river (61), and the majority were from the antimicrobial and antihypertensive classes. In particular, the potential risks (RI) of TPs from roxithromycin and irbesartan were found higher than those for their corresponding parents. The findings from this study highlight the need to monitor TPs from pharmaceuticals in the environment.
Collapse
Affiliation(s)
- Yu Han
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Li-Xin Hu
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China.
| | - Ting Liu
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Liang-Li Dong
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - You-Sheng Liu
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Jian-Liang Zhao
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Guang-Guo Ying
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China.
| |
Collapse
|
15
|
Gahrouei AE, Vakili S, Zandifar A, Pourebrahimi S. From wastewater to clean water: Recent advances on the removal of metronidazole, ciprofloxacin, and sulfamethoxazole antibiotics from water through adsorption and advanced oxidation processes (AOPs). ENVIRONMENTAL RESEARCH 2024; 252:119029. [PMID: 38685299 DOI: 10.1016/j.envres.2024.119029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/22/2024] [Accepted: 04/24/2024] [Indexed: 05/02/2024]
Abstract
Antibiotics released into water sources pose significant risks to both human health and the environment. This comprehensive review meticulously examines the ecotoxicological impacts of three prevalent antibiotics-ciprofloxacin, metronidazole, and sulfamethoxazole-on the ecosystems. Within this framework, our primary focus revolves around the key remediation technologies: adsorption and advanced oxidation processes (AOPs). In this context, an array of adsorbents is explored, spanning diverse classes such as biomass-derived biosorbents, graphene-based adsorbents, MXene-based adsorbents, silica gels, carbon nanotubes, carbon-based adsorbents, metal-organic frameworks (MOFs), carbon nanofibers, biochar, metal oxides, and nanocomposites. On the flip side, the review meticulously examines the main AOPs widely employed in water treatment. This includes a thorough analysis of ozonation (O3), the photo-Fenton process, UV/hydrogen peroxide (UV/H2O2), TiO2 photocatalysis, ozone/UV (O3/UV), radiation-induced AOPs, and sonolysis. Furthermore, the review provides in-depth insights into equilibrium isotherm and kinetic models as well as prospects and challenges inherent in these cutting-edge processes. By doing so, this review aims to empower readers with a profound understanding, enabling them to determine research gaps and pioneer innovative treatment methodologies for water contaminated with antibiotics.
Collapse
Affiliation(s)
- Amirreza Erfani Gahrouei
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran, Iran.
| | - Sajjad Vakili
- Chemical Engineering Department, Amirkabir University of Technology (AUT), Tehran, Iran.
| | - Ali Zandifar
- Chemical Engineering Department, School of Chemical and Petroleum Engineering, Shiraz University, Shiraz, Iran.
| | - Sina Pourebrahimi
- Department of Chemical and Materials Engineering, Concordia University, 7141 Sherbrooke Street West, Montréal, Québec, H4B 1R6, Canada.
| |
Collapse
|
16
|
Gao P, Qiu N, Feng L, Zhang L. Dimension-controlled synthesis of BiOI for efficient visible light photodegradation of tetracycline: role of pore structure. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:29101-29112. [PMID: 38568304 DOI: 10.1007/s11356-024-32827-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 03/04/2024] [Indexed: 05/01/2024]
Abstract
The transformation of photogenerated charge carriers (PC) in variable dimensional photocatalyst plays a pivotal role in unraveling the generation of reactive species (RS). However, the dimensional structure-activity relationship in photocatalysis remains elusive, with limited insights into its intricacies. Herein, we report a controlled synthesis strategy by using polyvinyl pyrrolidone (PVP)-assisted precipitation method for BiOI photocatalyst. Due to the steric hindrance of PVP, the 3D microsphere (3D-PVP0.5) and porous structure (3D-PVP1) of BiOI catalysts have been successfully prepared at room temperature. The 3D-PVP1 photocatalyst contains abundant mesopores and larger pores, which significantly shorten the diffusion distance of PC. Also, these PC in porous structure is beneficial for transferring from the inner phase to the surface of materials. Combined with optical property and radicals trapping experiments, the recombination rate of PC in porous structure performs a significant decrease, leading to the generation of more dominated ROS (•O2- and h+). The •O2- played a dominated role (86.98% of contribution rate) in photodegradation of tetracycline (TC) in 3D-PVP1 photocatalytic process. Compared with 2D nanosheet of BiOI (16.7% removal rate of TC), the as-prepared 3D porous structure of BiOI catalyst exhibits unique stable and high removal capacities (90.5%) for TC photodegradation under visible light irradiation. The kobs of 3D-PVP1 photocatalyst increased by 5.1 times than that of 2D nanosheet. To investigate its practical application, the effects of inorganic anions and pH have been systematically studied. This work sheds light on the design of variable dimension BiOI catalyst and provides more insight into the transfer mechanism of PC.
Collapse
Affiliation(s)
- Peng Gao
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China
- Engineering Research Center for Water Pollution Source Control & Eco-Remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Nanting Qiu
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China
- Engineering Research Center for Water Pollution Source Control & Eco-Remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Li Feng
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China
- Engineering Research Center for Water Pollution Source Control & Eco-Remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Liqiu Zhang
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China.
- Engineering Research Center for Water Pollution Source Control & Eco-Remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China.
| |
Collapse
|
17
|
Montone CM, Giannelli Moneta B, Laganà A, Piovesana S, Taglioni E, Cavaliere C. Transformation products of antibacterial drugs in environmental water: Identification approaches based on liquid chromatography-high resolution mass spectrometry. J Pharm Biomed Anal 2024; 238:115818. [PMID: 37944459 DOI: 10.1016/j.jpba.2023.115818] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 10/11/2023] [Accepted: 10/25/2023] [Indexed: 11/12/2023]
Abstract
In recent years, the presence of antibiotics in the aquatic environment has caused increasing concern for the possible consequences on human health and ecosystems, including the development of antibiotic-resistant bacteria. However, once antibiotics enter the environment, mainly through hospital and municipal discharges and the effluents of wastewater treatment plants, they can be subject to transformation reactions, driven by both biotic (e.g. microorganism and mammalian metabolisms) and abiotic factors (e.g. oxidation, photodegradation, and hydrolysis). The resulting transformation products (TPs) can be less or more active than their parent compounds, therefore the inclusion of TPs in monitoring programs should be mandatory. However, only the reference standards of a few known TPs are available, whereas many other TPs are still unknown, due to the high diversity of possible transformation reactions in the environment. Modern high-resolution mass spectrometry (HRMS) instrumentation is now ready to tackle this problem through suspect and untargeted screening approaches. However, for handling the large amount of data typically encountered in the analysis of environmental samples, these approaches also require suitable processing workflows and accurate tandem mass spectra interpretation. The compilation of a suspect list containing the possible monoisotopic masses of TPs retrieved from the literature and/or from laboratory simulated degradation experiments showed unique advantages. However, the employment of in silico prediction tools could improve the identification reliability. In this review, the most recent strategies relying on liquid chromatography-HRMS for the analysis of environmental TPs of the main antibiotic classes were examined, whereas TPs formed during water treatments or disinfection were not included.
Collapse
Affiliation(s)
- Carmela Maria Montone
- Department of Chemistry, Sapienza University of Rome, p.le Aldo Moro 5, 00185 Rome, Italy
| | | | - Aldo Laganà
- Department of Chemistry, Sapienza University of Rome, p.le Aldo Moro 5, 00185 Rome, Italy
| | - Susy Piovesana
- Department of Chemistry, Sapienza University of Rome, p.le Aldo Moro 5, 00185 Rome, Italy
| | - Enrico Taglioni
- Department of Chemistry, Sapienza University of Rome, p.le Aldo Moro 5, 00185 Rome, Italy
| | - Chiara Cavaliere
- Department of Chemistry, Sapienza University of Rome, p.le Aldo Moro 5, 00185 Rome, Italy.
| |
Collapse
|
18
|
Wu D, Dai S, Feng H, Karunaratne SHPP, Yang M, Zhang Y. Persistence and potential risks of tetracyclines and their transformation products in two typical different animal manure composting treatments. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 341:122904. [PMID: 37951528 DOI: 10.1016/j.envpol.2023.122904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 10/11/2023] [Accepted: 11/07/2023] [Indexed: 11/14/2023]
Abstract
Abundant residues of tetracyclines in animal manures and manure-derived organic fertilizers can pose a substantial risk to environments. However, our knowledge on the residual levels and potential risk of tetracyclines and their transformation products (TPs) in manure and manure-derived organic fertilizers produced by different composting treatments is still limited. Herein, the occurrence and distribution of four veterinary tetracyclines (tetracycline, oxytetracycline, chlortetracycline, and doxycycline) and ten of their TPs were investigated in paired samples of fresh manure and manure-derived organic fertilizers. Tetracyclines and TPs were frequently detected in manure and manure-derived organic fertilizer samples in ranging from 130 to 118,137 μg·kg-1 and 54.6 to 104,891 μg·kg-1, respectively. Notably, the TPs concentrations of tetracycline and chlortetracycline were comparable to those of the parent compounds, with 4-epimers being always dominant and retained antibacterial potency. Based on paired-sampling strategy, the removal efficiency of tetracyclines and TPs in thermophilic composting was higher than that in manure storage. Toxicological data in the soil environment and the data derived from equilibrium partitioning method, indicated that tetracyclines and some TPs like 4-epitetracycline, 4-epichlortetracycline and isochlortetracycline could pose median to high ecological risk to terrestrial organisms. Total concentrations of TPs in manure-derived organic fertilizers were significantly correlated with the absolute abundance of tet(X) family genes, which provide evidence to evaluate the effects of TPs on the levels of antibiotic resistance in the environment. Among them, the 4-epitetracycline could pose ecological risk and retain antibacterial potency. Our findings emphasize the importance of monitoring and controlling the prevalence of tetracyclines and their TPs in livestock-related environments.
Collapse
Affiliation(s)
- Danni Wu
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; Henan Institutes of Advanced Technology, Zhengzhou University, Zhengzhou, 450003, China
| | - Shiting Dai
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Haodi Feng
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | | | - Min Yang
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yu Zhang
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; Henan Institutes of Advanced Technology, Zhengzhou University, Zhengzhou, 450003, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
19
|
Liu W, Wang Y, Xia R, Ding X, Xu Z, Li G, Nghiem LD, Luo W. Occurrence and fate of antibiotics in swine waste treatment: An industrial case. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023:121945. [PMID: 37268217 DOI: 10.1016/j.envpol.2023.121945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 05/11/2023] [Accepted: 05/30/2023] [Indexed: 06/04/2023]
Abstract
This study mapped the fate of antibiotics in a swine farm with integrated waste treatment including anoxic stabilization, fixed-film anaerobic digestion, anoxic-oxic (A/O), and composting. Results show the prevalent and consistent occurrence of 12 antibiotics in swine waste. Mass balance of these antibiotics was calculated to track their flow and evaluate their removal by different treatment units. The integrated treatment train could effectively reduce antibiotic loading to the environment by 90% (measured as combined mass of all antibiotic residues). Within the treatment train, anoxic stabilization as the initial treatment step, accounted for the highest contribution (43%) to overall antibiotic elimination. Results also show that aerobic was more effective than anaerobic regarding antibiotic degradation. Composting accounted for an additional of 31% removal of antibiotics while anaerobic digestion contributed to 15%. After treatment, antibiotic residues in the treated effluent and composted materials were 2 and 8% of the initial antibiotic loading in raw swine waste, respectively. Ecological risk assessment showed negligible or low risk quotient associated with most individual antibiotics released into the aquatic environment or soil from swine farming. Nevertheless, antibiotic residues in treated water and composted materials together showed significant ecological risk to water and soil organisms. Thus, further work to improve treatment performance or develop new technologies is necessary to reduce the impact of antibiotics from swine farming.
Collapse
Affiliation(s)
- Wancen Liu
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China
| | - Yongfang Wang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China
| | - Ruohan Xia
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China
| | - Xiangrui Ding
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China
| | - Zhicheng Xu
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China; Key Laboratory of Low-carbon Green Agriculture, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, 100193, China
| | - Guoxue Li
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China; Sanya Institute of China Agricultural University, Sanya, 572025, China
| | - Long D Nghiem
- Centre for Technology in Water and Wastewater, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Wenhai Luo
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China; Key Laboratory of Low-carbon Green Agriculture, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
20
|
Xu Z, Sun S, Gao M, Zheng R, Mu H, Qiu L, Ma J. Degradation of tetracyclines via calcium peroxide activation by ultrasonic: Roles of reactive species, oxidation mechanism and toxicity evaluation. CHEMOSPHERE 2023; 334:139033. [PMID: 37244553 DOI: 10.1016/j.chemosphere.2023.139033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 05/04/2023] [Accepted: 05/24/2023] [Indexed: 05/29/2023]
Abstract
Tetracyclines (TC) frequently detected in the aqueous environment pose threats to humans and ecosystems. The synergistic technology coupling ultrasound (US) and calcium peroxide (CaO2) has a great potential to abate TC in wastewater. However, the degradation efficiency and detailed mechanism of TC removal in the US/CaO2 system is unclear. This work was carried out to assess the performance and mechanism of TC removal in the US/CaO2 system. The results demonstrated that 99.2% of TC was degraded by the combination of 15 mM CaO2 with ultrasonic power of 400 W (20 kHz), but only about 30% and 4.5% of TC was removed by CaO2 (15 mM) or US (400 W) alone process, respectively. Experiments using specific quenchers and electron paramagnetic resonance (EPR) analysis indicated that the generation of hydroxyl radicals (•OH), superoxide radicals (O2-•), and single oxygen (1O2) in the process, whereas •OH and 1O2 were mainly responsible for the degradation of TC. The removal of TC in the US/CaO2 system has a close relationship with the ultrasonic power, the dosage of CaO2 and TC, and the initial pH. The degradation pathway of TC in the US/CaO2 process was proposed based on the detected oxidation products, and it mainly included N,N-dedimethylation, hydroxylation, and ring-opening reactions. The presence of 10 mM common inorganic anions including chloridion (Cl-), nitrate ion (NO3-), sulfate ion (SO42-), and bicarbonate ion (HCO3-) showed negligible influences on the removal of TC in the US/CaO2 system. The US/CaO2 process could efficiently remove TC in real wastewater. Overall, this work firstly demonstrated that •OH and 1O2 mainly contributed to the removal of pollutants in the US/CaO2 system, which was remarkable for understanding the mechanisms of CaO2-based oxidation process and its future application.
Collapse
Affiliation(s)
- Zujun Xu
- School of Civil Engineering and Architecture, University of Jinan, Jinan, 250022, China
| | - Shaofang Sun
- School of Civil Engineering and Architecture, University of Jinan, Jinan, 250022, China.
| | - Mingchang Gao
- School of Water Conservancy and Environment, University of Jinan, Jinan, 250022, China
| | - Ruibin Zheng
- School of Civil Engineering and Architecture, University of Jinan, Jinan, 250022, China
| | - Haotian Mu
- School of Civil Engineering and Architecture, University of Jinan, Jinan, 250022, China
| | - Liping Qiu
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, 250101, China; School of Civil Engineering and Architecture, University of Jinan, Jinan, 250022, China.
| | - Jun Ma
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China
| |
Collapse
|
21
|
Chang D, Mao Y, Qiu W, Wu Y, Cai B. The Source and Distribution of Tetracycline Antibiotics in China: A Review. TOXICS 2023; 11:214. [PMID: 36976979 PMCID: PMC10052762 DOI: 10.3390/toxics11030214] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/22/2023] [Accepted: 02/23/2023] [Indexed: 06/18/2023]
Abstract
In recent years, antibiotics have been listed as a new class of environmental pollutants. Tetracycline antibiotics (TCs) used in human medical treatment, animal husbandry and agricultural production are the most widely used antibiotics. Due to their wide range of activities and low cost, their annual consumption is increasing. TCs cannot be completely metabolized by humans and animals. They can be abused or overused, causing the continuous accumulation of TCs in the ecological environment and potential negative effects on non-target organisms. These TCs may spread into the food chain and pose a serious threat to human health and the ecology. Based on the Chinese environment, the residues of TCs in feces, sewage, sludge, soil and water were comprehensively summarized, as well as the potential transmission capacity of air. This paper collected the concentrations of TCs in different media in the Chinese environment, contributing to the collection of a TC pollutant database in China, and facilitating the monitoring and treatment of pollutants in the future.
Collapse
|
22
|
Park JA, Pineda M, Peyot ML, Yargeau V. Degradation of oxytetracycline and doxycycline by ozonation: Degradation pathways and toxicity assessment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 856:159076. [PMID: 36179846 DOI: 10.1016/j.scitotenv.2022.159076] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 09/22/2022] [Accepted: 09/23/2022] [Indexed: 06/16/2023]
Abstract
Tetracyclines are one of the antibiotics widely employed worldwide and frequently detected in surface waters because of incomplete removal from wastewater treatment. Various advanced oxidation processes have been investigated for tetracyclines degradation and their transformation products (TPs) have recently gained more attention. Studies on ozonation are however seldom for the degradation of oxytetracycline (OTC) and doxycycline (DTC). In the present study, a lower O3 inlet gas concentration (4.67 ± 0.13 mg/L), supplied at a flow rate of 0.27 L/min, was shown to be more effective at removing OTC than the same dose of ozone applied at higher inlet gas concentration (up to 6.29 mg/L) over a shorter time at the same flow rate. The use of pCBA and t-BuOH indicated that ozone plays a more important role in the degradation of OTC than HO•. The DTC degradation was less efficient than for OTC, with 99 % removal requiring twice the amount of ozone. OTC had almost no inhibition of Vibrio fischeri, however, the inhibition ratio was increased to 37 % (5-min) and 46 % (15-min) within 1 min of ozonation. Contrastly, DTC had toxic effects on V. fischeri (inhibition rate5min of 84 %) and sustained toxicity in samples treated for up to 40-min. The observed toxicities after treatment could be explained by the identified TPs (26 TPs for OTC and 23 for DTC, some identified for the first time) and their quantitative structure-activity relationship analysis data. Several TPs showed toxic or extremely toxic predicted effects on fish, daphnid, and green algae, corresponding with the V. fischeri inhibition results. Among the possible degradation pathways, aromatic ring hydroxylation and ring-opening pathways could lead to the formation of TPs less harmful to the environment.
Collapse
Affiliation(s)
- Jeong-Ann Park
- Department of Environmental Engineering, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Marco Pineda
- Department of Chemical Engineering, McGill University, 3610 University St., Montréal H3A 0C5, Québec, Canada
| | - Marie-Line Peyot
- Department of Chemical Engineering, McGill University, 3610 University St., Montréal H3A 0C5, Québec, Canada
| | - Viviane Yargeau
- Department of Chemical Engineering, McGill University, 3610 University St., Montréal H3A 0C5, Québec, Canada.
| |
Collapse
|
23
|
Wang Z, Chu Y, Chang H, Xie P, Zhang C, Li F, Ho SH. Advanced insights on removal of antibiotics by microalgae-bacteria consortia: A state-of-the-art review and emerging prospects. CHEMOSPHERE 2022; 307:136117. [PMID: 35998727 DOI: 10.1016/j.chemosphere.2022.136117] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 08/02/2022] [Accepted: 08/16/2022] [Indexed: 06/15/2023]
Abstract
Antibiotics abuse has triggered a growing environmental problem, posing a major threat to both ecosystem and human health. Unfortunately, there are still several shortcomings to current antibiotics removal technologies. Microalgae-bacteria consortia have been shown to be a promising antibiotics treatment technology owing to advantages of high antibiotics removal efficiency, low operational cost, and carbon emission reduction. This review aims to introduce the removal mechanisms, influencing factors, and future research perspectives for using microalgae-bacteria consortia to remove antibiotics. The interaction mechanisms between microalgae and bacteria are comprehensively revealed, and their exclusive advantages have been summarized in a "Trilogy" strategy, including "reinforced physical contact", "upgraded substance utilization along with antibiotics degradation", and "robust biological regulation". What's more, the relationship between different interaction mechanisms is emphatically analyzed. The important influencing factors, including concentration and classes of antibiotics, environmental conditions, and operational parameters, of antibiotics removal were also assessed. Three innovative treatment systems (microalgae-bacteria fuel cells (MBFCs), microalgae-bacteria membrane photobioreactors (MB-MPBRs), and microalgae-bacteria granular sludge (MBGS)) along with three advanced techniques (metabolic engineering, machine learning, and molecular docking and dynamics) are then introduced. In addition, concrete implementing schemes of the above advanced techniques are also provided. Finally, the current challenges and future research directions in using microalgae-bacteria consortia to remove antibiotics have been summarized. Overall, this review addresses the current state of microalgae-bacteria consortia for antibiotics treatment and provides corresponding recommendations for enhancing antibiotics removal efficiency.
Collapse
Affiliation(s)
- Zeyuan Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province 150090, China
| | - Yuhao Chu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province 150090, China
| | - Haixing Chang
- School of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing, 400054, PR China
| | - Peng Xie
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province 150090, China
| | - Chaofan Zhang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province 150090, China.
| | - Fanghua Li
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province 150090, China
| | - Shih-Hsin Ho
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province 150090, China.
| |
Collapse
|